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Abstract
We consider the coordination of a fleet of tractor trucks to manage trailers in a large ware-
house complex and propose an approach that leverages Metric Temporal Logic (MTL) to
describe missions to be executed. Each mission includes multiple tasks, such as reaching a
trailer, connecting to it, moving it to a sequence of specific warehouse regions, such as load-
ing docks, internal holding areas, and departure parking lots, and eventually disconnecting
from it. The electric- powered tractor trucks must also be recharged by visiting charging
stations. The MTL formulation avoids an operator manually designing a mission specifica-
tion, which can quickly become unfeasible with many requests and possible assignments of
tractor trucks. MTL specifications and motion dynamics are formulated as a mixed integer
linear programming (MILP) approach, where the cost function includes performance ob- jec-
tives such as minimizing the trailer motions and energy- efficient usage. Since missions are
added and removed during operation and to also reduce the computation time, we modify
the method to allow for a receding horizon approach that allows for partial satisfaction of
the MTL specification and uses the cost function to favor the progress towards completion of
partially satisfied specifications. We compare different MILP formulations in simulations.

American Control Conference (ACC) 2025

c© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139





Truck Fleet Coordination for Warehouse Trailer Management by
Temporal Logic with Energy Constraints

Gustavo A. Cardona, Cristian-Ioan Vasile, and Stefano Di Cairano

Abstract— We consider the coordination of a fleet of tractor
trucks to manage trailers in a large warehouse complex and
propose an approach that leverages Metric Temporal Logic
(MTL) to describe missions to be executed. Each mission
includes multiple tasks, such as reaching a trailer, connecting
to it, moving it to a sequence of specific warehouse regions,
such as loading docks, internal holding areas, and departure
parking lots, and eventually disconnecting from it. The electric-
powered tractor trucks must also be recharged by visiting
charging stations. The MTL formulation avoids an operator
manually designing a mission specification, which can quickly
become unfeasible with many requests and possible assignments
of tractor trucks. MTL specifications and motion dynamics are
formulated as a mixed integer linear programming (MILP)
approach, where the cost function includes performance ob-
jectives such as minimizing the trailer motions and energy-
efficient usage. Since missions are added and removed during
operation and to also reduce the computation time, we modify
the method to allow for a receding horizon approach that
allows for partial satisfaction of the MTL specification and
uses the cost function to favor the progress towards completion
of partially satisfied specifications. We compare different MILP
formulations in simulations.

I. INTRODUCTION

Modern supply chains include several warehouses [1], that
are critical junctions of the chains where materials from up-
stream locations, e.g., suppliers, arrive, are re-packaged, and
shipped to several downstream locations, e.g., retail stores.
The inbound and outbound goods are placed in trailers that
are moved throughout the warehouse area for loading, un-
loading, holding, or simply transferring. Specially designed
tractor trucks, from now on, trucks for short, are used to
execute the requested trailer operations, called missions. The
missions are decomposed in a sequence of standard tasks,
including reaching to and departing from a trailer, connecting
to and disconnecting from it, and moving it to different ware-
house areas, such as unloading and loading bays, holding and
departing areas, and positioning appropriately in the assigned
locations. Since trucks are increasingly electric powered,
their battery discharge must be considered in the mission
execution as well as the need to periodically re-charge them
at specific, and often limited, charging stations. The trailer
management shares some features with the coordination of
robots for managing storage inside the warehouse [2]–[4].
However, some of the constraints in the trailer operation are
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Fig. 1: Warehouse environment with its corresponding ab-
stracted transition system.

specific to the problem considered here. It also shares some
features with the traffic scheduling problems, see, e.g., the
surveys in [5], [6] and [7], [8], which are also the basis of this
work, but with the additional complexity of the management
of the trailer, multiple operating modes, and the need to
account for battery charging. The overall management of
the warehouse area may be fairly complex since it may
involve hundreds of trailers and tens of trucks at any time
and is a dynamic problem in which new trailers and missions
constantly arrive. The manual formulation of the missions,
truck allocations, and charging scheduling as a numerical
problem may be extremely challenging. Instead, temporal
logic formalisms have emerged as powerful tools for model-
ing and addressing these challenges. Given their rich expres-
siveness and structure to capturing dynamic behaviors, task
constraints, and time-sensitive goals [9]. This paper focuses
on task allocation, route planning, and charging scheduling
for trucks to manage trailer missions in a warehouse. The
trucks may be autonomous and follow the obtained plan
autonomously, but they can also be human drivers when
the operator receives and follows the obtained plan manu-
ally. Linear temporal logic (LTL) has been considered for
specification of similar allocation and scheduling tasks [10],
[11]. After translating the specification into an automaton and
constructing the Cartesian product with a transition system
abstracting the warehouse, they compute a solution using
graph search methods. However, the approach has scalability
issues when considering a larger number of trailers and
trucks and large warehouses. Here, we use specifications in
Metric Temporal Logic (MTL), which, unlike LTL, allows
to express an explicit definition of time and convert them
into numerical problems that can be solved by Mixed Integer
Linear Programming (MILP), including in the cost function
performance criteria such as the minimization of the truck



