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across varying operating conditions. The proposed method is positioned as a scalable and
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Abstract—While motor current signature analysis (MCSA) is
widely used for motor fault detection, it has shown limitations
as a single modality sensor-based method in diagnosing some
types of faults such as bearing roughness. This paper introduces
a novel framework for motor fault diagnosis using multi-modal
sensor data. The framework addresses the challenges of multi-
modal sensor fusion in motor fault diagnosis by first aligning
features from various sensors in a shared latent space using deep
generalized canonical analysis (DGCCA) and then incorporating
attention-based fusion to weigh the contribution of feature
channels. Validated on datasets collected on motors with different
bearing friction levels, the approach demonstrates significant
performance gains over baseline methods, achieving high accu-
racy and robustness across varying operating conditions. The
proposed method is positioned as a scalable and effective solution
for industrial motor fault diagnosis applications.

Index Terms—Sensor fusion, Canonical correlation, Deep
learning, Fault diagnosis

I. INTRODUCTION

Motors are integral to numerous industrial applications and
electrified transportation systems. However, these machines
often operate under harsh conditions such as high ambient
temperature, high moisture, and overload [1]. Such adverse
environments can lead to various motor faults, such as bearing
wear, insulation aging, and eccentricity, etc. Among these
faults, bearing faults are the most prevalent one, accounting
for 30% to 40% of all motor failures, according to the report
by the IEEE Industry Application Society and the Japan
Electrical Manufacturers’ Association [2]. If the motor fault
is not detected and resolved, it could result in significant
maintenance costs, financial losses, and even safety hazards
[3]. Therefore, it is very important to monitor the health
condition of motors and to perform timely maintenance on
the faulty motor.

To detect motor faults, many different methods have been
studied, including physical-model-based methods, machine
learning methods, and deep learning methods. Physical-model
based methods aim to extract fault signals from sensing data
using domain knowledge. For example, the motor current
signature analysis (MCSA) method has been a prevailing
method in detecting fault signature frequency component
induced in the stator current by asymmetric magnetic field
caused by faults such as eccentricity and broken-bar fault [1],
[4], [5]. The MCSA method typically works well in detecting
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the asymmetric type of faults for motors operating at steady
status. When the motor under test operates under varying
conditions, the MCSA method remains effective with the aid
of advanced signal processing technologies [6]. However, the
MCSA-based method exhibits some limitations in diagnos-
ing different types of faults or estimating the fault severity
level such as bearing wear and insulation aging. To address
these challenges, machine learning (ML) techniques have been
increasingly applied to motor fault diagnosis and severity
estimation. Traditional ML algorithms such as artificial neural
networks (ANN) and support vector machines (SVM) have
shown promise in extracting hidden patterns from data that
are difficult for humans to discern [7]–[10]. These techniques
have demonstrated high accuracy in estimating the severity
level of some faults. In recent years, deep learning (DL)
methods have gained popularity for their ability to achieve
higher classification accuracy and better performance in fault
diagnosis [11]. Among the most popular deep learning models,
convolutional neural networks (CNN) [12], recurrent neural
networks (RNN) [13], autoencoders (AE) [14], and deep belief
networks (DBN) [15], [16] have been successfully applied to
various fault diagnosis tasks.

Despite the development of various methods, single modal-
ity (for example, current) sensor shows its limitation in de-
tecting motor faults. For instance, current signals are valuable
in detecting eccentricity faults, but barely useful in detecting
bearing surface wear. While vibration signals are helpful in
detecting mechanical faults such as unbalance or bearing
roughness, they are not informative for detecting electrical
faults such as short-circuit fault. Furthermore, motors are typ-
ically operating at varying load and varying speed conditions,
fault signatures also vary accordingly, making it challenging
to online monitor motors’ health conditions. Integrating data
from multiple sensors offers a more complete understanding of
the motor’s condition by capturing various operational aspects.
This multi-modal approach enhances detection performance
beyond what any single sensor can achieve on its own.

Multi-sensor data fusion has attracted a lot of attention
in the machine learning community and has been studied in
multiview representation learning methods. Multiview repre-
sentation is a powerful approach in scenarios where multiple
“views” or modalities of data are available [17]. A represen-
tation that can explain multiple data views is more likely to
capture the essential characteristics than one that only fits a



single view. Traditional multiview learning techniques often
rely on Canonical Correlation Analysis (CCA), a classical
statistical method using linear transformations. Existing deep
learning-based CCA methods learn nonlinear transformations
for better performance but mainly focus on two-view data
[18], [19]. Deep CCA (DCCA) is an extension of CCA that
addresses the limit of linear transformation by learning a
neural network such that non-linear transformations of two
vectors are maximally correlated [18]. Deep generalized CCA
(DGCCA) generalize DCCA from two sets of vectors to
multiple sets of vectors [18], [20].

