Control
If it moves, we control it.
Our expertise in this area covers multivariable, nonlinear, optimal and model-predictive control theory, nonlinear estimation, nonlinear dynamical systems, and mechanical design. We conduct both fundamental and applied research targeting a wide range of applications including autonomous driving, factory automation and HVAC systems.
Quick Links
-
Researchers
Stefano
Di Cairano
Yebin
Wang
Scott A.
Bortoff
Avishai
Weiss
Ankush
Chakrabarty
Christopher R.
Laughman
Daniel N.
Nikovski
Abraham P.
Vinod
Diego
Romeres
Devesh K.
Jha
Arvind
Raghunathan
Philip V.
Orlik
William S.
Yerazunis
Abraham
Goldsmith
Jianlin
Guo
Hongtao
Qiao
Vedang M.
Deshpande
Chungwei
Lin
Toshiaki
Koike-Akino
Matthew
Brand
Purnanand
Elango
Yanting
Ma
Pedro
Miraldo
Dehong
Liu
Hassan
Mansour
Ye
Wang
Jinyun
Zhang
Petros T.
Boufounos
Siddarth
Jain
Kieran
Parsons
James
Queeney
Alexander
Schperberg
Hongbo
Sun
Bingnan
Wang
Gordon
Wichern
Na
Li
-
Awards
-
AWARD Arvind Raghunathan receives Roberto Tempo Best CDC Paper Award at 2022 IEEE Conference on Decision & Control (CDC) Date: December 8, 2022
Awarded to: Arvind Raghunathan
MERL Contact: Arvind Raghunathan
Research Areas: Control, OptimizationBrief- Arvind Raghunathan, Senior Principal Research Scientist in the Data Analytics group, received the IEEE Control Systems Society Roberto Tempo Best CDC Paper Award. The award was presented at the 2022 IEEE Conference on Decision & Control (CDC).
The award is given annually in honor of Roberto Tempo, the 44th President of the IEEE Control Systems Society (CSS). The Tempo Award Committee selects the best paper from the previous year's CDC based on originality, potential impact on any aspect of control theory, technology, or implementation, and for the clarity of writing. This year's award committee was headed by Prof. Patrizio Colaneri, Politecnico di Milano. Arvind's paper was nominated for the award by Prof. Lorenz Biegler, Carnegie Mellon University, with supporting letters from Prof. Andreas Waechter, Northwestern University, and Prof. Victor Zavala, University of Wisconsin-Madison.
- Arvind Raghunathan, Senior Principal Research Scientist in the Data Analytics group, received the IEEE Control Systems Society Roberto Tempo Best CDC Paper Award. The award was presented at the 2022 IEEE Conference on Decision & Control (CDC).
-
AWARD MERL Researcher Devesh Jha Wins the Rudolf Kalman Best Paper Award 2019 Date: October 10, 2019
Awarded to: Devesh Jha, Nurali Virani, Zhenyuan Yuan, Ishana Shekhawat and Asok Ray
MERL Contact: Devesh K. Jha
Research Areas: Artificial Intelligence, Control, Data Analytics, Machine Learning, RoboticsBrief- MERL researcher Devesh Jha has won the Rudolf Kalman Best Paper Award 2019 for the paper entitled "Imitation of Demonstrations Using Bayesian Filtering With Nonparametric Data-Driven Models". This paper, published in a Special Commemorative Issue for Rudolf E. Kalman in the ASME JDSMC in March 2018, uses Bayesian filtering for imitation learning in Hidden Mode Hybrid Systems. This award is given annually by the Dynamic Systems and Control Division of ASME to the authors of the best paper published in the ASME Journal of Dynamic Systems Measurement and Control during the preceding year.
See All Awards for MERL -
-
News & Events
-
TALK [MERL Seminar Series 2024] Zhaojian Li presents talk titled A Multi-Arm Robotic System for Robotic Apple Harvesting Date & Time: Wednesday, October 2, 2024; 1:00 PM
Speaker: Zhaojian Li, Mivchigan State University
MERL Host: Yebin Wang
Research Areas: Artificial Intelligence, Computer Vision, Control, RoboticsAbstract- Harvesting labor is the single largest cost in apple production in the U.S. Surging cost and growing shortage of labor has forced the apple industry to seek automated harvesting solutions. Despite considerable progress in recent years, the existing robotic harvesting systems still fall short of performance expectations, lacking robustness and proving inefficient or overly complex for practical commercial deployment. In this talk, I will present the development and evaluation of a new dual-arm robotic apple harvesting system. This work is a result of a continuous collaboration between Michigan State University and U.S. Department of Agriculture.