motion and energy consumption.
MILPs are well known to have combinatorial worst-

case complexity. However, effective solvers exist, providing
solutions to several classes of problems in a reasonable time,
especially when the problem structure can be exploited. In
this paper, we leverage the formulation as network flow
problems, which are known to lead to efficient encodings.
Network flow representations have been used to capture
system dynamics and to ensure that scheduling and allocation
constraints are met [12]. The resulting MILP encodings can
be efficiently solved using off-the-shelf tools such as Gurobi.
Here, we describe the motion of trailers and trucks by
modeling flow networks on a transition system that abstracts
the environment as shown in Fig. 1. We also couple the flow
of trailers to the flow of trucks and constrain energy usage.

The coordination of trailers in the warehouse is a dynamic
problem in which new tasks are constantly added, and some
may take a long time to complete. Hence, it is challenging
to design the temporal specification to capture all requests
and ensure that it is possible within a given fixed horizon to
complete all the missions, i.e., to ensure that the temporal
logic formulae are feasible, for all the states in which
the trucks and trailer may be in. To address this issue,
we formulate a receding horizon approach [13], [14] of
the problem that considers an automatic generation of the
specification and iteratively satisfies the mission. To track
the mission’s satisfaction, we formulate a partial satisfaction
encoding and design a cost function that encourages progress
toward satisfaction at every iteration.

The main contributions of this work are: (i) the MTL
formulation of the coordination of trucks to execute the
trailer missions in the warehouse, while also accounting for
truck battery status; (ii) the translation of the formulation
into an effective MILP that captures the trailer and truck
dynamics constraints, minimizes the trailers motion and
encourages truck energy efficiency; (iii) a receding horizon
approach to solve the problem, which avoids the requirement
of a feasible specification and finds a solution faster, with a
limited impact on extending the mission duration.

II. NOTATION AND PRELIMINARIES

1) Notation: Let R denote the set of all real numbers, Z
the set of integers, B the binary set, and Z≥0 the set of non-
negative integers. For a set S , 2S and ∣S ∣ represent its power
set and cardinality, and α + S = {α + x ∣ x ∈ S}. The integer
interval (range) from a to b is [a..b], and I = a, Ī = b. The
j-th component of x ∈ Rd is given by xj , j ∈ [1..d].

2) Metric Temporal Logic: Metric Temporal Logic
(MTL), first introduced in [15] is a formal specification
language that expresses explicit real-time system properties.
The syntax of MTL is

ϕ ∶∶= ⊺ ∣ ¬ϕ ∣ π ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ◻Iϕ ∣ ◊Iϕ,

where ϕ, ϕ1, ϕ2 are MTL formulae, ⊺ denotes the logical
value True, and π ∈ Π is an atomic proposition. The operators
¬, ∨, ∧ are Boolean negation, disjunction, and conjunction,
respectively. Additionally, ◻I and ◊I represent the timed
operators always and eventually, with I = [a..b], 0 ≤ a ≤ b,

denoting a discrete-time interval. The logical value False is
expressed as � = ¬⊺. The semantics of an MTL formula ϕ
at time k is defined recursively over discrete-time signals
s ∶ [0..∞] → 2Π, where s = s(0), s(1), . . . represents a
sequence of sets of atomic propositions, i.e., s(k) ∈ 2Π,

(s, k) ⊧ π ≡ π ∈ s(k),

(s, k) ⊧ ¬ϕ ≡ (s, k) ⊭ ϕ,

(s, k) ⊧ ϕ1 ∧ ϕ2 ≡ (s, k) ⊧ ϕ1 ∧ (s, k) ⊧ ϕ2,

(s, k) ⊧ ϕ1 ∨ ϕ2 ≡ (s, k) ⊧ ϕ1 ∨ (s, k) ⊧ ϕ2,

(s, k) ⊧ ◊Iϕ ≡ ∃k
′

∈ k + I, (s, k′) ⊧ ϕ,

(s, k) ⊧ ◻Iϕ ≡ ∀k
′

∈ k + I, (s, k′) ⊧ ϕ.