In the context of motor fault detection, various sensor
signals—such as stator current, vibration, and velocity—can
be regarded as different views of the motor’s condition [21].
However, due to the nonlinear nature of both the motor drive
system and the underlying physical principles of each sensing
modality, these views are often nonlinearly correlated.

In this paper, we propose a DGCCA-based framework
for motor fault detection by integrating data collected from
multi-modal sensors, where each modality is represented by
a distinct set of data vectors. Our main contributions are as
follows:

1) DGCCA for fault detection: We use DGCCA to fuse
multi-modal sensor data in motor fault detection. By
learning a deep neural network, raw multi-modal data
are transformed non-linearly into feature space such that
multi-modal features are well aligned in a shared latent
subspace. These features serve as input vectors for fault
detection and severity estimation, enhancing the model’s
overall performance.

2) Combination with attention-based fusion: We incor-
porate DGCCA with an attention mechanism to effec-
tively fuse features from different sensor modalities. The
attention mechanism dynamically learns the contribu-
tion of each feature channel based on its relevance to
different fault types, enabling reliable fault detection
performance.

3) Experimental validation on real-world data: We
validate our proposed framework using experimental
multi-modal sensor data. The results demonstrate that
our approach can effectively handle the complexity
and nonlinearity of motor systems at varying operating
conditions, outperforming methods that rely solely on
physical modeling or purely data-driven techniques.

II. RELATED WORKS

A. Canonical Correlation Analysis (CCA)

Given two sets of sensor data vectors X1 ∈ Rd1×N and
X2 ∈ Rd2×N representing two different modalities respec-
tively, where N denotes the number of vectors in each set, d1
and d2 are the vector lengths, CCA learns two linear transfor-
mations A1 ∈ Rd1×r and A2 ∈ Rd2×r such that the correlation
between projected vectors AT

1 X1 and AT
2 X2 is maximized

[22]. Denote the covariance of X1 as S11 = X1X
T
1 ∈ Rd1×d1 ,

the covariance of X2 as S22 = X2X
T
2 ∈ Rd2×d2 , and their

cross-covariance as S12 = X1X
T
2 ∈ Rd1×d2 , respectively. The
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where Tr[·] represents the trace of the matrix.
One of the key limitations of Canonical Correlation Anal-

ysis (CCA) is that it is restricted to linear transformations,
which may not capture complex nonlinear relationships be-
tween data modalities.

B. Deep Canonical Correlation Analysis (Deep CCA)

Deep CCA (DCCA) follows the idea of CCA and learns
non-linear transformations using a pair of neural networks
[18]. Let f1(·;W1) and f2(·;W2) denote two independent
neural networks with parameters W1 and W2 respectively. The
objective of deep CCA is to optimize W1 and W2 such that
the canonical correlation between the outputs of f1 and f2
given two input vectors X1 and X2 respectively, denoted as
F1 = f1(X1;W1) and F2 = f2(X2;W2), can be maximized
by finding two linear transformations U1 and U2. The objective
of deep CCA is to achieve

{W ∗
1 ,W

∗
2 } = argmax

{W1,W2}
CCA(F1, F2)

= argmax
{W1,W2}

corr(UT
1 F1, U

T
2 F2).

(3)

In order to update W1 and W2, a loss function that mea-
sures the canonical correlation must be calculated and back-
propagated through the network. Similar to CCA, let C11,
C22, and C12 be covariances of F1 and F2, and their cross-
covariance, respectively, and define matrix E ≜ C

− 1
2

11 C12C
− 1

2
22 .

Similar to (2), the linear transformations U1 and U2 can be
achieved and the canonical correlation can be calculated. To
optimize neural network parameters W1 and W2 in (3), the
loss function of DCCA is defined as the negative canonical
correlation, i.e.,

LDCCA = −Tr[(ETE)
1
2 ]. (4)

Network parameters W1 and W2 can be updated by minimiz-
ing the DCCA loss LDCCA in (4) (or equivalently maximizing
the total canonical correlation).



