Applied Physics

From first-principles modeling to device designs.

Our research in this area uses physics to develop new technologies or solve an engineering problem, including optimal design of freeform optics, metamaterials, photonic and solid-state semiconductor devices; the modeling and analysis of electro-magnetic systems and studies on superconductivity and magnets.

  • Researchers

  • News & Events

    •  NEWS    MERL work on 3D Printing in Orbit featured in IEEE Spectrum
      Date: June 3, 2022
      Where: IEEE Spectrum
      MERL Contacts: Avishai Weiss; William S. Yerazunis
      Research Areas: Applied Physics, Communications, Robotics
      Brief
      • MERL's research on on-orbit manufacturing was recently featured in an IEEE Spectrum article. The article, titled How Satellites Will 3D Print Their Own Antennas in Space gives an overview of MERL's efforts towards developing a system that construct spacecraft parts in their natural environment-- that is, in space. The technology, called OOM for On-Orbit Manufacturing, provides a way to manufacture not just antenna dishes, but general freeform sturctures on orbit and in a vacuum, using an solar-hardened resin based approach. This technology includes both a special high performance liquid resin, as well as a 3D freeform printer capable of building objects far larger than the as-launched satellite.

        An important aspect of the special resin is that all components have extremely low vapor pressures and do not boil away even in a vacuum. When exposed to solar ultraviolet, the resin hardens by polymerization crosslinking, forming a tough, rigid solid in a few seconds of exposure. No separate UV source is needed, making the entire process very energy efficient. Additionally, the crosslinking resin is heat resistant, and is unaffected to at least 400 degrees C. The 3D printer needed to print the resin is unlike common liquid-resin SLA printers- there is no vat of liquid resin, instead a shielded nozzle delivers the liquid resin directly to where the resin is needed. The result is the ability to construct large and very large structures, not just parabolic dishes, but also solar panel supports and structural trusswork, while in orbit. The system could even construct parts that were unanticipated during mission design and launch.

        MERL's On-Orbit Manufacturing Technology had previously been featured in a Mitsubishi Electric Corporation Press Release and was recently on display at a recent press exhibition in Tokyo, Japan.

        IEEE Spectrum is the flagship magazine and website of the IEEE, the world’s largest professional organization devoted to engineering and the applied sciences. IEEE Spectrum has a circulation of over 400,000 engineers worldwide, making it one of the leading science and engineering magazines.
    •  
    •  NEWS    MERL's On-Orbit 3D Printing Technology Featured in Mitsubishi Electric Corporation Press Release
      Date: May 17, 2022
      Where: Tokyo, Japan
      MERL Contacts: Avishai Weiss; William S. Yerazunis
      Research Areas: Applied Physics, Communications
      Brief
      • Mitsubishi Electric Corporation announced that the company has developed an on-orbit additive-manufacturing technology that uses photosensitive resin and solar ultraviolet light for the freeform printing of satellite antennas in the vacuum of outer space.

        The novel technology makes use of a newly developed liquid resin that was custom formulated for stability in vacuum. The resin enables structures to be fabricated in space using a low-power process that utilizes the sun’s ultraviolet rays for photopolymerization. The technology specifically addresses the challenge of equipping small, inexpensive spacecraft buses with large structures, such as high-gain antenna reflectors, and enables on-orbit fabrication of structures that greatly exceed the dimensions of launch vehicle fairings. Resin-based on-orbit manufacturing is expected to enable spacecraft structures to be made thinner and lighter than conventional designs, which must survive the stresses of launch and orbital insertion, thereby reducing both total satellite weight and launch costs.

        Mitsubishi Electric’s resin-based on-orbit manufacturing enables small satellites to have large satellite capability, which reduces launch costs and allows for satellite technology to be used more than ever in applications such as communication and Earth observation. The technology is based on recent research by MERL's Control for Autonomy and Data Analytics groups.









