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GNSS-RTK Factor Graph Optimization with Adaptive Ambiguity Noise

Yingjie Hu, Stefano Di Cairano, Karl Berntorp∗

Abstract— This paper proposes a graph optimization-based
real-time kinematic global navigation satellite system (GNSS)
positioning approach, which consists of two stages of factor
graph optimization (FGO). The first stage computes float
solutions of navigation states including the carrier phase integer
ambiguities, where we characterize the time evolution of integer
ambiguities with an adaptive ambiguity model to accommodate
cycle slips. By exploring the time-correlated constraint inherent
in the integer ambiguity evolution, we achieve integer fixation
with higher accuracy. The second-stage FGO takes the solutions
from the first stage as prior and performs another graph
optimization to obtain the fixed solutions of positions and
velocities. Monte Carlo simulation results demonstrate that our
proposed approach can achieve statistically smaller root mean
square error in position estimates compared to Kalman filter-
based method and is more robust to cycle slips.

I. INTRODUCTION

Global navigation satellite system (GNSS) using real-
time kinematic (RTK) is a positioning technology that holds
promise to provide centimeter-level position accuracy. In the
RTK technology, a GNSS receiver tracks the carrier-phase
measurements, which are the difference between the phases
of the receiver-generated carrier signal and the satellite
carrier signal received at the time of measurement [1]. The
carrier phase can be tracked with great precision and the
receiver-satellite distance is equal to a certain number of
whole cycles plus the measured fractional cycle. However,
the number of cycles of the carrier wave during the transit be-
tween satellite and receiver, referred to as integer ambiguity,
as it is an integer multiple of the wavelength, is unknown.

Thus, accurate computation of the integer ambiguity is a
crucial step of GNSS-RTK. In fact, after the initial ambiguity
is resolved, cycle slips may occur, which are caused by a
loss-of-lock of the carrier signal tracking and result in a
sudden jump in the integer ambiguities. This is especially
frequent in dynamic environments, e.g., in urban settings.
Each time a cycle slip occurs, the RTK algorithm needs to re-
estimate the integer ambiguity. Conventional filtering-based
Kalman-type approaches estimate the GNSS receiver states
using the observations at the current epoch [2], [3]. Alterna-
tively, optimization-based approaches have been extensively
studied to solve for estimation problems [4], [5]. Factor graph
optimization (FGO) [6] is a nonlinear optimization frame-
work based on maximum a posteriori estimation (MAP)
that has been recently applied to GNSS positioning [7], [8].
FGO-based approaches solve for the optimal state trajectory
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based on a batch of historic measurement data. As opposed
to conventional approaches, FGO can leverage the historic
information inherent in the observation batch and better
exploit the time correlation between observations through
different epochs. Thus, FGO-based GNSS positioning meth-
ods using pseudorange (code) measurements have shown
improved performance and robustness relative to extended
Kalman filters (EKFs) in challenging urban environments [8].

Several initial application of FGO to GNSS-RTK have
been proposed [9]–[14] However, these approaches still have
challenges with respect to ambiguity determinations as they
either do not include ambiguity resolution [10], or they
assume the ambiguities to be constants during the FGO
batch [9], [11], [12], [14].

To address the issue of recurrent cycle slips in GNSS-
challenged, dynamic environments, we propose an FGO-
based GNSS RTK positioning algorithm in this paper that
can accommodate the frequent cycle slips without assuming
constant integer ambiguities. Specifically, the proposed al-
gorithm consists of two stages of FGO. The first-stage FGO
is responsible for the float solutions of the state estimates
including integer ambiguities. To account for the frequent
cycle slips, we model the time evolution of integer ambigu-
ities as a random walk process with adaptive noise to reflect
the cycle slips. When cycle slips are detected, the variance
of the ambiguity process noise will be inflated to reflect
the potential integer jump. This adaptive ambiguity model
is incorporated as factors into the first-stage FGO, which
enables the optimization to leverage the time correlation in
the integer ambiguity evolution despite the existence of cycle
slips. Float solutions of GNSS receiver states and integer
ambiguities can be obtained from the first-stage FGO. Integer
fixation approaches, e.g., the LAMBDA method [15], can
be used to obtain the integer solutions for the ambiguity
variables. The resolved integer ambiguities will be used in
the second-stage FGO to solve for the fixed solution of GNSS
receiver states. A numerical simulation study is implemented
to validate the efficacy of our proposed algorithm. Monte
Carlo simulation results show that our proposed method
is able to achieve smaller root-mean-square-errors (RMSE)
in position estimates than both FGO without the adaptive
ambiguity model and the mixed-integer filter-based GNSS
RTK approach that we have previously proposed [2], [16].