C. Deep Generalized CCA (DGCCA)

Deep generalized CCA (DGCCA) extends DCCA from
two sets of vectors to M (M > 2) sets of vectors. The
DGCCA network consists of M fully connected layers that
map the input vectors Xm ∈ Rdm×N to the network output
Fm = fm(Xm;Wm) ∈ Rom×N , where subscript m(m =
1, ...,M) represents the mth view (modality), Wm is the set
of parameters of the mth neural network, N is the number
of data points (each data point is a vector of length dm),
and om is the size of output (feature) from the final layer of
the mth neural network. Instead of maximizing the canonical
correlation between all output pairs, DGCCA seeks to learn
a shared latent representation G across M neural network
outputs, each corresponding to a different view (modality),
by solving an optimization problem

min
Um∈Rom×r,G∈Rr×N ,Wm

LDGCCA =

M∑
m=1

∥G− UT
mFm∥2F

s.t. GGT = Ir, (5)

where G ∈ Rr×N is the shared representation we are in-
terested in learning, Um ∈ Rom×r represents the mth linear
transformation which maps the om-dimensional feature of the
mth modality to a r-dimensional (r < om and r << N)
representation. Ir ∈ Rr×r is the identity matrix. This loss
function ensures that the outputs of DGCCA are optimally
aligned within the shared latent subspace.

III. PROPOSED METHOD

We propose a novel approach for sensor fusion that lever-
ages DGCCA combined with a feature attention mechanism.
The overall framework is illustrated in Fig. 1, which includes
three main modules: feature extraction, DGCCA, and attention
fusion, with details described in the following subsections.

This method is designed to extract, align, and fuse fea-
tures from multiple sensory inputs to enhance the perfor-
mance of downstream tasks. Signals collected from various
sensors—such as current and vibration sensors—attached to
motors are first processed to extract modality-specific features.
These features are then passed through the DGCCA module,
which projects them into a shared latent space by maximizing
their correlation. An attention-based fusion mechanism is sub-
sequently applied to combine the correlated features through
weighted aggregation, enabling effective fault detection and
severity estimation.

A. Feature Extraction

In our experimental framework, we directly feed the model
with raw time series inputs collected in our experiments. This
approach is justified by the non-periodic nature of some fault
features, such as fault feature induced by bearing friction or
insulation, which can be more effectively captured in the time
domain.

Without loss of generality, let Xm ∈ Rdm×N denote a set
of vectors collected by the mth (m = 1, ...,M) sensor, where
N is the total number of measurements. Each Xm is passed

Fig. 1: Overview of the proposed multi-sensor motor fault
detection framework.

through a corresponding feature extractor to obtain the feature
representations {Fm = fm(Xm,Wm) ∈ Rom×N}Mm=1. In
particular, we use a 1D-CNN based ResNet-18 (without the
last three layers) [24] as the backbone, which includes 4
convolutional layers, each includes 2 residual blocks with 32,
64, 128, and 256 channels respectively. The output from the
final block is subsequently fed into the DGCCA module for
additional analysis.

B. DGCCA on Feature data

The DGCCA network then processes these features {Fm =
fm(Xm,Wm) ∈ Rom×N}Mm=1 to align them in a shared latent
space G, as formulated in (5).

To train the neural networks in DGCCA, it is necessary to
compute the loss of the DGCCA objective LDGCCA. To this
end, we compute the covariance matrices Cm = FmFT

m ∈
Rom×om for the output of each view. Subsequently, projection
matrices Pm = FT

mC−1
m Fm ∈ RN×N for m = 1, ...,M that

whitens the data are derived from these covariance matrices.
Let P̄ =

∑M
m=1 Pm. It can be shown that the rows of G

correspond to the top r (orthonormal) eigenvectors of P̄ and
the transformations are Um = C−1

m FmGT . We can express the
objective loss function in (5) in an alternative form as follows

LDGCCA =

M∑
m=1

∥G− UT
mFm∥2F = rM − Tr(GP̄GT ). (6)

C. Attention-Based Fusion

After obtaining the DGCCA-aligned features, we employ
an attention-based mechanism to fuse the features effec-
tively [25]. Specifically, a lightweight attention fusion mod-
ule g(·;Wg) adaptively computes the attention weight vector
αm = g(Fm;Wg) for each feature representation, capturing
the relative importance of different feature channels. The



attention fusion module includes a two-layer fully connected
network with the sigmoid activation function to ensure the
attention weight values are in the range of [0,1]. The fused
feature representation F is obtained by taking a weighted sum
of the DGCCA-aligned features,

F =

M∑
m=1

αm ◦ Fm, (7)

where ◦ represents element-wise product. Note that the weight
vector αm is channel specific and dynamically derived from
the attention mechanism for each data point. This step ensures
that the most informative features from each sensor are em-
phasized, leading to a more robust and discriminative fused
representation.