(1)

The symbols ⊧, ⊭, ≡ represent satisfaction, violation, and
equivalence, respectively. A discrete-time signal s satisfies
the formula ϕ, denoted by s ⊧ ϕ, if and only if (s,0) ⊧ ϕ

3) Time Horizon of MTL formula [16]:

∥ϕ∥ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if ϕ = π,
∥ϕ1∥, if ϕ = ¬ϕ1,

max{∥ϕ1∥, ∥ϕ2∥}, if ϕ ∈ {ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2},

∥ϕ∥ + Ī , if ϕ ∈ {◻Iϕ,◊Iϕ}.

(2)

III. PROBLEM FORMULATION

In this section, we present the problem of coordinating a
fleet of trucks to manage trailer operations in a warehouse.
The trucks pick up, transport, position, and release trailers at
various locations, such as arrival, loading, unloading, hold-
ing, and departure areas. Requests specifying where trailers
must be placed are defined using MTL. The truck batteries
deplete while operating; hence, truck operations must also
account for recharging and maintaining sufficient battery
levels for the entire fleet. Next, we describe the models for
the environment, trucks, trailers, and task requests.

Definition 1 (Environment). The environment is abstracted
as a weighted transition system, represented by the tuple
M = (Q,E ,W,Π,L), where Q denotes a finite set of
locations of interest (states), and E ⊆ Q × Q captures the
possible transitions between locations. The functionW ∶ E →
Z≥1 assigns a travel duration to each transition, while Π is
a set of atomic propositions that label the states in Q. The
state-labeling function L ∶ Q→ 2Π associates each state with
a subset of atomic propositions. A stationary truck at q ∈ Q
is modeled by a unit-weight self-transition, i.e., (q, q) ∈ E for
all q ∈ Q, with W((q, q)) = 1.

Fig. 1 shows a warehouse environment with multiple
regions of interest, such as arriving trailer parking lot, trailer
departure location, charging stations, temporary parking,
roads, and multiple docking (i.e., loading/unloading) stations
and its corresponding abstract transition system.

Definition 2 (Truck). A truck y ∈ Y is defined by its position
sy(k) ∈ Q∪E and battery state by(k) ∈ R at time k ∈ [0..H],
where H is the time horizon and Y is the set of all trucks.
The trajectory sy ∶ Z≥0 → Q∪E captures the motion of truck
y, i.e., occupied locations q ∈ Q and traversed transitions
e ∈ E , in the environment M at each time k ∈ [0..H].



The synchronous trajectory of the truck fleet is denoted
by sY ∶ Z≥0 → (Q ∪ E)∣Y ∣. The energy cost for the fleet of
trucks Y is Jb = ∑y∈Y ∑H

k=0 by(k).

Definition 3 (Trailer). A trailer t ∈ T is defined by its
position st(k) ∈ (Q ∖ Qc) ∪ E at time k ∈ [0..H], where
H is the time horizon, T is the set of all trailers, and
Qc ∶= {q ∣ q ∈ L−1(πcharching)} is the set of charging
stations. The trajectory st ∶ Z≥0 → (Q ∖ Qc) ∪ E captures
the motion of trailer t, i.e., occupied locations q ∈ Q and
traversed transitions e ∈ E , in the environment M at each
time k ∈ [0..H].

The trailers cannot enter charging stations, and cannot be
in states labeled as “road” without a truck assigned to it, i.e.,
cannot be left in the middle of the road. The synchronous
trajectory of all trailers is denoted by sT ∶ Z≥0 → (Q∪E)∣T ∣.

Let sQt = q0q1 . . . be the sequence of states in Q visited
by trajectory st of trailer t ∈ T , and E(sQt ) = ((qℓ, qℓ+1) ∣
ℓ ∈ [0..∣sQt ∣ − 1], qℓ ≠ qℓ+1) be the sequence of transitions
in E that excludes self-transitions (q, q) that capture sta-
tionary trailers. The motion cost of all trailers is Jm =
∑t∈T ∑e∈E(sQt )

W(e).
The MTL primitive units to describe the mission speci-

fications are requests that capture the location to which a
specific trailer must be moved, and the minimum time to be
spent at that location.