Notation: Rn denotes the set of real-valued vectors of
dimension n × 1. Zn represents the set of integer vectors
of dimension n× 1. 1 denotes a column vector of ones. I is
identity matrix. The notation ∥v∥2P = vTP−1v represents
the Mahalanobis norm, in which v ∈ Rn and P is a n× n
matrix. x ∼ N (x|x̄,Σ) denotes that random variable x is



Gaussian distributed with mean x̄ and covariance matrix Σ.
px(x) represents the probability density distribution (PDF)
of random variable x and the subscript of x is often omitted
for brevity.

II. PROBLEM SETUP

To simplify the exposition, we assume GNSS code and
carrier phase measurements and ignore Doppler measure-
ments. Consider the following code and carrier phase mea-
surement model from satellite s to receiver r at time tk,

ρsr,k = rsr,k + c(δtr,k − δtsk) + Isr,k + T s
r,k + ϵsr,k

λϕs
r,k = rsr,k + c(δtr,k − δtsk)− Isr,k + T s

r,k + λNs
r,k + ηsr,k

(1)
where ρsr,k is the code measurement, ϕs

r,k is the carrier
phase measurement, and rsr,k = ∥pr,k − ps,k∥ is the ge-
ometric range between receiver r and satellite s. Symbols
pr,k,ps,k ∈ R3 denote the receiver and satellite positions, c
is the speed of light, δtr,k is the receiver clock bias, and δtsk is
the satellite clock bias. The term Isr,k denotes the ionospheric
delay, T s

r,k is the tropospheric delay, and λ represents the
carrier wavelength. Furthermore, Ns

r,k represents the car-
rier phase integer ambiguity, and ϵsr,k and ηsr,k denote the
measurement errors, generally caused by multipath effects,
NLOS receptions, receiver noise, and antenna delay [10].
ϵsr,k and ηsr,k are assumed to be white Gaussian noise, the
variance of which depends on the satellite elevation.

Usually, a SD operation is performed between the mea-
surements of receiver r and base b to remove common-mode
errors (e.g., ionosphere, troposphere, and satellite clock)
within a local vicinity [17],

∆ρsbr,k = rsb,k − rsr,k + c(δtsb,k − δtsr,k) + ∆ϵsbr,k

λ∆ϕs
br,k = rsb,k − rsr,k + c(δtsb,k − δtsr,k) + λ∆Ns

br,k +∆ηsbr,k
(2)

Next, a second difference between the reference (pivot) satel-
lite o and satellite s is performed to remove the receiver clock
bias [18]. The DD code and carrier phase measurements can
be expressed as

∇∆ρsobr,k = ∇∆rsobr,k +∇∆ϵsobr,k

λ∇∆ϕso
br,k = ∇∆rsobr,k + λ∇∆Nso

br,k +∇∆ηsobr,k
(3)

where∇∆rsobr,k = (rsb,k−rsr,k)−(rob,k−ror,k) and∇∆Nso
br,k =

∆Ns
br,k − ∆No

br,k is the DD ambiguity. If M pairs of DD
code and carrier phase measurements are available at time tk
(M+1 satellites o, s1, s2, · · · , sM are visible), we can form
the DD code and carrier phase measurement equations

yρ,k = h(xk) + ϵk

yϕ,k = h(xk) + λnk + ηk

(4)

where the receiver state xk includes at least the position
and velocity of the receiver xk =

[
p⊤
r,k v⊤

r,k

]⊤
, nk ∈ ZM

is the DD carrier phase integer ambiguity vector, ϵk ∼
N (ϵk|0,Rρ,k) and ηk ∼ N (ηk|0,Rϕ,k), and

h(xk) =
[
∇∆rs1obr,k · · · ∇∆rsMo

br,k

]T
nk =

[
∇∆Ns1o

br,k · · · ∇∆NsMo
br,k

]T
ϵk =

[
∇∆ϵs1obr,k · · · ∇∆ϵsMo

br,k

]T
ηk =

[
∇∆ηs1obr,k · · · ∇∆ηsMo

br,k

]T
.

