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Abstract— This paper provides an overview of recent re-
search efforts on the role of Process Systems Engineering
(PSE) in advancing sustainability initiatives, particularly in
achieving net-zero emissions and carbon neutrality. The paper
is organized as a collection of four domains where PSE
methodologies contribute to sustainability: (i) carbon mone-
tization and low-carbon supply chains, where optimization and
systems modeling help design cost-effective decarbonization
strategies; (ii) circular economy and sustainable manufacturing,
which leverage system-level optimization to minimize resource
consumption and maximize economic viability; (iii) sustain-
able land management and ecosystem services, where PSE
approaches aid in quantifying trade-offs between land use,
emissions, and economic feasibility; and (iv) advanced control
technology, particularly in building energy management, where
data-driven control strategies enhance energy optimization
under significant uncertainty. In addition to reviewing relevant
literature, this paper highlights common challenges across these
domains and discusses future opportunities for integrating
emerging technologies, such as generative AI and mixed-integer
programming, into PSE-driven sustainability strategies.

I. INTRODUCTION

Sustainability initiatives, such as net-zero emissions and
carbon neutrality, have gained significant momentum world-
wide as governments, industries, and consumers seek to
reduce environmental impact [1]. However, achieving these
goals is not straightforward, as success requires overcoming a
host of technological, economic, and operational challenges.
Without effective strategies, sustainability efforts can lead
to inefficient resource allocation, missed environmental tar-
gets, and economic disruptions that may discourage long-
term commitments to sustainability. At the core of these
challenges are two fundamental requirements for informed
(data-driven) decision-making:

• Accurate modeling of environmental and economic
impacts: Organizations must understand how their op-
erations affect sustainability metrics while quantify-
ing trade-offs in costs, energy use, emissions, and re-
source consumption. Without accurate models, decision-
makers risk underestimating emissions, misallocating
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resources, or implementing ineffective policies. Con-
versely, well-calibrated models help identify strategic
opportunities to reduce emissions while maintaining
economic viability.

• Optimal planning and control strategies for navigat-
ing uncertainty: Sustainability is inherently dynamic;
systems must adapt to fluctuations in energy demand,
renewable energy availability, evolving regulatory poli-
cies, and shifting market conditions. Poorly designed
decision-making frameworks can lead to inefficiencies,
financial losses, or even unintended increases in emis-
sions. In contrast, robust optimization and control strate-
gies enable companies and policymakers to anticipate
uncertainties and exploit system variability, leading to
more resilient and cost-effective sustainability solutions.

A critical challenge in sustainability efforts is ensuring that
environmental initiatives are financially viable. Many indus-
trial sectors, including manufacturing, energy, and transporta-
tion, face pressure to reduce emissions while maintaining
competitiveness. The scale of this challenge is reflected in
estimates from McKinsey & Company, which project that
reaching global net-zero targets will require $3.5 trillion
in annual investment [2]. If sustainability strategies are not
designed with economic feasibility in mind, they may impose
burdensome costs, slow adoption, or even set back global
decarbonization efforts. However, as illustrated in some
recent work [3]–[6], well-designed strategies can create win-
win scenarios, where companies improve efficiency, reduce
waste, and lower costs while also decreasing emissions.

Achieving sustainability at scale requires integrating sys-
tematic, data-driven methodologies that enable organizations
to optimize resource allocation, make informed trade-offs,
and develop long-term strategies that balance several factors
such as economic growth and environmental responsibility.
Process Systems Engineering (PSE) provides a structured
approach to addressing these challenges by integrating math-
ematical modeling, optimization, control, and data analytics
to guide decision-making in complex, uncertain environ-
ments [7]. PSE is not a single methodology but rather a
unifying framework (or perspective) that combines diverse
analytical tools to improve decision-making across various
domains, from supply chain optimization to real-time process
control. Traditionally, PSE has been applied in manufac-
turing, logistics, and energy systems to enhance efficiency,



minimize waste, and optimize production processes. More
recently, its principles have been extended to address sustain-
ability challenges by helping organizations and policymakers
navigate the trade-offs between environmental impact and
economic considerations.

This paper explores four key domains where PSE method-
ologies can play a critical role in sustainability efforts:

1) Carbon monetization and low-carbon supply chains
(Section II): Companies are increasingly leveraging car-
bon monetization strategies, such as compliance carbon
market, voluntary carbon market and internal carbon
pricing, to create financial incentives for emission re-
ductions. PSE methodologies help optimize low-carbon
supply chain planning, ensuring that decarbonization
strategies are both cost-effective and scalable.

2) Circular economy and sustainable manufacturing
(Section III): The transition from a linear to a circular
economy, where resources are reused, remanufactured,
and recycled, requires system-level optimization to de-
sign closed-loop material flows and evaluate economic-
environmental trade-offs in manufacturing systems. PSE
provides tools for designing these strategies, minimizing
resource consumption, and maximizing the economic
viability of circular business models.

3) Sustainable land management and ecosystem ser-
vices (Section IV): Land use decisions, such as refor-
estation, wetland restoration, and carbon sequestration,
can play a complementary role to technological CO2

reduction strategies. However, quantifying the trade-
offs between land use, emissions, and economic fea-
sibility requires systematic modeling and optimization
approaches—areas where PSE methodologies are well-
suited to provide insights.

4) Advanced control technology for energy efficiency
(Section V): Many sustainability challenges involve
real-time decision-making to minimize waste and im-
prove energy efficiency. For example, Heating, Venti-
lation, and Air Conditioning (HVAC) systems account
for nearly 50% of energy consumption in commercial
buildings, with 30% of this energy often wasted due
to suboptimal control. Advanced control strategies, par-
ticularly stochastic model predictive control (SMPC),
offer a means of dynamically optimizing energy usage
while accounting for uncertainty in demand, weather
conditions, and renewable energy availability. Recent
advancements in machine learning-enhanced control,
such as generative time-series models, further improve
the ability to forecast disturbances and optimize system
performance adaptively.

By examining these four key domains, this paper aims
to (1) review cutting-edge PSE methodologies that support
sustainability efforts, (2) identify common challenges and
methodological needs across these domains, and (3) discuss
future opportunities for integrating PSE with emerging tech-
nologies (such as generative AI, Bayesian optimization, and
mixed-integer programming) to further advance sustainable

decision-making in both academic and industrial contexts.

II. CARBON MONETIZATION AND ITS IMPACT ON
LOW-CARBON SUPPLY CHAIN PLANNING

Carbon monetization, as the name implies, is the strategic
use of financial and economic incentives to encourage and
ensure the reduction of carbon emissions. This allows indus-
tries involved to treat the process of reducing their carbon
footprint, either directly or indirectly, as an opportunity to
generate additional revenue or reduce costs, in addition to
the more obvious reasons, such as the social benefit of
decarbonizing the economy, adhering to government reg-
ulations, and attracting consumers and investors by being
environmentally responsible.

One way governments monetize carbon reduction is
through the carbon tax, also known as the emission tax,
which imposes a direct cost on businesses and organizations
based on the amount of CO2 emissions they contribute.
Although reducing greenhouse gas (GHG) emissions is nec-
essary to mitigate irreversible climate change, it is unrea-
sonable to expect all companies to develop and implement
carbon capture or carbon-free technology immediately. This
is primarily due to one or a combination of the following
reasons: immature technology, issues with scale-up, or, in
the case of many small to medium-sized companies, a
lack of funds to invest in the research, development, and
implementation of sustainable technologies. An increasingly
common workaround is government-issued tradable emission
allowances, also known as carbon permits. One allowance
typically grants permission for the emission of one tonne
of carbon dioxide equivalent (tCO2e). These allowances are
governed by national and international governments and must
be mandatorily complied with by companies that fall under
their jurisdiction; thus, these allowances are traded in what is
called the compliance carbon market (CCM). For example,
the EU Emissions Trading System (EU ETS) [8], established
in 2005, uses a cap-and-trade system in which allowances
are sold in auctions, and companies can later trade them
among themselves to reduce costs or justify their emissions
to avoid heavy penalties. The revenue generated from these
allowances is used to fund the development of new low-
carbon technologies as well as the expansion of existing
ones. To further minimize emissions, the cap on available
allowances across different sectors is reduced each year.
Other examples of similar ETS include California’s cap-and-
trade program, which was launched in 2013 and regulates
80% of the state’s GHG emissions [9], and China’s ETS,
which started operating in 2021 and is the world’s largest in
terms of emissions covered [10].