        Links:

        Mitsubishi Electric Corporation Press Release
        SatMagazine: UV In The Sky With Resin: A novel, on-orbit manufacturing technique
    •  

    See All News & Events for Applied Physics
  • Internships

    • MD1714: Electric Motor Design

      MERL is seeing a motivated and qualified individual to conduct research on electric machine design, prototype, and experiment tests. The ideal candidate should have solid background and demonstrated research experience in electric machine theory, design analysis, motor drives, and control. Hands-on experiences on electric motor design and prototyping, test bench set up, and experiment measurements are required. Senior Ph.D. students in electrical engineering or mechanical engineering with related expertise are encouraged to apply. Start date for this internship is flexible.

    • MD1715: Electric Motor Fault Analysis

      MERL is seeing a motivated and qualified individual to conduct research on electric machine fault analysis and detection. The ideal candidate should have solid background in electric machine theory, modeling, numerical analysis, operation, and fault detection techniques, including machine learning. Research experiences on modeling and analysis of electric machines and fault detection are required. Hands-on experience with permanent magnet motor design and analysis, and knowledge on machine learning are desirable. Senior Ph.D. students in related expertise are encouraged to apply. Start date for this internship is flexible.


    See All Internships for Applied Physics
  • Recent Publications

    •  Li, K., Matsuda, T., Nishimura, K., Yagyu, E., Teo, K.H., Rakheja, S., "Trapping Phenomena in GaN HEMTs with Fe- and C-doped Buffer", Device Research Conference, June 2022.
      BibTeX TR2022-086 PDF
      • @inproceedings{Li2022jun2,
      • author = {Li, Kexin and Matsuda, Takashi and Nishimura, Kunihiko and Yagyu, Eiji and Teo, Koon Hoo and Rakheja, Shaloo},
      • title = {Trapping Phenomena in GaN HEMTs with Fe- and C-doped Buffer},
      • booktitle = {Device Research Conference},
      • year = 2022,
      • month = jun,
      • url = {https://www.merl.com/publications/TR2022-086}
      • }
    •  Teo, K.H., "Summary of IEDM Conference," Tech. Rep. TR2022-051, Mitsubishi Electric Research Laboratories, May 2022.
      BibTeX TR2022-051 PDF
      • @techreport{Teo2022may,
      • author = {Teo, Koon Hoo},
      • title = {Summary of IEDM Conference},
      • institution = {Mitsubishi Electric Research Laboratories},
      • year = 2022,
      • month = may,
      • url = {https://www.merl.com/publications/TR2022-051}
      • }
    •  Liu, B., Koike-Akino, T., Wang, Y., Parsons, K., "Variational Quantum Compressed Sensing for Joint User and Channel State Acquisition in Grant-Free Device Access Systems", IEEE International Conference on Communications (ICC), May 2022.
      BibTeX TR2022-052 PDF Video Presentation
      • @inproceedings{Liu2022may3,
      • author = {Liu, Bryan and Koike-Akino, Toshiaki and Wang, Ye and Parsons, Kieran},
      • title = {Variational Quantum Compressed Sensing for Joint User and Channel State Acquisition in Grant-Free Device Access Systems},
      • booktitle = {IEEE International Conference on Communications (ICC)},
      • year = 2022,
      • month = may,
      • url = {https://www.merl.com/publications/TR2022-052}
      • }
    •  Zhu, D., Kojima, K., Koike-Akino, T., Brand, M.E., "Global Phase Correction Improves Metalens Efficiency", Conference on Lasers and Electro-Optics (CLEO), May 2022.
      BibTeX TR2022-049 PDF