(5)

In this work, a generic linear model is used to model the
motion of the receiver,

xk+1 = Fkxk +Bkwk (6)

where Fk is the state transition matrix and Bk denotes the
process noise matrix. In the numerical evaluation in Sec. IV,
we use the constant-velocity (CV) model [19] as follows to
characterize the receiver motion.

xk+1 =

[
I dtI
0 I

]
xk +

[
dt2

2 I
dtI

]
wk (7)

where dt is the sampling period and wk is the process noise
wk ∼ N (wk|0,Qk). Note that our proposed methodology is
not limited to linear motion models and more sophisticated
models can be used for the receiver dynamics and here CV
model is only used for simplicity.

III. METHODOLOGY

This section presents the proposed GNSS-RTK position-
ing algorithm based on FGO. We incorporate an adap-
tive ambiguity factor into the factor-graph formulation to
accommodate frequent cycle slips, making the ambiguity
resolution more robust to cycle slips without requiring data
with constant ambiguities. In the exposition we use DD
GNSS raw measurements, but the approach applies also to
other measurements, such as SD measurements.

A. Adaptive Ambiguity Model

Fig. 1. An example of random walk processes and an integer ambiguity
evolution

The integer ambiguity remains constant during continuous
tracking of carrier signal. However, GNSS signals being
momentarily blocked or shaded will cause the loss-of-lock
of signal tracking, which results in a sudden jump in integer
ambiguity. For instance, Fig. 1 shows a scenario where
a cycle slip causes a jump from 0 to 10 in the integer
ambiguity (black) at time step k = 60. It is challenging to
properly model the ambiguity dynamics as ambiguities often
remain constant over periods of time but the jumps caused by
cycle slips are abrupt and usually unpredictable. A common



approach in the literature is to model the ambiguity dynamics
by a random walk process with some predefined process
noise [20]. As shown in Fig. 1, for the first 60 time steps,
the ambiguity remains constant and the random walk 1 (red)
with a smaller standard deviation better models the constant
ambiguity than random walk 2 (blue) with a greater standard
deviation. The ambiguity value jumps to 10 at k = 60.
Clearly, the random walk 1 does not capture such events,
whereas the larger noise for random walk 2 can capture the
changed ambiguity after such large jumps. After k = 60,
the ambiguity stays constant, and random walk with smaller
noise becomes more suitable again. This example indicates
that the ambiguity dynamics can be effectively modeled by
a random walk with small noise if there are no cycle slips,
and large noise at the time of the jumps.

Therefore, to reflect the jumps in the integer ambiguities
during cycle slips, the dynamics of the float ambiguity ñk ∈
RM is modeled by the following random walk process

ñk+1 = ñk + νk (8)

where νk is the adaptive process noise [16], νk ∼
N (νk|0,Vk). If there are no cycle slips from time step k to
k+1, the uncertainty of νk should be fairly small such that
the ambiguity ñk+1 remains stable. When cycle slips happen
from time step k to k+1, uncertainty of νk should be inflated
to reflect the sudden jumps on the ambiguity values. As such,
cycle slips can be accounted for in this adaptive random
walk model. Here we choose to model the float ambiguity
dynamics instead of the integer ambiguity dynamics because
νk ∈ RM .

The adaptive ambiguity model depends on cycle slip
detection to correctly adjust the uncertainty of νk. We
first introduce the cycle slip indicator vector ck ∈ ZM to
indicate the occurrence of cycle slips. The i-th entry of ck
is determined by

ck(i) =

{
1 cycle slip from nk(i) to nk+1(i),

0 no cycle slip from nk(i) to nk+1(i).
(9)

The process noise can be made adaptive to reflect to the
occurrence of cycle slips by adjusting the variance Vk based
on the indicator vector ck. We use the method mentioned in
[16] to perform cycle slip detection and then construct the
indicator vector ck. The covariance matrix of the adaptive
process noise νk can be computed as follows.

Vk = diag
(
ck · σ2

jump + (1− ck) · σ2
stay

)
(10)

where σ2
jump denotes the noise variance in presence of cycle

slips and theoretically it should reflect the possible range
of integer jumps. σ2

stay characterizes the uncertainty of float
ambiguity evolution when no cycle slips are detected. The
values of σjump and σstay are determined empirically. The
selection of σjump and σstay will be discussed in the Sec. IV.

Next, we develop the factor graph-based GNSS RTK
approach with the adaptive ambiguity factor based on the
adaptive ambiguity model (8).