Another type of fast-emerging carbon market is the vol-
untary carbon market (VCM). VCM typically involves the
trade of carbon offsets (offset credits), which are verifi-
able certificates issued to projects that fall into one of
two categories: avoidance and removal projects. Avoidance
projects generally substitute conventional GHG-emitting pro-
cesses and involve the development and implementation of
renewable technologies such as wind power, solar power,



green H2 production using electrolysis, and many others.
Removal projects entail the direct removal of CO2 from
the atmosphere, such as direct air capture, afforestation,
reforestation, and other sequestration projects. One carbon
offset is generated when 1 tCO2e of emissions is avoided
or removed from the atmosphere. Companies with their
own net-zero mission, usually driven by corporate social
responsibility (CSR) to enhance their reputation and brand
value, often invest in carbon offset-generating projects to
compensate for their emissions and quickly attain their
sustainability goals. Unlike CCM, participation in VCM is
completely optional and not tied to government-regulated tar-
gets. Furthermore, in addition to fulfilling the CSR objectives
of large corporations, VCM also provides an opportunity
for small businesses and individuals to reduce their carbon
footprint by purchasing carbon offsets, as they are traded in
open markets. Lastly, note that the term “carbon credits” is
often used loosely for both carbon allowances and offsets;
however, one should pay attention to whether it is being
referred to in the context of CCM or VCM.

In addition to the above-mentioned carbon markets, many
companies are actively devising their own strategies to make
optimal investment decisions for the future while hedging
against potential financial risks posed by carbon taxes or
caps imposed by government regulations. One such strategic
tool gaining popularity is internal carbon pricing (ICP) [11],
where a company assigns a monetary value to its GHG
emissions, often done at regional levels. Effective utilization
of ICP requires careful evaluation of the business’s emis-
sions profiles, including the section of the value chain that
contributes the most to it, the objectives of whether the focus
is to hedge against potential risks or drive investments in low-
carbon technologies, or a mix of both, and, obviously, the
uncertainty in how carbon prices might unfold in the future
to meet the net-zero goal. The pricing mechanisms in ICP
are generally based on a carbon fee, which involves a per-
unit fee based on the amount of GHG emissions, or a shadow
price, which involves a hypothetical payment for the purpose
of analyzing and drafting future investment decisions.

Although carbon markets are emerging as an effective
tool for decarbonization, several challenges remain in their
adoption and implementation. Some of the challenges are
summarized below:

• Regulatory uncertainty: Since decarbonization demands
global efforts, it requires governments of different coun-
tries to come together and draft consistent and effective
regulatory policies, which is often a difficult task due to
the complexities of international relations and varying
levels of commitment to the decarbonization goal. This
is especially a hurdle for the operations of multinational
corporations and supply chains that transcend national
boundaries, as they must navigate inconsistent regula-
tions across different jurisdictions.

• Offsets credibility: Offsets from carbon reduction or
removal projects are difficult to quantify due to their
complexity and type. Although an increasing number
of standards and registries, such as the Verified Carbon

Standard [12] and the American Carbon Registry [13],
are being designed to verify and certify these offsetting
projects, ensuring that they actually reduce emissions,
it remains a significant challenge because it directly
impacts the price, perception, and thus the sale of these
offsets.

• Carbon price volatility: Offsets sold in the market can
have drastically different prices based on factors includ-
ing: (1) Type of project – removal projects generate
offsets that are more sought after and thus priced higher.
(2) Leakage – a high-quality project must ensure that
the emissions reduced are not shifted to another location
or source. (3) Permanence risk – projects that reduce
emissions in ways that are less likely to be reversed
in the future generate higher-quality (and thus higher-
priced) offsets. (4) Additionality – “additional” projects
are those that would not have been financially feasible
without the revenue from the offsets they generate. This
allows companies to claim that their investment (from
purchasing the offsets) directly enabled the emissions
reduction. The ability to make such a claim often leads
to a higher price for these offsets. (5) Co-benefits –
projects that provide benefits beyond emissions reduc-
tion are perceived positively and generate higher-priced
offsets. For example, reforestation supports wildlife in
addition to carbon removal. (6) Vintage – offsets gen-
erated from recent projects are valued higher compared
to similar projects launched in the distant past.

• Greenwashing: The misuse of sustainability claims due
to the complexity of carbon credits or offset certifica-
tions can allow companies to exploit the system and
present a false image of environmental responsibility
without making genuine sustainability efforts.

To achieve decarbonization in a timely manner, long-
term optimal capacity planning [14], [15] is crucial. In
addition, as renewable technologies penetrate the chemical
sector, considering low-carbon alternatives for heavily uti-
lized products such as ammonia [16], [17] is essential. As
such, drawing from the work by Rathi et al. [18], we discuss
how a low-carbon ammonia supply chain can have signifi-
cantly different investment and operational decisions, as well
as costs, depending on the accountability and traceability
method (more commonly known as the chain of custody
model) chosen for tracking ammonia of different carbon
intensities in the network. Chain of custody, as defined
by ISO [19], “is a process by which inputs and outputs
and associated information are transferred, monitored and
controlled as they move through each step in the relevant
supply chain.” For a low-carbon product supply chain, the
choice of chain of custody model governs the extent to which
the product is categorized based on its characteristics (e.g.,
carbon intensity) at each stage of the supply chain. The four
most commonly used chain of custody models are identity
preservation, segregation, mass balance (MB), and book-and-
claim (B&C); however, only MB and B&C are practically
relevant to the chemical industry. In the MB model, products



with different characteristics can mix together; however, the
quantity of product with each characteristic is reconciled
at each stage, ensuring that the consumer ultimately pays
for the characteristic of the product it receives. In a low-
carbon ammonia supply chain, this means that ammonia with
different carbon intensities from various production sites is
mixed during the distribution stage but the consumer pays
for the final carbon intensity of the ammonia it physically
receives. In contrast, B&C, also known as certificate or credit
trading, differs from MB in that there is no bookkeeping
at any stage of the supply chain. Instead, certificates are
issued to producers of low-carbon ammonia, which can
be purchased by consumers intending to claim low-carbon
ammonia irrespective of the carbon intensity of the ammonia
physically delivered to them. Note that this is similar to the
concept of carbon offsets explained previously. Lastly, to
ensure proper accounting in the B&C model, it is crucial
to ensure that the low-carbon certificates generated and
purchased correspond exactly to the amount of low-carbon
product flowing in the supply chain.