We then use the fused representation for fault detection and
severity estimation using a simple feedforward neural network
h(·;Wh) to map the fused features to the final prediction
classes.

D. Training and testing Processes

We use cross entropy to measure the difference between the
network prediction ŷ and the ground truth y. Mathematically,
this is expressed as

LCE(y, ŷ) = −
∑
i

yi log(ŷi). (8)

The total loss of the framework is a weighted sum of the
prediction error and the DGCCA loss LDGCCA, i.e.

Ltotal = LCE + µLDGCCA. (9)

The parameters of the feature extractor neural networks
{Wm}Mm=1, the attention fusion module Wg , and the feed-
forward neural network Wh are then updated in the training
process by minimizing the total loss. The Adam optimizer
with a learning rate 0.0005 is adopted in the training process
to implement the optimization process [26]. The detailed steps
of the training process are summarized in Algorithm 1.

The testing process is conducted on separate datasets, which
are used as inputs to the trained network. The resulting outputs
are then compared with the ground truth labels to evaluate the
performance of the proposed framework.

IV. EXPERIMENTS

We evaluate the proposed framework on datasets collected
on motors with different bearing roughness levels. We show
in Fig.2 (a) a picture of our experiment setup and in Fig. 2
(b) an illustration of the system architecture. A 0.75kW three-
phase squirrel-cage induction motor is used for the experi-
mental study. A magnetic powder brake, whose torque can be
tuned by changing its input operating current, is used as the
load. Data are collected on the motor using multiple sensors
of different modalities including three-phase motor current,
vibration, velocity, and air gap, etc. The whole motor drive
system is enclosed in a clear cage for safety purpose. To create
varying levels of roughness on the bearing surface, micro metal
particles of three different sizes are added. Smaller particles

Algorithm 1 Sensor Fusion with Deep Generalized CCA and
Feature Attention

1: Input: Data {xm ∈ Rtm×N}Mm=1 from M sensors,
2: Initialize feature extractors and the DGCCA network,
3: for i = 1 to epoch do
4: Preprocess data as input of DGCCA neural network

{Xm = Φ(xm) ∈ Rdm×N}Mm=1;
5: Compute the output feature of the DGCCA neural

network {Fm = fm(Xm,Wm) ∈ Rom×N}Mm=1;
6: Compute the GCCA loss of output features {Fm}:

• Compute covariance matrices {Cm = FmFT
m}Mm=1,

• Derive projections {Pm = FT
mC−1

m Fm}Mm=1,
• Form the sum projection matrix P̄ =

∑M
m=1 Pm,

• Compute G, {Um}, and DGCCA loss LDGCCA;
7: Apply attention fusion module g(·;Wg) on {Fm}Mm=1

to obtain fused features F ;
8: Perform classification for fault detection or severity esti-

mation using fused features F as input of a feedforward
neural network h(·;Wh);

9: Update parameters {Wm}, Wg , and Wh by minimizing
the total loss Ltotal;

10: end for
11: Output: Network parameters and final feature representa-

tions {Fm}Mm=1, and projection matrices {Pm}Mm=1.

tend to create smoother surfaces, while larger particles result
in rougher textures.

Time-domain sensor signals are sampled at 10kHz, and
stored as 60-second recordings. To increase the variety of the
dataset, the motor under test is controlled to operate at varying
load and speed conditions. Details of the dataset are listed in
Table I. We aim to monitor bearing health conditions based
on multi-modal (M = 3) sensor data collected on motors of
different friction levels (small/ medium/ large).

TABLE I: Summary of the dataset metadata for bearing wear
classification.

Task Labels # of Samples Channels

Bearing Friction
Small 31 current,
Medium 10 vibration
Large 20 air gap

In Fig. 3 we show example snapshots of time-domain sensor
data of stator current, acceleration, and air gap at small bearing
friction and at large bearing friction respectively. We observe
that three different modalities exhibit different frequency char-
acteristics, magnitude ranges, noise levels. From the plot, it is
visually challenging to identify the correspondence between
the plot and the level of bearing roughness.