Definition 4 (Request). A request is a tuple r = (t, d, πr),
where t ∈ T is the trailer tasked to move to a region with
label πr ∈ Πr ⊆ Π, where Πr correspond to the docking
stations, arrival, and departure locations, and stay there for
a duration d ∈ Z≥1. The set of all requests in the mission is
defined as R = {r1, . . . , r∣R∣}.

Docking stations, arrival, and departure locations qr have
exactly one label from Πr, i.e., ∣L(qr)∣ = 1.

A request can be translated into MTL specifications via
ϕr = ◻[0,d]ϖt,q , where ϖt,q denotes that trailer t is at
location q ∈ Q labeled with L(q) = {πr} and therefore serve
request r ∈R.

Finally, we define the plans that satisfy an MTL specifica-
tion ϕ over requests R (i.e., over atomic propositions ϖt,q).

A transportation schedule Asg ∶ T × [0..H] → T ∪ {ϵ} is
an assignment of trucks y to trailers t at each time k, where
ϵ denotes no truck is assigned. A feasible transportation
is feasible if (i) motion is synchronized, sy(k) = st(k)
whenever y = Asg(t, k), and (ii) every truck pulls at most
one trailer, ∣{t ∣ Asg(t, k) = y}∣ ≤ 1 for all y ∈ Y , k ∈ [0..H].

Definition 5 (Plan). A plan Γ is the joint state trajectory
sY , sT generated by the trucks pulling trailers to and from
docking, arrival, and departure locations in the environment
M, and transportation schedule Asg. Formally, we require
(sY , sT ) ⊧ ϕ such that by(k) ≥ 0 for all y ∈ Y and k ∈
[0..H], and Asg is feasible.

Next we formally describe our problem

Problem 1. Given a fleet of trucks Y , an abstracted environ-
ment M, a group of trailers T , and an MTL specification ϕ

over requests R, find a plan Γ such that ϕ is satisfied and
cost J = Jb −Jm is maximized.

The cost function J tries to keep the level of energy of
all trucks as high as possible and minimize the unnecessary
trailer motions. While plan Γ requires only the trailer tra-
jectories to satisfy the specification, the trailers can only be
transported in the environment by a truck that pulls them.

IV. MILP FORMULATION FOR TRUCK FLEET
COORDINATION

In this section, we formulate Problem 1 as a Mixed Integer
Linear Programming (MILP) problem.

Motion of trucks and trailers: We model the motion of
trucks and trailers as a flow network problem. Then, we
constrain the flow of trailers on the flow of trucks, so a trailer
can only move together with a truck, i.e., by being carried by
it. Let the binary variables Yq,i,k ∈ B and Ue,i,k ∈ B represent
whether the truck i ∈ Y is at state q ∈ Q or traversing
edge e ∈ E at time k ≤ ∥ϕ∥, with ∥ϕ∥ time horizon of the
specification computed as in (2). Similarly, Tq,j,k ∈ B and
Ve,j,k ∈ B are binary variables that represent whether trailer
j ∈ T is at state q ∈ Q or traversing edge e ∈ E at time
k ≤ ∥ϕ∥.

1) Motion of trucks: The constraints on truck flow con-
servation are

Yq,i,0 = ∣{i ∈ Y ∣ q0,i = q}∣, (3a)
Yq,i,k = ∑

(q′,q)∈E

U(q′,q),i,k−W(q′,q) ≤ Ny
q , (3b)

∑
(q,q′)∈E

U(q,q′),i,k = ∑
(q′,q)∈E

U(q′,q),i,k−W(q′,q), (3c)

for all q ∈ Q, i ∈ Y , k ∈ [0..∥ϕ∥], where (3a) is the initial
distribution of trucks in the environment, and (3b) are the
trucks in state q ∈ Q at time k ≤ ∥ϕ∥ considering the
durations of the incoming edge transitions. Additionally, Ny

q

imposes a capacity constraint that may be used to guarantee
no collisions of trucks at road nodes ( Ny

q = 1, for all
q ∈ Q with label π = πroad) or the maximum number of
trucks to enter same charging station node (Ny

q ∈ Z≥1, for
all q ∈ Q with label π = πcharging). Finally, (3c) imposes the
conservation of truck flow by requiring that the number of
trucks in incoming (q′, q) ∈ E and outgoing (q, q′) ∈ E edges
is equal.