We consider a case study of a low-carbon ammonia supply
chain network spanning nine U.S. states, with 15 existing
ammonia production sites, three potential production sites,
and each state’s geographical center acting as a consumer
site (see Fig. 1). Each production site is modeled as a
superstructure with the option of steam methane reforming
(SMR) and electrolysis (ELC) for hydrogen production, a
carbon capture unit (CCU), and air separation (ASU) and
Haber-Bosch (HB) process units for ammonia production.
Natural gas and electricity from renewable sources (solar and
wind) are explicitly considered as resources. The expansion
of the supply chain is analyzed over a 25-year planning
horizon from 2025 to 2050, divided into five five-year time
periods. The authors assume that ammonia demand increases
by 15% in each period. The price of ammonia (assumed
to be constant over the planning horizon) offered by each
consumer as a function of carbon intensity is shown in Fig.
2. The carbon intensity ranges from 0 to 1, with lower
values indicating “greener” ammonia. Specifically, a carbon
intensity below 0.05 indicates green ammonia, from 0.05 to
0.4 (excluding) indicates blue ammonia, and 0.4 or above
indicates gray ammonia. Consumers C, F, and I are assumed
to be willing to pay a premium for low-carbon ammonia,
meaning they are more interested in claiming the receipt of
low-carbon ammonia. In the case of the B&C model, the
higher premiums can also be interpreted as the additional
cost of purchasing low-carbon certificates. The expansion
planning problem for the two chain of custody models
(MB and B&C) is formulated as a mixed-integer nonlinear
programming model, with the objective of maximizing the
net profit of operating the supply chain.

The ammonia distribution plots are shown in Fig. 3. The
color of the edges represents the grade of ammonia being
transported, the color of the producer nodes indicates the
grade of ammonia they manufacture, and the color of the
consumer nodes indicates the grade of ammonia they pay for
(which is also the grade of ammonia delivered to them in the
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Fig. 2: Time-invariant consumer price profiles [18].

case of the MB model). The key observation here is that, in
the MB model, each consumer pays for the ammonia they
receive, whereas this is generally not true in the B&C model.
For example, in the first time period, the high-premium-
paying Consumer I pays for and receives blue ammonia in
the MB model, whereas in the B&C model, it receives gray
ammonia from Producers 13 and 15 but is able to claim
green ammonia regardless. Many other similar examples
can be seen in Fig. 3. Second, the ability to claim low-
carbon ammonia via the purchase of certificates in the B&C
model enables the avoidance of long-distance deliveries. For
example, in the third time period, the high-premium-paying
Consumers C and F receive part of their low-carbon ammonia
from a relatively far-off Producer 7. In contrast, in the B&C
case, they are able to claim green ammonia even when
receiving gray ammonia from nearby producers. In the later
time periods, this becomes more evident, with the MB case
showing many more edges for long-distance deliveries unlike
the B&C case. Lastly, as the initially installed SMR units
retire and electrolysis becomes cost-competitive over time
for hydrogen production, green ammonia trading increases



Fig. 3: Ammonia distribution network under the MB (top) and B&C (bottom) models. A missing node at any producer
location indicates either no production units were set up, or all previously installed capacity has been retired [18].

significantly in the network during the final two time periods.
The carbon intensity of ammonia is directly dependent on

the technology utilized for hydrogen production; thus, the
expansion of these technologies, including carbon capture at
each producer site, is highlighted in Fig. 4. The first (black)
bar at each producer indicates any initially installed SMR
capacity, and the next five bars, from left to right, correspond
to the five time periods in chronological order, showcasing
the expansion (or retirement) of SMR (gray bar), CCU (blue
bar), and ELC (green bar). A missing bar for a time period
indicates that either no production facility is set up at the
location or all capacity has retired. It is observed that the
MB model invests significantly more in ELC compared to
the B&C model. This is primarily because the MB model
can only benefit from the high premiums offered for carbon
intensities <0.05 if it actually delivers ammonia of such
low carbon intensity, which requires investing in hydrogen
production technology capable of producing such low-carbon
ammonia, i.e. ELC units. In contrast, recall that the B&C

model relies on certificate trading and thus prefers investing
in SMR and CCU because it can still take advantage of the
high premiums by, for example, delivering higher-carbon-
intensity ammonia to consumers who want to claim green
ammonia (by purchasing certificates) and blue ammonia to
consumers who pay for gray ammonia. The total investment
in hydrogen and ammonia production technologies over the
planning horizon under the two chain of custody models is
summarized in Table I. In comparison to the MB model,
the choice of the B&C model leads to approximately 5%
more ammonia production, with 37.36% more investment in
blue ammonia but 72.66% less investment in green ammonia
production.

The percentage demand met in each time period under
the two chain of custody models is summarized in Table
II. For the given network of producers and consumers and
the underlying price profiles, compared to the MB model,
the B&C model results in investment decisions that lead to
relatively more demand satisfaction over the last two time



(a) MB.

(b) B&C.

Fig. 4: Available capacities for hydrogen production tech-
nologies at all sites over the planning horizon. The first
bar for each producer represents the initially installed SMR
capacity (if any), while the remaining bars show the available
capacities of each technology from time period 1 to 5 (left to
right), color-coded as follows: SMR (gray), CCU (blue), and
ELC (green). A missing bar indicates no available capacity,
either because no units were installed or because previously
installed units have been retired [18].

Technology Unit MB B&C % difference
SMR kt H2/yr 675 1,197 77.33
CCU kt CO2/yr 3,683 5,059 37.36
ELC kt H2/yr 629 172 -72.66
ASU+HB kt NH3/yr 7,341 7,709 5.01

TABLE I: Summary of total expansion for each technology
over the planning horizon under the MB and B&C models
[18].

periods, following the retirement of initial capacity. This can
be primarily attributed to the greater flexibility offered by the
B&C model in investment decisions, as it has a relatively less
restricted certification system. The demand requested and
met for each consumer over the planning horizon under both
chain of custody models is shown in Fig. 5. Each consumer
has five bars (one per time period, increasing from left to
right), where the fill levels indicate the demand met, and the
color represents the grade of ammonia claimed. Given the
high premiums offered by Consumers C, F, and I, both the
MB and B&C models fully satisfy their requested demand.

However, unlike in the MB model, under the B&C model,
these consumers are able to claim green ammonia in all time
periods.

Model Time period
2025-30 2030-35 2035-40 2040-45 2045-50

MB 100 100 100 56.29 49.59
B&C 100 100 100 59.88 52.07

TABLE II: Summary of the percentage demand met in each
time period for the MB and B&C models [18].
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Fig. 5: Demand satisfied for each consumer over the planning
horizon. For each consumer, the bars represent the requested
demand for each time period (increasing left to right), with
the fill level indicating the extent of demand met. Bar colors
reflect the range in which the carbon intensity of the claimed
ammonia falls [18].

An interesting observation in the case of the MB model
is its tendency to overbuild CCU, increasing the likelihood
of these units becoming redundant when SMR units are
retired. For example, due to their proximity to high-premium-
paying Consumer I, Producers 13 and 15 initially invest in
CCU (see Fig. 4) to supply low-carbon ammonia (see Figs.
3 and 5), as electrolyzers are expensive during the initial
time periods. However, without any additional investment in
SMR, the installed CCU units become completely redundant
after the SMR units are retired at the end of the third time
period, as seen in Fig. 4. Similar observations can be made
for Producers 5, 6, 7, and 12, whose usable CCU capacities
reduce to 81.3%, 0%, 10%, and 40% of the net installed CCU
capacities at these sites, respectively, in the last two time
periods. In contrast, in the B&C model, any CCU capacity
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Fig. 6: Breakdown of various costs and resulting profit for each time period in the MB and B&C models [18].

built during the planning horizon maintains 100% utilization.
Hence, while the optimization model may theoretically favor
overbuilding CCU, in practice, this could be inefficient due
to wastage of resources.

Figure 6 depicts the breakdown of various costs under
the two chain of custody models. The first major difference
is that B&C model results in higher profits, which can
be attributed to the flexibility offered by its underlying
certification system, making it easier to claim low-carbon
ammonia, which is sold at a much higher premium. Second,
the MB model results in higher electricity costs, particularly
in the final two time periods, due to greater investment
in electrolyzers. Third, the higher natural gas costs in the
B&C model during the last two time periods are primarily
due to low-carbon ammonia production using SMR and
CCU. Lastly, although transportation cost is rather small
compared to other costs, B&C leads to significantly lower
transportation cost per tonne of ammonia demand met, as
shown in Table III.