We train our model on a NVIDA RTX A2000 12GB GPU,
and the weight of DGCCA loss µ = 0.05 using collected
datasets. During the training process, we add random noise
to the original datasets, with an equivalent signal-to-noise
ratio SNR = 20dB, to improve the robustness. The dropout
technique [27] is also applied on the fused features with a
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Fig. 2: (a) Experimental setup; (b) System architecture of the
experimental setup.

dropout rate pdrop = 0.5 to prevent overfitting in neural
networks by randomly dropping units of feature channels.

In Fig. 4 (a) and (b) we show example plots of t-distributed
stochastic neighbor embedding (t-SNE) [28] visualization of
features from the validation set, before and after DGCCA
alignment process respectively. In the figure, different colors
indicate different bearing wear levels (small, medium, and
large) while different symbol shapes represent different sensor
modalities (current, vibration, and air gap length). We observe
that before DGCCA alignment, data points are scattered in
the feature space, which are difficult to be classified. With
our proposed DGCCA method, data points are well aligned
in the shared latent space for different severity levels, which
consequently results improved performance.

In Table II, we compare the average performance of estimat-
ing bearing-wear condition over 10 runs using a single chan-
nel, multi-channel using ResNet without feature alignment or
attention fusion, and our proposed method, respectively. The
accuracy and AUROC scores are calculated using the one-
vs-one approach by breaking down multi-class classification
problems into multiple binary classification problems [29]. It
is clear that the proposed method significantly outperform
those of single-channel setups. Specifically, the proposed
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Fig. 3: Time-domain measurements of different modalities at
(a) small bearing friction and (b) large bearing friction.

method achieved an accuracy of 98.7% and an AUROC of
0.99, compared to the best single-channel performance of
94.5% accuracy and 0.94 AUROC with vibration data, while
some channel (such as current) even failed to have good
performance, which is reasonable because bearing wear has
negligible impact on the stator current physically. Our method
is also better than the ResNet multi-channel method, which
is of 97.0% accuracy and 0.96 AUROC, due to the attention-
based feature fusion. The experimental results demonstrate the
efficacy of leveraging multiple sensor channels for motor fault
detection and severity estimation.

From the experiment we observe that each sensor modal-
ity contributes unique and complementary information. For
instance, current signals are valuable in detecting eccentricity
faults, but meaningless in detecting bearing surface wear. Inte-



(a)

(b)

Fig. 4: (a) T-SNE of the features from validation set of
bearing data before CCA alignment. (b)T-SNE dimensionality
reduction visualization of the features from validation set of
bearing data. Different colors indicate different wear levels,
and shapes denote different sensory channels.

grating data from multiple sensors provides a comprehensive
view of the motor’s condition, capturing diverse aspects of
its operation. By combining these modalities, the proposed
method can detect and diagnose faults more accurately and
reliably than using any single modality alone.

The use of DGCCA plays a crucial role in aligning features
from different sensor channels into a shared latent space. This
alignment ensures that the information from each sensor is
effectively integrated, enhancing the overall feature represen-
tation. Additionally, the attention fusion mechanism adaptively
weighs the importance of each modality and each feature
channel, allowing the model to focus on the most relevant fea-
tures for the fault detection and severity estimation task. This

TABLE II: Performance of bearing wear estimation

Setup Channel Accuracy (%) AUROC

Single Channel
Vibration 94.5 0.94
Current 54.4 0.37
Air Gap 78.3 0.92

ResNet Multi-Channel All 97.0 0.96
Proposed Method All 98.7 0.99

AUROC: Area Under Receiver Operating Characteristic curve.

combination of DGCCA and attention fusion leads to superior
performance, as evidenced by the significant improvements
over the baseline multi-channel approach.

V. CONCLUSION

We proposed a Deep Generalized Canonical Correlation
Analysis (DGCCA)-based sensor fusion method incorporating
with attention fusion and applied it in the motor bearing
wear estimation problem. The effectiveness is validated on ex-
perimental datasets with significantly improved performance.
This consistent performance improvement highlights the gen-
eralizability of our approach across different sensor types
and operational conditions, making it a versatile solution for
various sensor fusion problems including motor fault diagnosis
scenarios. Implementing our multi-sensor fusion approach can
lead to more reliable and intelligent condition monitoring sys-
tems, ultimately improving operational safety and efficiency.

While our method demonstrates substantial improvements,
it depends on the availability of multiple sensor channels,
which may not always be accessible in all operational settings.
Future work could explore the adaptability of the model to
scenarios with limited sensor data.
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