2) Motion of trailers: The constraints on trailer flow
conservation are

Tq,j,0 = ∣{j ∈ T ∣ q0,j = q}∣, (4a)
Tq,j,k = ∑

(q′,q)∈E

V(q′,q),j,k−W(q′,q), (4b)

∑
(q,q′)∈E

V(q,q′),j,k = ∑
(q′,q)∈E

V(q′,q),j,k−W(q′,q). (4c)

for all q ∈ Q, j ∈ T , and k ∈ [0..∥ϕ∥], where (4a) is the
initial distribution of trailers, (3b) is the number of trailers
in state q ∈ Q at time k ≤ ∥ϕ∥ considering the durations of the
incoming edge transitions, and (3c) imposes the conservation
of the trailer flow by requiring that the number of trailers in
incoming (q′, q) ∈ E and outgoing (q, q′) ∈ E edges is equal.



3) Coupling motion of trucks and trailers: The trailers
must be moved by trucks, hence we couple their motion over
every edge e = (q, q′) ∈ E ∖ {q = q′}, except in self-loops
since the trailer is stationary, resulting in the constraints

Ve,j,k ≤ ∑
i∈Y

Ue,i,k, ∑
j∈T

Ve,j,k +∑
i∈Y

Ue,i,k ≤ 2, (5)

for all k ∈ [0..∥ϕ∥], where we enforce that the motion of
trucks and trailers are coupled, i.e., no trailer can transition
to another state if a truck is not transitioning on the same
edge, and that only a truck is assigned to a trailer.

4) Avoiding undesirable trailer behaviors: In order to
prevent trailers from being “temporarily abandoned” at the
road nodes, we impose the constraint

∑
i∈Y

Yqr,i,k ≥ ∑
j∈T

Tqr,j,k. (6)

for all qr ∶= {q ∣ q ∈ L−1(πroad)} and at all times k ∈
[0..∥ϕ∥].

Similarly, we avoid that two trucks “switch trailers” during
their operations by imposing

∑
i∈Y

Ue=(q,q′),i,k +∑
i∈Y

Ue=(q′,q),i,k ≤ 1, (7)

for all k ∈ [0..∥ϕ∥] and e = (q, q′) ∈ E ∖ {q = q′} where q
and q′ belong to road or docking labeled nodes.

Finally, we prevent trucks from bringing trailers to charg-
ing stations by imposing

Tq,j,k = 0,∀q ∈ L−1(π = πcharging). (8)

The combination of (3)–(8) ensures that a truck picks up a
trailer only if it has enough energy to move it to destination.

5) Docking maneuver: A docking maneuver occurs when
a truck transporting a trailer is positioned at the loading
station dock. During this maneuver, the truck must perform
specific motions to align the trailer with the dock. We pro-
hibit other trucks from crossing the road while the docking
maneuver is ongoing,

Ue+,i,k +Uẽ,i,k̃ ≤ 1, (9)

where e+ is the set of incoming edges of all road states
qr ∈ Q neighbors of the respective loading dock except for
the self-loops and docking node, ẽ is the edge linking the
road and docking station where the maneuver is performed,
and the k̃ is the duration of the maneuver.

Energy constraints: Here we model the energy spent by
each truck as proportional to the traveled distance. Trucks
can recharge at designated charging stations. This allows
them to restore their energy levels and resume contributing
to completing the mission. Let Ei,k capture the remaining
amount of energy a truck i ∈ Y has at time k ∈ [0..∥ϕ∥], the
constraints capturing the truck energy are

Ei,k+W(e) >= Ei,k −De +Ce − (1 −Ue,i,k) ⋅M, (10a)
Ei,k+W(e) <= Ei,k −De +Ce + (1 −Ue,i,k) ⋅M, (10b)

where Ce ∈ R≥0 is the charging rate at charging stations and
De ∈ R≥0 is the discharging rate at a specific transition e ∈ E ,
and M is a sufficiently large number, i.e., greater than the
battery capacity, the so-called Big-M [17].