Model Time period
2025-30 2030-35 2035-40 2040-45 2045-50

MB 57.8 51.8 47.5 44.5 41.9
B&C 54.5 46.8 43.2 33.3 35.1

TABLE III: Summary of the transportation cost incurred per
unit demand met ($/t NH3) in each time period for the MB
and B&C models [18].

Finally, Table IV summarizes the overall carbon intensity
in each time period under the two chain of custody mod-
els. Although similar carbon intensities are observed across
the two models, the B&C model results in the production
of marginally higher-carbon-intensity ammonia during the
last two time periods, primarily due to its preference for
SMR+CCU to produce hydrogen for low-carbon ammonia,
as opposed to the MB model, which prefers the lower-carbon

option of ELC for hydrogen production.

Model Time period
2025-30 2030-35 2035-40 2040-45 2045-50

MB 0.74 0.74 0.74 0.45 0.45
B&C 0.73 0.73 0.73 0.48 0.48

TABLE IV: Summary of the overall carbon intensity of
ammonia produced in each time period for the MB and B&C
models [18].

In this case study, PSE methodologies have been utilized
to uncover the impact of various chain of custody models
on investment and operational decisions. These insights are
crucial for formulating optimal strategies and navigating the
challenges associated with carbon monetization, ultimately
aiding in the achievement of decarbonization goals.

III. OPTIMAL DESIGN FOR CIRCULAR SUPPLY CHAINS

Despite growing awareness, environmental issues like
resource depletion, water pollution, and greenhouse gas
(GHG) emissions continue to threaten sustainability. These
challenges are exacerbated by increasing population growth
and industrialization, placing stress on natural resources
and ecosystems. In response, supply chain objectives have
evolved beyond merely meeting demand; they now empha-
size the integration of sustainable practices, including the
adoption circular economy principles to minimize environ-
mental impacts.

Integrating sustainability aspects into circular supply chain
design, redesign, modeling, or optimization requires systems
engineering tools that can capture the complexity of new
circular supply chains, combine optimization techniques and
quantitative decision-making tools to find optimal alterna-
tives. Promoting sustainability involves adopting circular
economy practices—such as reusing, recycling, and re man-
ufacturing—to close loops within the supply chains. Addi-
tionally, it entails adopting innovative processes and green



resources that reduce resource consumption and minimize
environmental impacts. However, while numerous options
can be proposed, a comprehensive assessment is essential.
Systems engineering frameworks are required to integrate
the multiple environmental and economic assessment tools to
identify optimal pathways and ensure that truly sustainable
choices are made.

A. Challenges in using systems engineering tools for circular
economy supply chains

Modeling the entire supply chain is essential because it
consists of multiple interconnected stages, where decisions
or events in one stage can significantly impact the others.
A holistic perspective ensures accurate representations that
optimize not only operational efficiency but also economic
and environmental sustainability. For instance, a supplier
might prefer a bio-based material for its natural origin, but
if the production process or waste management involves
energy- or water-intensive steps, the overall environmental
impact could be worse than that of alternative materials,
highlighting the importance of considering all stages of the
supply chain. However, such models are inherently more
complex, and incorporating circular processes further in-
creases the challenge, as it introduces additional cycles and
feedback loops into the system.

The multi-scale, multi-faceted and interconnected nature
of supply chains represent challenges into modeling and
decision making. Given supply chains are complex intercon-
nected networks that collaborate to efficiently produce and
distribute goods or services, they involve multiple stakehold-
ers which bring conflicting objectives into play. Additionally,
considering supply chains with extended boundaries and
multiple levels of complexity leads to large-scale problems
that are difficult to solve. Expanding the boundaries intro-
duces multiple scales, both in space and time, which can
create challenges as each level has the potential to impact
the others [20]. There are additional challenges specific for
different types of supply chains. For instance, food and
biomass supply chain face challenges like perishability that
require precise coordination and introduce time sensitive
constraints [21]. Also, chemical and pharmaceutical supply
chains require many regulatory and safety constraints.

B. Systems Engineering Tools for Circular Supply Chains

1) Circular Economy Assessment Tools: To achieve ef-
fective decision-making, assessment tools and methods are
essential to evaluate and compare different alternatives based
on their economic and environmental impacts. To measure
economic impacts, methods like techno-economic assess-
ment (TEA) are used to evaluate the profitability of the
processes [22]. For environmental assessment, one of the
most common methods is life cycle assessment (LCA) which
is a standardized tool that measures factors like emissions
and health impacts related to the life cycle of products
or services [23]. Nevertheless, to achieve a more holistic
environmental evaluation, circularity metrics have been pro-

posed focusing on different aspects of Circular Economy like
material circularity and resource consumption. [24], [25].

An example of a holistic circularity assessment is the
micro-level framework proposed by Baratsas et al [24],
who proposed indicators and metrics based on categories
derived from the CE goals. The categories defined are: waste,
water and procurement, energy, emissions and spillages and
durability. Originally applied to companies across various
economic sectors, the framework tracks their circularity
performance over multiple years. The circularity score ranges
from 0 to 1, where a score of 1 represents perfect circularity
and a score of 0 indicates complete linearity. The indicators,
based on the GRI standards, enable the collection of infor-
mation for the different companies. A circularity subindex is
calculated for each category by assigning specific weights to
the respective metrics. Finally, the overall circularity index
is computed as a linear average of all the subindices.

Based on the previous work of Baratsas et al [24], the
framework was adjusted to apply to multiple sectors, includ-
ing plastic recycling [26], chemical production [27], energy
carrier production and use [28], and food packaging waste
management infrastructure [29]. Taking the food packaging
waste management infrastructure as an example, to achieve
a comprehensive environmental assessment, we expanded
beyond an assessment of GHG emissions and included this
circularity framework. The circularity assessment includes
the production, waste management and transportation of
different packaging an waste management options. The indi-
cators and metrics applicable were selected and the durability
category was replaced for a substitutability category with
a metric based on the product’s market value. The study
focused on identifying the optimal packaging and waste
management combination in terms of economic and envi-
ronmental criteria [29].

To demonstrate how the circularity index is calculated,
we will focus just on waste management, specifically the
scenario of sending a polyethylene (PE) rigid container
to mechanical recycling. First, data is collected on a per-
container basis. For the energy category, the established
indicators are total energy consumed and total renewable
energy consumed. In this scenario, the total energy consumed
is 0.14 MJ per container, and the total renewable energy
consumed is 0.01384 MJ. The corresponding metrics are the
percentage of renewable energy over total energy consumed
and the total energy consumed, respectively. Based on the
collected data, the first metric is calculated as 9.9%, while
the second metric is 0.14 MJ. The first metric is already
expressed as a percentage, but the second metric requires
normalization. Using an upper bound defined as 1.5 times the
average of all total energy consumption across all the waste
management scenarios, the normalized value for this metric
is 0.8170. Given that the total energy consumed is considered
more significant than the percentage of renewable energy,
the weights for the metrics are distributed as 60% and 40%,
respectively. This results in an energy subindex score of 0.53.
A similar process is applied to calculate the sub indices for
the other categories: water (0.75), emissions (0.88), waste



(0.69), and substitutability (0.65). The overall circularity
index is then computed as the linear average of these sub
indices, yielding a score of 0.65. This value is subsequently
compared with other waste management scenarios and stages
to identify the most circular option.