Fig. 2. Architecture of the proposed FGO-based GNSS RTK algorithm.
The subscript 1 : T denotes the indices within the sliding window.

B. FGO-Based GNSS RTK with Adaptive Ambiguity Noise

FGO approaches formulate the MAP estimation problem
as a nonlinear graph optimization. Each node of the graph
represents a system state and edges of the graph are called
factors, encoding information of measurements and con-
straints of the system. By optimally solving the nonlinear op-
timization, an a posteriori estimate of the state trajectory can
be determined, which maximizes the posterior probability of
the system states conditioned on a batch of measurements
and constraints within the graph. The architecture of our
proposed algorithm is a cascade of two FGOs. The first-
stage FGO resolves the float solutions of system states. After
ambiguity fixation, the second-stage FGO determines the
fixed solutions. Fig. 2 shows the structure of our proposed
algorithm.

The proposed algorithm is implemented using a sliding
window to reduce the computational load. For instance,
Fig. 2 shows that the current sliding window of size T
spans through time step k + 1 to k + T . Only the system
states and measurements within the sliding window will
be used for FGO computation. The first-stage FGO first
solves for the float solution of receiver states x̂1:T,float and
ambiguities n̂1:T,float within the current sliding window. Next,
based on the float solution, we fix the integer ambiguities
n̂1:T,fix, for instance, using the LAMBDA method or variants
thereof [21], [22]. The fixed ambiguity estimates are then
used in the second FGO to find the optimal receiver states
x̂1:T,fix conditioned on the fixed integer ambiguities. The fixed
solution x̂T,fix at the end of the current sliding window is
output as the state estimate at time step k + T . Then the
sliding window moves forward by one step and repeats this
process, using the previous solution as prior information. In
the remainder of this section, we go through each of the



factors involved in the FGO architecture to formulate the
nonlinear optimization.

1) DD carrier phase factor: Equation (4) displays the DD
code and carrier phase measurements, based on which the
error factors for DD code and carrier phase measurements
can be established. For the first-stage FGO, DD carrier phase
factor can be expressed as

∥eI
ϕ,i∥2Rϕ,i

= ∥yϕ,i − h(xi)− λni∥2Rϕ,i
(11)

where the superscript I represents the error factor of the first
FGO and subscript i denotes the index within the sliding
window. In the second FGO, the fixed ambiguity estimates
n̂1:T,fix are treated as known information. Consequently, the
DD carrier phase factor of the second FGO is

∥eII
ϕ,i∥2Rϕ,i

= ∥yϕ,i − h(xi)− λn̂i,fix∥2Rϕ,i
. (12)

2) DD pseudorange factor: DD pseudorange (code) mea-
surements are only dependent on the receiver states. Thus,
the error factor of DD pseudorange is the same for the first
and second FGO,

∥eρ,i∥2Rρ,i
= ∥yρ,i − h(xi)∥2Rρ,i

. (13)

3) Motion constraint factor: The receiver dynamics is
modeled by the generic linear model in (6), which applies
constraints on receiver states between consecutive time steps.
Denote the equivalent process noise covariance matrix by
Q̄i = BiQiB

⊤
i . Thus, the motion constraint factor is

∥ex,i∥2Q̄i
= ∥xi+1 − Fixi∥2Q̄i

. (14)

4) Adaptive ambiguity factor: As discussed in Sec. III-A,
the time evolution of the ambiguity vector ni is modeled
as an adaptive random walk according to (8), where the
covariance matrix of the random walk noise is adapted to
reflect the occurrence of cycle slips. Based on this adaptive
ambiguity model, the adaptive ambiguity factor can be
constructed and incorporated into the first-stage FGO, which
enables the graph optimization to explore the time correlation
inherent in the integer ambiguity evolution. The adaptive
ambiguity factor can be expressed as

∥en,i∥2Vi
= ∥ni+1 − ni∥2Vi

. (15)

5) Prior information factor: The implementation of the
sliding window reduces the dimension of the optimization,
where the window length is a tradeoff between performance
and computational load. However, it limits the use of all the
historical data by restricting the graph to observations within
the current window. To address this issue, we introduce
a prior information factor, which enables the inheritance
of historical information in the current sliding window.
Fig. 3 depicts the information flow between consecutive
sliding windows. We can observe an overlap of system
states between the two successive sliding windows. Solutions
from the previous sliding window can be utilized as prior
information for the current sliding window. Through the use
of the prior information factor, historical information is able
to propagate across sliding windows.