-
NEWS MERL researchers present 9 papers at ACC 2024 Date: July 10, 2024 - July 12, 2024
Where: Toronto, Canada
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; Christopher R. Laughman; Arvind Raghunathan; Abraham P. Vinod; Yebin Wang; Avishai Weiss
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, RoboticsBrief- MERL researchers presented 9 papers at the recently concluded American Control Conference (ACC) 2024 in Toronto, Canada. The papers covered a wide range of topics including data-driven spatial monitoring using heterogenous robots, aircraft approach management near airports, computation fluid dynamics-based motion planning for drones facing winds, trajectory planning for coordinated monitoring using a team of drones and a ground carrier vehicle, ensemble Kalman smoothing-based model predictive control for motion planning for autonomous vehicles, system identification for Lithium-ion batteries, physics-constrained deep Kalman filters for vapor compression systems, switched reference governors for constrained systems, and distributed road-map monitoring using onboard sensors.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
In addition, Abraham Vinod served as a panelist at the Student Networking Event at the conference. The student networking event provides an opportunity for all interested students to network with professionals working in industry, academia, and national laboratories during a structured event, and encourages their continued participation as the future leaders in the field.
- MERL researchers presented 9 papers at the recently concluded American Control Conference (ACC) 2024 in Toronto, Canada. The papers covered a wide range of topics including data-driven spatial monitoring using heterogenous robots, aircraft approach management near airports, computation fluid dynamics-based motion planning for drones facing winds, trajectory planning for coordinated monitoring using a team of drones and a ground carrier vehicle, ensemble Kalman smoothing-based model predictive control for motion planning for autonomous vehicles, system identification for Lithium-ion batteries, physics-constrained deep Kalman filters for vapor compression systems, switched reference governors for constrained systems, and distributed road-map monitoring using onboard sensors.
See All News & Events for Control -
-
Internships
-
EA0074: Internship - Control Policy Learning with Guarantee
MERL is seeking a highly motivated and qualified individual to conduct research in the integration of model- and learning-based control to achieve high precision positioning with guaranteed safety and robustness. The ideal candidate should have solid backgrounds in dynamical systems, control theory and state-of-the-art control policy learning algorithms, and strong coding skills. Prior experience on ultra-high precision motion control systems is a plus. Ph.D. students in learning and control are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.
-
CA0114: Internship - Trajectory planning for drones with controllable sensors
MERL is seeking an outstanding intern to collaborate with the Control for Autonomy team in the development of trajectory generation for mobile robots, e.g., drones, equipped with controllable sensors, for information acquisition tasks. The project objective is to optimize drone trajectories and the control of on board sensors (e.g., field of view, pointing angle, etc.) to maximize the amount of information acquired about specified monitored targets while reducing the mission duration. The ideal candidate is expected to be working towards a PhD with a strong emphasis on trajectory generation and control, optimization-based control and planning algorithms and constrained control. Strong programming skills in at least one among Matlab, Python, Julia, C/C++ are required. Experience with experimental drone platforms such as crazyflie, and related software frameworks, such as ROS, are desired. The expected start date is in the late Spring/Early Summer 2025, for a duration of 3-6 months.
Required Specific Experience
- Currently enrolled in a PhD program in Aerospace, Electrical, Mechanical Engineering, Computer Science, Applied Math or a related field
- 2+ years of research in at least some of: optimization-based trajectory generation, convex and non-convex optimization, sensor modeling, information-aware planning
- Strong programming skills in at least one among Matlab, Python, Julia, or C/C++
- Validation of drone planning and control in simulations. Experience with drone experiments is a plus.
-
MS0098: Internship - Control and Estimation for Large=Scale Thermofluid Systems
MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.