2) Exploring trade-offs between environmental and eco-
nomic impacts: Transitioning toward sustainability requires
addressing environmental, economic, and social aspects si-
multaneously. To achieve this, it is essential to consider
multiple objectives at once, which can be effectively accom-
plished through multi-objective optimization. This technique
evaluates two or more conflicting objectives to generate a
set of optimal solutions, enabling the exploration of rela-
tionships and trade-offs between them. Some of the methods
commonly used to solve multi-objective optimization are the
weighted sum method and the ϵ-constraint method [30]–
[32]. The first method consists on assigning weights to
the different objectives and then multiplying and summing
over to obtain a single overall objective function. The ϵ-
constraint method instead focuses on optimizing one of
the objective functions while treating the other objective
functions as constraints. This is achieved by solving the
other objective functions separately, and defining a set of
”epsilon” limit. These ϵ limits act as bounds, ensuring
that when you optimize one of the objective functions, the
other objectives work as constraints and a set of feasible
solutions for all the objectives can be obtained. The resulting
Pareto plot will visually represents the trade-offs between
the objectives, providing valuable insights to guide decision-
making. Numerous studies have successfully applied multi-
objective optimization to compare key aspects such as cost
versus emissions or resource consumption [33]–[35].

3) Modeling Circular Supply Chains: Within the supply
chain context there are different approaches for modeling and
optimization. Graphs are used to model complex systems like
supply chains given their ability to represent a networks of
interconnected elements like nodes and edges. Being edges
the connections between nodes. In the case of the supply
chain, nodes can represent the different entities such as,
suppliers, producers, retailers or if looking closely into a
specific stage like waste management, the different processes
involved like pretreatment and recycling. Superstructures
are a graph based approach commonly used to model a
representation of all the possible pathways within the system.
Here, the edges between nodes represent the flows coming
from one unit operation or entity (nodes) to another. After
defining the representation with any of the different types of
graphs, they are transformed into a mathematical program-
ming model, followed by the application of a solving method
to determine the optimal pathway.

4) Case study: The study mentioned earlier in the as-
sessment section, which aims to identify the optimal pack-
aging and waste management combination by considering
economics, emissions, and circularity, serves as an example
of a circular economy (CE) systems engineering framework.
This framework integrates assessment and optimization tools.
A superstructure approach is used to represent all the possible

pathways between packaging, waste management technolo-
gies and products obtained. The study considers a variety
of packaging options, including films and rigid containers
made from materials such as polyethylene (PE) and glass.
It also evaluates multiple waste management technologies,
such as mechanical recycling, pyrolysis, solvent-targeted
recovery and precipitation (STRAP), landfill, incineration,
and a cleaning facility for returnable containers. The study
combines life cycle assessment (LCA), techno-economic
analysis (TEA), and the circularity assessment previously de-
scribed. A mixed-integer linear programming (MILP) model
is formulated with the objective functions of minimizing cost,
minimizing emissions, and maximizing circularity.

In the single-objective optimization, the combination of
multilayer film and the technology STRAP is identified as the
most economically feasible alternative. The reusable glass
container emerges as the least emitting alternative. However,
if considering non-local distances (greater than 65 miles)
the least emitting alternative becomes multilayer film sent
to landfill. Given landfill has other environmental impacts
that emissions do not include, the next step is to identify
the most circular pathway which is selected as the reusable
glass container. For the multi-objective optimization, the ϵ-
constraint method is applied to solve the problem, generating
a Pareto front that illustrates the trade-offs between the
objectives. The following figure (Fig 7) presents an example
of the Pareto plot for cost versus emissions, demonstrating
that cost increases as emissions decrease, and vice versa.
The trade-off obtained between circularity and emissions, as
shown in figure 8 demonstrates that emissions and circularity
do not always follow the same trend. For a local distance of
7 miles, the most circular option—the reusable glass con-
tainer—is also the least emitting. However, for a non-local
distance of 65 miles, the reusable glass container remains the
most circular option, while the multilayer film becomes the
least emitting alternative. Furthermore, the results indicate
that when emissions increase, circularity also increases.
This suggests that reducing emissions does not necessarily
lead to improved circularity, highlighting the importance of
considering both criteria to assess environmental impacts.

Another example of a CE systems engineering framework
that considers implementing alternative processes and val-
orization pathways is proposed by Baratsas et al [34], and
applied to a coffee supply chain case study. The framework
encompasses the entire supply chain from coffee cherries
to different end-products like whole beans, coffee bever-
ages and soluble/instant coffee. Different alternatives for
production are identified as well as valorization pathways for
wastes and by-products. For instance, coffee waste and by-
products, such as husks, pulp, and mucilage, can be converted
into valuable resources like bio ethanol or biogas. All these
stages are arranged into a RTN (Resource-Task-Network)
representation, including conversion factors. An RTN is a
graph-based approach that represent tasks and resources as
nodes and their relationship as edges, forming a bipartite
directed graph. Then, a mathematical MILP (mixed-integer
linear programming) model of the supply chain is formulated
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Fig. 7: Pareto front considering cost and emissions for a local
and non local distance with the following optimal solutions.
Most profitable pathway: a) Multilayer film & STRAP. Least
emissions pathway: b) Multilayer film & Landfill c) Reusable
glass container .
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Fig. 8: Pareto front considering circularity and emissions for
a local and non local distance with the following optimal
solutions. a) Optimal pathway (emissions and circularity):
Reusable glass container, b) Most circular pathway: Reusable
glass container c) Least emissions pathway: Multilayer film
& Landfill

based on this information. Objectives based on the CE goals
are defined like maximizing the energy output of the supply
chain, minimizing water consumption, coffee cherries con-
sumption, waste generation and emissions. Single optimiza-
tion and multi-objective optimization considering some of the
objectives previously mentioned are explored for five coffee-
product demand scenarios. A Pareto front was obtained from
all the multi-objective optimization combinations, illustrating
a set of feasible solutions and the trade-offs between the two
objectives.

C. Future perspective

To tackle the multi-scale challenge inherent in supply
chain modeling, future advances will focus on the use of
surrogate models and the development of novel optimiza-
tion algorithms, to efficiently solve these new larger scale
and more interconnected models. Future developments also
include systems engineering frameworks that integrate multi-
level or multi-agent optimization, as the presence of multiple
interconnected stakeholders introduces significant challenges
in supply chain modeling. Accurately capturing real-world
interactions and incorporating these considerations is essen-
tial for creating robust and realistic models [20]. Therefore,
game theory-based approaches are needed, that can represent
the multiple stakeholders as autonomous agents interacting
in the same or at different hierarchical levels.

Regarding the assessment methods, more comprehensive
environmental metrics are expected to be adopted, as relying
solely on emissions has proven insufficient for capturing the
full range of environmental impacts. Therefore, circularity
metrics that encompass resource consumption, waste gener-
ation and product durability will be key for the assessments.

IV. SUSTAINABLE LAND MANAGEMENT

Land-use transformations have the potential to supplement
the technological systems like CO2 capture to help meet
corporate sustainability goals and greenhouse gas emission
targets. In addition, they support several water and nature
conservation initiatives. These land-use transformations in-
clude reforestation, restoration, remediation, wetland, pond
construction, etc., each capable of providing natural-capital
and environmental benefits through ecosystem services [36].
Since corporate entities own numerous land properties and
there are several possible land-use transformations, it is
impossible to manually analyze each solution. It is also
a challenge to obtain the appropriate ecological data from
various sources to define a robust corporate decision-making
strategy backed by scientific methods under internal de-
grees of freedom and constraints [37]. Systems engineering,
mathematical optimization and data science approaches can
effectively explore all the feasible solutions [38], prioritize
and recommend cost-favorable land management strategies.