Fig. 3. Illustration of information flow between consecutive sliding
windows. The arrow in red denotes that the estimates from previous window
serve as prior for current sliding window.

Specifically, the fixed state estimates at the second time
step of the previous sliding window is treated as prior infor-
mation for the current sliding window. The prior information
is denoted as

[
x̂T

pri n̂T
pri
]T

with associated covariance matrix
Ppri. The state vector at the first time step of the current
window is

[
xT
1 nT

1

]T
. The prior information factor of the

first-stage FGO is expressed as

∥eI
pri∥2Ppri

= ∥
[
xT
1 nT

1

]T − [
x̂T

pri n̂T
pri
]T ∥2Ppri

. (16)

After solving the first-stage FGO of the current sliding
window, float solutions x̂1:T, float and n̂1:T, float are obtained.
Then, x̂1, float, the receiver state estimate at the first time step
of current sliding window, will be utilized as the prior infor-
mation for the second-stage FGO. The associated covariance
matrix is P1, float, resulting in the prior information factor of
the second-stage FGO

∥eII
pri∥2P1,float

= ∥x1 − x̂1, float∥2P1,float
. (17)

Using the factors (11)–(17), the objective function of the
first-stage FGO can be written as

x̂1:T,float,n̂1:T,float = argmin
x1:T,n1:T

∥eI
pri∥2Ppri

+

T∑
i=1

(∥eI
ϕ,i∥2Rϕ,i

+

∥eρ,i∥2Rρ,i
) +

T−1∑
i=1

(∥ex,i∥2Q̄i
+ ∥en,i∥2Vi

).

(18)
Similarly, the objective function of the second-stage FGO is

x̂1:T,fix = argmin
x1:T

∥eII
pri∥2P1,float

+

T∑
i=1

(∥eII
ϕ,i∥2Rϕ,i

+ ∥eρ,i∥2Rρ,i
)

+

T−1∑
i=1

∥ex,i∥2Q̄i
.

(19)

C. Algorithm Summary

Algorithm 1 outlines the proposed algorithm. The sliding
window length increments by 1 at each time step until the
current time step k reaches the predefined window size T
(Line 6-10). After that, sliding window starts moving forward
(line 12-17). In line 6-7 and 13-14, the adaptive ambiguity
covariance is determined for the adaptive ambiguity factors
in the FGO formulation. In order to accurately adapt the



covariance Vk to cycle slips, the state estimates from pre-
vious sliding window are recursively utilized in detecting
cycle slips for current sliding window (line 6 and 13).
although initial state errors can cause incorrect detection
of cycle slips, the receiver state errors are mitigated as
more observation data becomes available. The improved state
estimates are then used to update the cycle slip detection,
which can, in turn, enhance the accuracy of state estimates.
This is discussed in Sec. IV-D. In line 8-10 and 15-17, the
fixed solutions of state estimates and integer ambiguities are
obtained by solving the two-stage FGO.

Algorithm 1 Proposed Algorithm
1: Define total time length L, sliding window size T
2: Set initial state estimate x̂0, n̂0 and covariance P0

3: for k = 1, ..., L do
// Receive new measurements

4: Receive: tk,yk

5: if k ≤ T then
// Cycle slip detection

6: {ci}k−1
i=0 ← cycleSlipDetection({yi}ki=0,
{x̂i,fix}k−1

i=0 , {n̂i,fix}k−1
i=0 ) from (9)

// Update adaptive ambiguity covariance
7: Determine {Vi}k−1

i=0 from (10)
// Solve two-stage FGO

8: {x̂}ki=0,float, {n̂}ki=0,float ← solve 1st FGO (18)
9: {n̂}ki=0,fix ← integer fixation

10: {x̂}ki=0,fix ← solve 2nd FGO (19)
11: else
12: set index j = k − T + 1

// Cycle slip detection
13: {ci}k−1

i=j ← cycleSlipDetection({yi}ki=j ,

{x̂i,fix}k−1
i=j , {n̂i,fix}k−1

i=j ) from (9)
// Update adaptive ambiguity covariance

14: Determine {Vi}k−1
i=j from (10)

// Solve two-stage FGO
15: {x̂}ki=j,float, {n̂}ki=j,float ← solve 1st FGO (18)
16: {n̂}ki=j,fix ← integer fixation
17: {x̂}ki=j,fix ← solve 2nd FGO (19)
18: end if