      • @inproceedings{Zhu2022may,
      • author = {Zhu, Dayu and Kojima, Keisuke and Koike-Akino, Toshiaki and Brand, Matthew E.},
      • title = {Global Phase Correction Improves Metalens Efficiency},
      • booktitle = {Conference on Lasers and Electro-Optics (CLEO)},
      • year = 2022,
      • month = may,
      • url = {https://www.merl.com/publications/TR2022-049}
      • }
    •  Lin, C., Ma, Y., Sels, D., "Application of Pontryagin’s Maximum Principle to Quantum Metrology in Dissipative Systems", Physical Reivew A, DOI: 10.1103/​PhysRevA.105.042621, Vol. 105, No. 4, pp. 042621, May 2022.
      BibTeX TR2022-048 PDF
      • @article{Lin2022may,
      • author = {Lin, Chungwei and Ma, Yanting and Sels, Dries},
      • title = {Application of Pontryagin’s Maximum Principle to Quantum Metrology in Dissipative Systems},
      • journal = {Physical Reivew A},
      • year = 2022,
      • volume = 105,
      • number = 4,
      • pages = 042621,
      • month = may,
      • doi = {10.1103/PhysRevA.105.042621},
      • url = {https://www.merl.com/publications/TR2022-048}
      • }
    •  Teo, K.H., Zhang, Y., Chowdhury, N., Rakheja, S., Ma, R., Xie, Q., Yagyu, E., Yamanaka, K., Li, K., Palacios, T., "Emerging GaN technologies for power, RF, digital and quantum computing applications: recent advances and prospects", Journal of Applied Physics, DOI: 10.1063/​5.0061555, December 2021.
      BibTeX TR2022-002 PDF
      • @article{Teo2021dec,
      • author = {Teo, Koon Hoo and Zhang, Yuhao and Chowdhury, Nadim and Rakheja, Shaloo and Ma, Rui and Xie, Qingyun and Yagyu, Eiji and Yamanaka, Koji and Li, Kexin and Palacios, Tomas},
      • title = {Emerging GaN technologies for power, RF, digital and quantum computing applications: recent advances and prospects},
      • journal = {Journal of Applied Physics},
      • year = 2021,
      • month = dec,
      • doi = {10.1063/5.0061555},
      • url = {https://www.merl.com/publications/TR2022-002}
      • }
    •  Li, X., Kojima, K., Brand, M.E., "Predicting Long- and Variable-Distance Coupling Effects in Metasurface Optics", IEEE Photonics Conference (IPC), DOI: 10.1109/​IPC48725.2021.9593086, October 2021, pp. 1-2.
      BibTeX TR2021-140 PDF
      • @inproceedings{Li2021oct,
      • author = {Li, Xinhao and Kojima, Keisuke and Brand, Matthew E.},
      • title = {Predicting Long- and Variable-Distance Coupling Effects in Metasurface Optics},
      • booktitle = {IEEE Photonics Conference (IPC)},
      • year = 2021,
      • pages = {1--2},
      • month = oct,
      • doi = {10.1109/IPC48725.2021.9593086},
      • url = {https://www.merl.com/publications/TR2021-140}
      • }
    •  Wang, B., Shin, K.-H., Hidaka, Y., Kondo, S., Arita, H., Ito, K., "Analytical Magnetic Model for Variable-Flux Interior Permanent Magnet Synchronous Motors", IEEE Energy Conversion Congress and Exposition (ECCE), DOI: 10.1109/​ECCE47101.2021.9595341, October 2021, pp. 4142-4148.
      BibTeX TR2021-123 PDF
      • @inproceedings{Wang2021oct2,
      • author = {Wang, Bingnan and Shin, Kyung-Hun and Hidaka, Yuki and Kondo, Shota and Arita, Hideaki and Ito, Kazumasa},
      • title = {Analytical Magnetic Model for Variable-Flux Interior Permanent Magnet Synchronous Motors},
      • booktitle = {2021 IEEE Energy Conversion Congress and Exposition (ECCE)},
      • year = 2021,
      • pages = {4142--4148},
      • month = oct,
      • publisher = {IEEE},
      • doi = {10.1109/ECCE47101.2021.9595341},
      • url = {https://www.merl.com/publications/TR2021-123}
      • }
    See All Publications for Applied Physics
  • Videos