In this section, we will present a digital PSE toolkit
for sustainable land management that can help in making
informed decisions, which exemplifies how these approached
can help an organization progress towards their environ-
mental goals and corporate social responsibilities. We have
developed a unique methodology to leverage geographic
information system (GIS) capabilities in a mathematical opti-
mization setting using ArcGIS Pro (for spatial analytics) and
AIMMS Pro (for programming and application deployment).
The developed tool that has the capabilities to i) analyze
environmental risk at global locations and identify priority
sites for implementing nature-based solutions; and to ii)
optimize land-use transformation strategies at a selected site
for maximizing value from ecosystem services. Examples of
environmental risk metrics considered include water stress
indicators from Aqueduct 4.1 [39], biodiversity hotspots



from integrated Biodiversity Assessment Tool (iBAT), air
quality measurements, and 2040 temperature projections. On
a site level we leverage county level land parcel data and
national land cover database (NLCD) [40] to characterize
the land types and identify the best land transformation
strategies using a mathematical optimization formulation.
These objectives are accomplished through a multi-stage
procedure which is depicted in figure 9.

With the help of this digital toolkit, one can prioritize
the selection of properties for climate action based on en-
vironmental risk hotspots, such as water stress, bio-diversity
risk, air/water pollution, etc. This also involves bucketing the
sites under similar risk categories for multiple risk indicators
through multi-variate statistical measures such as hierarchical
clustering on principal components (HCPC) [41], as shown
using an example in figure 10. This risk assessment method-
ology is deployed through interactive views on the global
map to visualize the sites, their rankings for environmental
risk and categories.

The Land-use change optimization toolkit (second level in
figure 9 requires a more elaborate procedure to first estimate
the baseline Ecosystem service ‘value’ at currently owned the
land parcels (areas owned by a single entity) at selected sites.
This step entails collecting the land ownership data from
internal sources and county tax records, overlaying them
onto National Land Cover databases to identify the fractions
of different land categories such as Shrubs, Grasslands,
Deciduous or Evergreen forests, Developments, Open Water,
etc. in each land parcel. The area of each land cove category
in a parcel is then used to estimate the ecosystem service
value it delivers through a surrogate linear model fitted on
the ecological assessments for individual land parcels in the
Ecosystem Services Identification & Inventory (ESII) Tool
[42]. The ESII tool is developed by The Nature Conservancy
in partnership with Dow and Eco Metrix solutions group [43]
and has been used to effectively generate information on
the ecosystem service performance of a specified landscape
requiring field data collections. Once the baseline land cover
information for company-owned land parcels is obtained,
the tool identifies improvement opportunities to optimize
environmental and economic benefit of the property (green-
belt, surplus, operating, and remediation) under budgetary
constraints that can be targeted towards: a. Increasing car-
bon sequestration b. Improving water quality and quantity
c. Enhancing air quality (kgNOx or Particulate matter) d.
Promoting biodiversity growth through green cover This
is achieved through a constrained Knapsack optimization
formulation that solves for optimal transitions in land parcels
(wherever possible, user defined) to general maximum value
from these ecosystem services (multi-objective) at lowest
cost. The deployed web-application allows for selection of
weights to different ecosystem service values and also gen-
erate Pareto-optimal solutions for user-selected objectives.
Figure 11 demonstrates the workflow of the land-use change
optimization toolkit. Finally, to analyze remediation options
at the level of individual land parcels, the toolkit also
provides ways to perform hypothesis testing using time-

series datasets on land cover images. For example, in a
sparsely forested scrubland, a hypothesis about higher natural
reforestation where green corridors exists, is studied to help
remediation teams determine which land parcels to focus
on for low-cost remediation. Several such analyses on soil
type, regional water availability risk forecasts, etc. can be
conducted on the developed toolkit for the land parcel of
interest.

The proposed digital solution demonstrates the pro-
activeness to align with Taskforce on Nature-related Fi-
nancial Disclosure’s (TNFD) Locate, Evaluate, Assess and
Prepare (LEAP) approach [44] that is meant to guide or-
ganizations assess nature-related issues, from dependencies
and impacts to risks and opportunities. The mathematical
frameworks and PSE approaches adopted in this digital
toolkit have the potential to provide model-guided strategies
and actions to meet corporate goals and targets in the Water
and Nature space more effectively.

V. THE ROLE OF ADVANCED CONTROL SYSTEMS IN
MEETING SUSTAINABILITY GOALS

Real-time decision-making and control are fundamental to
achieving sustainability objectives across diverse sectors, in-
cluding industrial manufacturing, transportation, and energy
systems. These systems operate in highly dynamic environ-
ments, where external factors (such as weather conditions,
fluctuating demands, and evolving market constraints) must
be effectively managed. Traditional setpoint tracking and
rule-based control strategies are often inadequate in such
contexts, as they lack the adaptability required to respond
to rapid variations and leverage opportunities for improving
efficiency. In contrast, model-based and optimization-driven
advanced control frameworks empower decision-makers to
proactively adjust operations by systematically incorporating
forecasts of external variables, enforcing operational con-
straints, and balancing conflicting objectives such as cost,
energy efficiency, and system performance.

Among the many applications of advanced control, build-
ing energy management serves as an illustrative example of
both the challenges and opportunities in real-time decision-
making for sustainability. Buildings account for approxi-
mately 40% of global energy consumption and 35% of car-
bon emissions [45], largely due to their reliance on energy-
intensive heating, ventilation, and air conditioning (HVAC)
systems. As the power sector transitions toward cleaner
energy sources, buildings will play an increasingly critical
role in global decarbonization efforts. However, uncontrolled
or inefficiently managed building operations contribute to
significant energy waste. Studies suggest that up to 30%
of HVAC energy is wasted due to suboptimal control poli-
cies, ultimately hindering progress toward net-zero emissions
goals [46], [47].

A key challenge in modern building energy management
is achieving a balance between occupant comfort (often
quantified through temperature, humidity, and air quality
constraints) and energy efficiency. This trade-off is complex
due to the influence of external factors such as ambient



Fig. 9: Multi-stage procedure for land-asset management, deployed as web application on company servers with dashboards
to visualize and interpret environmental risk, and identify optimal land-use transformation strategies.

Fig. 10: Prioritization of sites for remediation action is a
key step for capital allocation. This approach demonstrates
how open-source environmental risk datasets and statistical
approaches can be leveraged to aid in decision making.

weather, dynamic occupant behavior, and time-varying en-
ergy prices. Model predictive control (MPC) has emerged
as a powerful tool for addressing this challenge, given its
ability to optimize multivariable systems while enforcing
constraints [48]. MPC leverages a predictive model of the
building to determine optimal control actions over a receding
time horizon, allowing energy consumption to be minimized
without violating comfort constraints.

Despite its promise, deploying MPC (or its variants) in
real-world building environments poses two key challenges.
First, predictive models must account for disturbances such
as occupant-driven heat loads, internal appliance usage,
and weather variations. These disturbances are inherently
stochastic, and failing to capture them accurately can lead
to constraint violations and degraded control performance.
Second, standard MPC approaches often rely on a limited
set of predefined disturbance scenarios, which may not
capture the full variability of real-world conditions. With the
increasing availability of sensor data from modern buildings,
recent research has explored the use of deep generative mod-
els to synthesize realistic time-series disturbances, thereby

improving the robustness of control strategies.
This section highlights recent advancements in integrating

stochastic MPC (SMPC) with data-driven scenario gen-
eration for building energy management. Specifically, we
summarize our recent contributions in the following areas:

1) Generative Time-Series Modeling for Building Dis-
turbances: We have developed probabilistic deep gen-
erative models, trained on real building datasets, to
capture stochastic disturbances such as occupant-driven
heat loads and environmental effects [49].