// Output navigation solution
19: Output x̂k,fix, n̂k,fix
20: end for

IV. NUMERICAL EVALUATION

We conduct a numerical evaluation to assess the per-
formance of the proposed factor graph-based GNSS RTK
positioning algorithm. Simulation results of our proposed al-
gorithm (AA-FGO) are compared with two other approaches:

1) The dual-density mixed-integer KF based approach in
[16] with adaptive ambiguity prior (MIKF);

2) A two-stage FGO-based approach with nonadaptive
ambiguity factor (NAA-FGO).

The comparison with MIKF is to show the potential of
FGO with respect to KF-type methods, as MIKF implements

a similar strategy of adaptive ambiguity model as in our
method. On the other hand, the comparison with NAA-FGO
is done to show the impact of the adaptive ambiguity model.

A. Simulation Setup

In the simulation, we consider a single-band GNSS re-
ceiver obtaining code and carrier signals from M+1 satellites
at a sampling rate of 10 Hz, with the carrier wavelength
λ = 0.2 m. A static base station whose position is known is
located in the local vicinity. M pairs of DD code and carrier
phase measurements can be obtained at each epoch. The
value of M is randomly drawn from the set M ∈

[
6, 7, 8

]
.

Correspondingly, the unknown DD integer ambiguity vector
nk ∈ ZM needs to be resolved for each epoch. To simulate
the frequent cycle slips commonly encountered in dynamic
environments, such as urban canyons, multiple integer jumps
are introduced to the time evolution of integer ambiguities
using the method outlined in Sec. IV-B. An example of
the time history of simulated integer ambiguities is shown
in Fig .4. As mentioned in Sec. II, the receiver motion is
modeled by the CV model described by (7) with sampling
period dt = 0.1 s. Each simulation lasts for 300 time steps.

Fig. 4. An example of the integer ambiguity history with recurrent cycle
slips

Our proposed algorithm is implemented using a sliding
window to reduce the computational load. For the sliding
window implementation, when the current time step is
smaller than the predefined sliding window size, the FGO-
based approaches use all the historical data up to the current
epoch. When the current time step exceeds the predefined
sliding window length, the sliding window starts moving
forward as shown in Fig. 3. We test the impact of different
sliding window sizes on the positioning performance. We
have implemented the three algorithms in Matlab and use
CasADi [23] through the MPCTools interface [24] and Ipopt
[25] to solve the nonlinear graph optimization.

B. Cycle Slip Simulation

To simulate recurrent cycle slips in the evolution of integer
ambiguities, we employ a dynamic process driven by a
special discrete random walk to generate the integer jumps in
ambiguity values [16]. Consider a discrete stochastic process
that “ jumps” with probability b ∈ [0, 1], attaining a random
value drawn from the uniform distribution over the integers
on the interval I = [−a, a] ⊂ Z, and is zero with probability



1 − b. Let s ∈ I ⊂ Z be a scalar random variable with the
following associated density

J (s|a, b) = ps(s) =

{
(1−b)δ(s−τ) for τ =0
b
2aδ(s−τ) for τ ∈ I\{0}

(20)

where δ denotes the Dirac delta function. For multivariate
ambiguity vector nk ∈ ZM , the jumps are independent in
each dimension, and on rectangular intervals about the origin
defined by the corresponding elements of a vector a ∈ ZM

with jump probabilities defined by the elements of a vector
b ∈ RM , in which bj ∈ [0, 1], j = 1, · · · ,M . Hence, the
PDF of the integer noise vector s can be expressed as

s ∼ J (s|a, b) = ps(s) =

M∏
j=1

J (sj |aj , bj). (21)

Using (21), we model the integer ambiguity time-evolution
as

nk+1 = nk + sk, sk ∼ J (sk|a, b), (22)

This stochastic discrete jump process (22) is employed in
the numerical evaluation to simulate cycle slips. By tuning
parameter b, we can control the frequency of cycle slip
occurrence in the simulation. To capture the behavior of
the integer jump process, a good rule of thumb of picking
the adaptive parameters in (10) is to let σjump ≈ amax and
0.01 < σstay < 0.4, where amax represents the maximum
element of a.