See All Internships for Control -
-
Openings
-
EA0042: Research Scientist - Control & Learning
-
CA0093: Research Scientist - Control for Autonomous Systems
See All Openings at MERL -
-
Recent Publications
- "Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning", IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2024.3433229, Vol. 32, No. 6, pp. 2492-2499, January 2025.BibTeX TR2024-136 PDF
- @article{Vinod2025jan,
- author = {Vinod, Abraham P. and Safaoui, Sleiman and Summers, Tyler and Yoshikawa, Nobuyuki and Di Cairano, Stefano}},
- title = {Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning},
- journal = {IEEE Transactions on Control Systems Technology},
- year = 2025,
- volume = 32,
- number = 6,
- pages = {2492--2499},
- month = jan,
- doi = {10.1109/TCST.2024.3433229},
- url = {https://www.merl.com/publications/TR2024-136}
- }
, - "Memory-Based Learning of Global Control Policies from Local Controllers", 21st International Conference on Informatics in Control, Automation and Robotics (ICINCO'24), November 2024.BibTeX TR2024-158 PDF
- @inproceedings{Nikovski2024nov,
- author = {{Nikovski, Daniel N. and Zhong, Junmin and Yerazunis, William S.}},
- title = {Memory-Based Learning of Global Control Policies from Local Controllers},
- booktitle = {21st International Conference on Informatics in Control, Automation and Robotics (ICINCO'24)},
- year = 2024,
- month = nov,
- url = {https://www.merl.com/publications/TR2024-158}
- }
, - "Autonomous Horizon-Based Optical Navigation on Near-Planar Cislunar Libration Point Orbits", 4th Space Imaging Workshop, October 2024.BibTeX TR2024-139 PDF
- @inproceedings{Shimane2024oct,
- author = {Shimane, Yuri and Ho, Koki and Weiss, Avishai}},
- title = {Autonomous Horizon-Based Optical Navigation on Near-Planar Cislunar Libration Point Orbits},
- booktitle = {4th Space Imaging Workshop},
- year = 2024,
- month = oct,
- url = {https://www.merl.com/publications/TR2024-139}
- }
, - "From Convexity to Strong Convexity and Beyond: Bridging The Gap In Convergence Rates", IEEE Conference on Decision and Control (CDC), September 2024.BibTeX TR2024-131 PDF
- @inproceedings{Romero2024sep,
- author = {Romero, Orlando and Benosman, Mouhacine and Pappas, George}},
- title = {From Convexity to Strong Convexity and Beyond: Bridging The Gap In Convergence Rates},
- booktitle = {IEEE Conference on Decision and Control (CDC)},
- year = 2024,
- month = sep,
- url = {https://www.merl.com/publications/TR2024-131}
- }
, - "Real-time Mixed-Integer Quadratic Programming for Vehicle Decision Making and Motion Planning", IEEE Transactions on Control Systems Technology, September 2024.BibTeX TR2024-123 PDF
- @article{Quirynen2024sep,
- author = {Quirynen, Rien and Safaoui, Sleiman and Di Cairano, Stefano}},
- title = {Real-time Mixed-Integer Quadratic Programming for Vehicle Decision Making and Motion Planning},
- journal = {IEEE Transactions on Control Systems Technology},
- year = 2024,
- month = sep,
- url = {https://www.merl.com/publications/TR2024-123}
- }
, - "Multi-Agent Formation Control using Epipolar Constraints", IEEE Robotics and Automation Letters, DOI: 10.1109/LRA.2024.3444690, Vol. 9, No. 12, pp. 11002-11009, September 2024.BibTeX TR2024-147 PDF
- @article{Roque2024sep,
- author = {Roque, Pedro and Miraldo, Pedro and Dimarogonas, Dimos}},
- title = {Multi-Agent Formation Control using Epipolar Constraints},
- journal = {IEEE Robotics and Automation Letters},
- year = 2024,
- volume = 9,
- number = 12,
- pages = {11002--11009},
- month = sep,
- doi = {10.1109/LRA.2024.3444690},
- issn = {2377-3766},
- url = {https://www.merl.com/publications/TR2024-147}
- }
, - "MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models", International Conference on Automation Science and Engineering (CASE), August 2024.BibTeX TR2024-115 PDF
- @inproceedings{Yan2024aug,
- author = {Yan, Jiaqi and Chakrabarty, Ankush and Rupenyan, Alisa and Lygeros, John}},
- title = {MPC of Uncertain Nonlinear Systems with Meta-Learning for Fast Adaptation of Neural Predictive Models},
- booktitle = {International Conference on Automation Science and Engineering (CASE)},
- year = 2024,
- month = aug,
- url = {https://www.merl.com/publications/TR2024-115}
- }
, - "Assessing Building Control Performance Using Physics-Based Simulation Models and Deep Generative Networks", IEEE Conference on Control Technology and Applications (CCTA) 2024, DOI: 10.1109/CCTA60707.2024.10666585, August 2024.BibTeX TR2024-113 PDF
- @inproceedings{Chakrabarty2024aug,
- author = {Chakrabarty, Ankush and Vanfretti, Luigi and Bortoff, Scott A. and Deshpande, Vedang M. and Wang, Ye and Paulson, Joel A. and Zhan, Sicheng and Laughman, Christopher R.}},
- title = {Assessing Building Control Performance Using Physics-Based Simulation Models and Deep Generative Networks},
- booktitle = {IEEE Conference on Control Technology and Applications (CCTA) 2024},
- year = 2024,
- month = aug,
- doi = {10.1109/CCTA60707.2024.10666585},
- url = {https://www.merl.com/publications/TR2024-113}
- }
,
- "Decentralized, Safe, Multi-agent Motion Planning for Drones Under Uncertainty via Filtered Reinforcement Learning", IEEE Transactions on Control Systems Technology, DOI: 10.1109/TCST.2024.3433229, Vol. 32, No. 6, pp. 2492-2499, January 2025.
-
Videos
-
Software & Data Downloads