2) Incorporating Generative Models into SMPC Ar-
chitectures: We have proposed a novel approach to
integrate generative time-series models into SMPC, en-
suring improved control performance while maintaining
computational efficiency [50].

3) Sampling Rare but Influential Scenarios via Active
Learning: We have developed a sample-efficient active
learning strategy to identify limiting scenarios, i.e.,
extreme conditions under which SMPC may approach
performance boundaries [51]–[53].

By examining the case of building energy control, we
demonstrate how advanced control systems – enabled by
high-fidelity modeling, probabilistic forecasting, and real-
time optimization – can contribute to achieving sustainabil-
ity goals. Similar methodologies can be extended to other
domains requiring high adaptivity under uncertainty, rein-
forcing the broader role of advanced control in sustainable
systems engineering. For a broader discussion of integrating
machine learning into MPC, see [54].

A. Generative time-series disturbance modeling

Effective control policies require accurate models of sys-
tem disturbances. However, disturbances in building energy



Fig. 11: Workflow of the land-use change optimization toolkit.

systems (e.g., internal heat loads, appliance usage, and ven-
tilation demands) are inherently stochastic and difficult to
model using first-principles approaches, as they depend on
human occupancy patterns that are highly uncertain. These
disturbances exhibit complex temporal dependencies, making
traditional deterministic models insufficient for capturing
real-world variability.

Recent advances in probabilistic deep generative models
offer a promising solution by enabling the synthesis of realis-
tic time-series disturbances from historical building data. One
such approach is the Regularized Adversarial Fine-Tuned
Variational Autoencoder-GAN (RAFT-VG) architecture [49],
which has been trained on the real-world SUSTIE building
dataset [55]. As shown in Figure 12, RAFT-VG combines
the structural advantages of Variational Autoencoders (VAEs)
with the high-fidelity generative capabilities of Generative
Adversarial Networks (GANs). The model training con-
sists of two primary stages: first, a VAE learns a latent
representation of the input time-series data, capturing its
statistical structure. In the second stage, adversarial fine-
tuning refines the latent space by employing a discriminator
network that enhances the realism of generated samples.
Additionally, RAFT-VG employs regularization techniques
to ensure consistency between the encoder and decoder,
preserving the integrity of synthesized data distributions.

The ability to generate realistic disturbance scenarios
has several advantages: (i) it enables robust scenario-based
optimization within SMPC; (ii) it provides synthetic data for
training and testing controllers under diverse conditions; and
(iii) it enhances privacy preservation by allowing synthetic
data to replace sensitive building operation records.

B. Incorporating generative models into SMPC

A fundamental advantage of SMPC is its ability to opti-
mize control policies while explicitly accounting for uncer-
tainty in disturbances [56], [57]. However, the effectiveness
of SMPC depends on the quality of the disturbance models
used in scenario generation. Conventional approaches often
rely on static or nominal disturbance distributions, which fail
to capture real-world variations, leading to overly conserva-
tive or suboptimal control policies.

By integrating time-series disturbance forecasts made by
generative AI methods, such as RAFT-VG, into the SMPC
framework, we can more effectively balance risk and reward
– ensuring that control actions are neither overly aggressive
(which may lead to downstream constraint violations) nor
overly conservative (which may waste energy and reduce
performance). In our recent work [50], we propose a compu-
tationally tractable SMPC method that utilizes a conditional
VAE for disturbance generation (another type of generative
AI method). The key idea is to generate a large number
of realistic scenarios that are incorporated into a so-called
scenario tree, a structured representation of uncertainty
commonly used in stochastic programming [58]. Instead of
constructing an exhaustive scenario tree (where disturbances
can take on many finite realizations at each time step, leading
to exponential growth in problem size), we strategically
restrict branching to the first stage. This approach captures
the most relevant uncertainty while keeping the optimization
computationally feasible. Figure 13 illustrates the impact
of generative model-informed SMPC compared to classical
SMPC approaches. The adaptive strategy achieves perfor-
mance comparable to a perfect (but unachievable) forecast



Fig. 12: Overview of the RAFT-VG generative model, trained on the SUSTIE dataset to generate realistic building disturbance
scenarios. The synthesized data supports multiple applications, including controller verification, anomaly detection, privacy
preservation, and data augmentation.

while significantly outperforming non-adaptive methods.
The rationale behind restricting scenario branching at the

first stage can be understood through the lens of dynamic
programming (DP) [59], [60]. MPC can be interpreted as
performing a single step of Newton’s method on the Bell-
man equation, using an approximate value function whose
accuracy depends on the horizon length. A key observation
from this perspective is that the first-stage decision must
be computed as accurately as possible, as it determines
the initial Newton step, while subsequent steps can be
approximated with lower fidelity since they primarily serve
to refine the initial decision. This principle suggests that,
while exact disturbance modeling is critical in the near
term, approximate representations can suffice in later stages,
allowing for computational savings without significant loss
in control performance.

This observation also aligns with the exponential decay
of sensitivity (EDS) property [61], [62], which states that
the impact of parametric perturbations in a dynamic system
decays exponentially as one moves backward in time. From
an SMPC perspective, this implies that uncertainties far in
the future have a negligible impact on present decisions,
reinforcing the validity of using high-fidelity disturbance
models only in early-stage scenario generation. Interestingly,
a similar approximation strategy has been shown to improve
decision-making in competitive settings such as chess [63],
where a reduced branching factor in early moves (analogous
to first-stage scenario tree refinement) leads to significantly
stronger gameplay without incurring excessive computational
overhead. By adopting this structured approach to scenario
tree design, generative model-informed SMPC can maintain
a practical computational footprint while still capturing the
essential variability needed for robust real-time control.

C. Efficiently sampling rare but influential scenarios

While optimizing control performance under typical con-
ditions is essential, it is equally critical to evaluate controllers
against rare but high-impact scenarios that may expose vul-
nerabilities in the system. These edge cases, often overlooked
in standard scenario-based optimization, provide valuable
insights into the robustness of control strategies and help

identify potential failure modes. However, systematically
discovering such extreme conditions is computationally chal-
lenging due to the combinatorial nature of scenario explo-
ration. Since closed-loop simulations (especially those using
high-fidelity physics-based models) can be computationally
expensive, sample-efficient methods are needed to uncover
limiting scenarios within a practical computational budget.

Sequential active learning is a powerful framework for
systematically identifying new simulation conditions that
maximize information gain. Active learning is closely re-
lated to optimal experiment design (OED) [64], where the
objective is to maximize knowledge about an underlying
system using the fewest possible experiments. In the context
of control robustness assessment, this translates to selecting
the most informative disturbance scenarios to probe system
behavior under extreme but realistic conditions.

One approach for efficiently identifying such scenarios
is InfoBAX, an information-theoretic Bayesian algorithm
execution framework [65]. InfoBAX is a general-purpose
methodology applicable to a variety of decision-making
tasks, including optimization, model validation, and ro-
bustness assessment (effectively generalizes Bayesian opti-
mization beyond global optimization). In recent work, we
demonstrated how InfoBAX can efficiently discover limiting
scenarios for SMPC architectures [51]. A key advantage
of InfoBAX is its use of mutual information criteria to
select scenarios that provide maximal insight into system
vulnerabilities. Rather than relying on brute-force Monte
Carlo sampling, which often requires an infeasibly large
number of simulations, InfoBAX refines its scenario se-
lection over successive iterations, focusing on cases that
are most informative for assessing worst-case performance.
By prioritizing extreme conditions, such as rare weather
anomalies, unexpected occupancy surges, or HVAC system
faults, InfoBAX enables efficient controller verification while
significantly reducing computational costs.