C. Performance Evaluation

Fig. 5 displays the ambiguity resolution performance of
the three different algorithms for one realization. The three
algorithms are executed on the same set of measurement data.
It can be seen that NAA-FGO (green) exhibits the largest am-
biguity estimate errors. In comparison, the ambiguity errors
of the other two approaches with adaptive ambiguity model
converge and exhibit good fixation performance. Moreover,
despite relatively large transient errors at the beginning, our
proposed algorithm (blue) converges faster than the MIKF
solutions (red).

Fig. 5. Integer ambiguity resolution errors for one realization.

Fig. 6 shows the state estimation errors for the same
realization corresponding to the ambiguity errors in Fig. 5.
The state estimation errors are consistent with the ambiguity
resolution errors. Our proposed approach (blue) and MIKF
(red) exhibit superior performance compared with the NAA-
FGO (green). In addition, the position errors of MIKF exhibit

a much longer transient stage (during the first 80 epochs)
than our proposed algorithm before the errors converge.

Fig. 6. State estimation errors for the same realization corresponding to
Fig. 5.

To statistically assess and evaluate the performance of
our proposed algorithm, we conduct a Monte Carlo (MC)
simulation study, where 300 MC runs are executed with
random problem initialization. The positional root-mean-
square-errors (RMSE) of the three different algorithms are
computed and reported in Fig. 7. The sliding window size
T = 90 is picked in this MC simulation. We can see that the
RMSE of NAA-FGO (green) converges to a level of around
0.6 m, which is significantly greater than that of our proposed
algorithm (blue) and MIKF solutions (red). Our proposed
approach (blue) achieves the smallest RMSE among the three
and convergences significantly faster.

Fig. 7. Positional RMSE of three algorithms. MC runs = 300. Sliding
window size = 90.

In addition, the impact of the sliding window size is
tested using MC simulation. In principle, as the window
size increases, more observation data will be used but the
dimension of the optimization increases accordingly. This
means that the improved performance comes with increased
computational load. We test with sliding window size 50, 70,
and 90 and the MC results of positional RMSE are displayed
in Fig. 8. We can see that as the window size increases, the
RMSE of the receiver positions gradually decreases in our
proposed algorithm (AA-FGO). This is in alignment with our
expectation. Moreover, our proposed algorithm with sliding
window 50 and 70 still outperforms the rest two methods
with a smaller RMSE level and faster convergence speed.

D. Discussion
We conducted numerical simulation to assess the per-

formance of our proposed algorithm in challenging envi-
ronment with frequent cycle slips. MC results show that



Fig. 8. Performance comparison with different sliding window sizes.
Window sizes of 50, 70, and 90 are reported here. MC runs = 300.

our proposed FGO-based GNSS RTK approach with the
adaptive ambiguity model (AA-FGO) is able to achieve
better performance than the filtering-based approach (MIKF)
and the non-adaptive FGO-based approach (NAA-FGO). The
adaptive ambiguity factors enables the possibility of the
optimization leveraging the time correlation inherent in the
integer ambiguity evolution, increasing the robustness to
cycle slips.

In Fig. 7 and Fig. 8, we can observe some relative large
error spikes of our proposed algorithm’s solutions at the first
few time steps and then the RMSE level quickly drops and
converges soon. This occurs due to the inaccurate cycle slip
detection at the beginning. As shown in (10), the adaptive
variance of the ambiguity model depends on the cycle slip
detection. In this paper, we use the previous receiver state
estimates to detect cycle slips as shown in Algorithm 1. The
initial state errors can lead to erroneous detection, which
contributes to the large error spikes at the beginning. As more
observation data becomes available, receiver state errors get
arrested, which, in return, improves the accuracy of the
cycle slip detection. Therefore, we can see the error level
quickly drops and converges in the solution of our proposed
algorithm.

V. CONCLUSION

We proposed a FGO-based GNSS RTK positioning algo-
rithm with adaptive ambiguity noise to address the cycle slips
in GNSS-challenged, dynamics environments. The ambiguity
dynamics is modeled by a random walk process with adaptive
noise covariance where the variance is made adaptive to
reflect the integer jumps during cycle slips. The adaptive
ambiguity model is incorporated in a two-stage FGO archi-
tecture, which enables the graph optimization to explore the
time correlation in the ambiguity evolution. MC simulation
results show that our proposed adaptive FGO approach
improves the RMSE of position estimates and convergence
speed compared to the adaptive filtering approach and the
non-adaptive FGO-based approach.
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