Figure 14 illustrates the effectiveness of InfoBAX in ex-
tracting high-impact scenarios. Compared to naive exhaustive
search strategies, InfoBAX achieves the same level of insight
into system performance while using 35x fewer simulations
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Fig. 13: Comparison of classical SMPC, generative model-informed SMPC, and MPC with a perfect forecast. Blue bands
represent periods of constraint violation. The proposed generative model-enhanced approach significantly reduces energy
consumption while maintaining comfort constraints.
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Fig. 14: Evaluation of InfoBAX-based scenario selection for
testing robustness of a tuned SMPC controller. The method
identifies extreme but realistic cases that lead to the best
and worst closed-loop performance outcomes, providing an
efficient strategy for controller verification.

than brute-force methods. The experiments were conducted
using Modelica [66], a high-fidelity modeling framework
widely employed for simulating building energy systems.
The ability to efficiently identify extreme scenarios allows
for targeted controller refinements, improving resilience to
unexpected disturbances without incurring prohibitive com-
putational costs.

D. Perspectives for future research

The integration of generative AI with physics-based mod-
eling and advanced control strategies holds significant poten-
tial for driving sustainability in building energy management
and beyond. However, several key challenges and open
research directions remain, particularly in ensuring that these
advanced methods transition from theoretical development to
real-world impact. One of the most critical challenges is the
deployment and large-scale validation of these approaches in
real building infrastructure. While generative AI and SMPC

methods have demonstrated impressive results in simulation,
their adoption in industry requires rigorous testing under
real operating conditions. This necessitates collaborations
between researchers, industry stakeholders, and policymakers
to establish standardized benchmarks, develop open-access
datasets, and conduct pilot studies that assess long-term
performance, robustness, and scalability.

A major hurdle in real-world deployment is handling
non-stationarity, where the statistical properties of building
disturbances (such as occupant behavior, energy demand, and
environmental conditions) evolve over time. Current gener-
ative models often rely on training data that may become
outdated as buildings undergo operational changes. Continual
learning strategies, potentially inspired by reinforcement
learning (RL) and other online adaptation techniques, will be
crucial for ensuring that generative models remain relevant
over extended periods. One possible avenue is the devel-
opment of self-updating generative models that integrate
streaming data in real time while preserving past knowledge
through techniques like experience replay or meta-learning.

The evolution of generative AI architectures also presents
a promising direction for future research. Transformer-based
time series models [67]–[69] and large-scale foundation
models [70], [71] trained on diverse energy and environ-
mental datasets could provide a more generalizable approach
to disturbance modeling. These architectures have shown
remarkable success in capturing long-range dependencies
in sequential data and could enhance the ability to model
complex interactions between weather patterns, energy con-
sumption, and occupant-driven loads. However, the question
remains: what types of disturbances are best handled by
different generative AI architectures? A systematic investi-
gation into the strengths and weaknesses of various models
in different operational settings will be essential for guiding
their adoption in real-world control applications.

Beyond generative modeling, advancements in SMPC for-
mulation and computational efficiency are also needed to
facilitate real-time implementation. The challenge of balanc-
ing computational tractability with control performance is
particularly critical when deploying SMPC on embedded or



cloud-based control systems. Since disturbance forecasting
and SMPC, respectively, involve real-time inference and
optimization, algorithmic efficiency must be carefully con-
sidered. Leveraging hardware-aware optimization techniques,
such as pruning and quantization for neural network-based
forecasting models, can help ensure that these approaches
operate within the constraints of real-world control hard-
ware. Additionally, automated code generation methods for
embedded optimization have become increasingly popular,
enabling high-performance control execution with minimal
manual tuning. A recent example of this is the work in
[72], which co-designs (S)MPC policies alongside its hard-
ware implementation to ensure both software and hardware
constraints are simultaneously considered. Such co-design
strategies will likely become more important in the future,
particularly as energy-efficient computing becomes a greater
concern in sustainability-driven applications.

Another valuable research direction is the integration of
distributed control architectures for multi-building or grid-
interactive systems, e.g., [73]–[75]. While most advanced
control strategies focus on optimizing individual buildings,
a more holistic approach would involve coordinating mul-
tiple buildings in a shared energy ecosystem. This could
include strategies for demand response, real-time grid inte-
gration, and cooperative energy storage management, where
generative models provide uncertainty-aware forecasts for
distributed control policies. The combination of federated
learning (e.g., [76], [77]) with SMPC could allow for decen-
tralized training of generative models without compromising
privacy, making it possible for buildings to share insights
on energy demand patterns without directly exchanging
sensitive operational data.

Finally, an important challenge that extends beyond tech-
nical considerations is the broader adoption of these methods
in policy and regulatory frameworks. Many building control
systems are subject to strict regulations, which may pose
barriers to the deployment of AI-driven decision-making.
Future research should explore ways to incorporate explain-
ability and interpretability [78]–[81] into advanced control
strategies, ensuring that generative model-based forecasting
and SMPC decisions can be audited, understood, and trusted
by human operators. Bridging the gap between cutting-edge
research and practical implementation will require interdis-
ciplinary efforts that involve not only control theorists and
AI researchers but also experts in economics, policy, and
human-computer interaction.

VI. CONCLUSION

Process System Engineering methodologies are critical
to achieve any of the sustainability objectives companies
and societies are pursuing while maintaining and facilitating
economic growth. The complexity of the systems and their
interactions require mathematical models to enable informed
decision making.

In this paper, we have reviewed and illustrated how PSE
contributes to four critical domains: carbon monetization and
low-carbon supply chains, circular economy and sustainable

manufacturing, sustainable land management, and advanced
control technology. Through these examples, we highlight
that each domain presents unique challenges and opportuni-
ties for implementing PSE strategies but the insights related
to resource allocation optimization, environmental impact
minimization, and economic viability assurance are critical
for our sustainability journey.

In low-carbon supply chains, PSE plays a pivotal role
in designing strategies for carbon monetization, allowing
companies to navigate regulatory landscapes and leverage
financial incentives for emission reductions. The case study
on low-carbon ammonia supply chains illustrates how dif-
ferent chain of custody models, such as Mass Balance and
Book-and-Claim, impact investment decisions and opera-
tional efficiency. These insights underscore the importance
of selecting appropriate certification systems to balance cost,
carbon intensity, and demand satisfaction.

For circular supply chains, the integration of circular
economy principles with PSE methodologies facilitates the
optimization of resource use and waste reduction. The case
study on food packaging waste management highlights the
use of systems engineering frameworks to evaluate trade-
offs between economic, environmental, and circularity met-
rics. The results emphasize the necessity of multi-objective
optimization and comprehensive assessment tools to identify
sustainable pathways.

In the domain of sustainable land management, PSE ap-
proaches are essential for quantifying the trade-offs between
land use, emissions, and economic feasibility. By employing
system-level modeling and optimization, decision-makers
can develop strategies that align with ecological and eco-
nomic goals, such as carbon sequestration and biodiversity
preservation.

Finally, advanced control systems, particularly in build-
ing energy management, demonstrate the potential of PSE
methodologies to enhance energy efficiency and reduce
emissions. The integration of generative AI with stochastic
model predictive control (SMPC) provides robust solutions
for managing uncertainties in real-time operations. These
advancements highlight the importance of combining high-
fidelity modeling with data-driven forecasting to achieve
optimal control performance.

The advancements in computational capabilities along
with generative AI and machine learning will continue to
compliment systems thinking and modeling, and enable the
optimization of more complex interactions which is needed
for better decision-making to minimize the environmental
impact of human production. Future research should focus
on addressing challenges related to computational efficiency,
non-stationarity, and regulatory frameworks to facilitate the
real-world deployment of these advanced methodologies. By
fostering interdisciplinary collaboration, PSE can serve as
a catalyst for sustainable transformation across industries,
contributing to global efforts to combat climate change and
promote environmental stewardship.
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