Mission satisfaction: For encoding request satisfaction,
we use the binary variable zrk ∈ B which is 1 if request r ∈R
is satisfied at time k ∈ [0..∥ϕ∥] and 0 if violated. Thus,

zrk ≤ Tq,j,k, (11)

for all r = (t, d, πr) with πr ∈ Πr ⊆ Π, t ∈ T , d ∈ Z≥0 ensures
that trailer j ∈ T is at location q ∈ Q at the requested time
k ∈ [0..∥ϕ∥]. We enforce the entire MTL specification by a
recursive encoding that assigns a binary variable zϕk ∈ B to
each subformula ϕ at time k, such that zϕk = 1 if and only if
ϕ holds at time k. The complete encoding follows [13], and
we omit it for brevity.

Cost function terms: The cost function includes multiple
terms modeling different performance objectives. A trailer
should move only if necessary to satisfy the mission speci-
fication. Thus, we consider the cost function term

τT =
∥ϕ∥

∑
k=0

∑
j∈T

∑
(q,q′)∈E∖(q,q))

Ve,j,k, (12)

where τT captures all of the trailer motion during the
mission. We normalize the cost term by the weight σT =
λT /(∥ϕ∥ ⋅ ∣T ∣), where λT ∈ [0,1] is a priority weight to
define the priorities in the cost function.

For trucks, it is desirable to minimize energy usage and
incentivize recharging at a charging station when the energy
is low. Therefore, we consider the cost function term

τB =
∥ϕ∥

∑
k=0

∑
i∈Y

Ei,k, (13)

where τB is the total amount of energy of the fleet of
trucks available, which optimizes the overall energy usage
and increases the available energy in trucks so that they are
ready for the next task. We normalize the cost term by the
weight σB = λB/(∥ϕ∥ ⋅ ∣Y ∣), where λT ∈ [0,1] is another
priority weight. Combining the terms, we obtain the cost
function that captures the desired performance criteria as
J = σB ⋅ τB − σT ⋅ τT .

Optimization Problem: We formulate a MILP optimiza-
tion problem whose solution provides a solution to Problem 1
as

max
Y,u,T,v,B,Z

J

s.t. Tq,j,k ⊧ ϕ,
(3), (4), (5), (6),
(7), (8), (9), (10).

(14)

where the constraints include the satisfaction of the speci-
fication, built from (11), the motion of trucks, trailers and
their coupling, the avoidance of undesirable trailer behav-
iors, and docking maneuver and charging. For the problem
in (14), the specification must be satisfiable for the initial
truck and trailer conditions and the given requests within
the horizon along which (14) is formulated. Determining a
horizon that ensures the satisfiability of the specifications
without being excessively large to avoid negative impact on
the computation time is challenging, especially for scenarios
with several trailers, trucks, and requests. Thus, next we
modify the problem to be solved in receding horizon.



V. MILP PROBLEM REFORMULATION: A RECEDING
HORIZON APPROACH

In this section, we reformulate the MILP problem in (14)
to operate in a receding horizon, which makes it easier to
design specifications that are feasible since the horizon can
be extended without negatively impacting the computational
load. We consider that a mission specification has the fixed
structure

ϕ̃ = ⋀
r∈R

◊[lb, ub]r(t, d, πr), (15)

for all r ∈ R, with lb and ub being predefined lower
and upper bound of the time interval for the eventually
operator. Instead of considering only satisfaction or violation
of a specification, we use an encoding that accounts for
fractions of satisfaction, allowing the mission to be partially
satisfiable. This is enabled by a recursive encoding that uses
a variable zϕ̃k ∈ [0,1] for Boolean and temporal operators
capturing the percentage of satisfaction and zπr

k ∈ B for
atomic propositions. The complete encoding follows the one
in [18], and we omit it for brevity. Then, to obtain a trajectory
that fully satisfies the formula, we solve (14), iteratively
over a shifting time horizon until the specification is fully
satisfied, which indicates that all requests have been served.
However, to encourage the solution of (14) to progress in
partially satisfying a specification, which moves the solution
towards the full satisfaction of the specification and avoids
deadlocks, we need to modify the cost function.

1) Progress towards satisfaction cost function: Each re-
quest specifies that a particular trailer must move from its
current location to a designated destination. Thus, inspired
by [19], we compute a set of minimal distance paths from
the trailers starting positions to their targets using Dijkstra’s
algorithm. Let Pr represent the set of shortest paths for trailer
t in request r = (t, d, πr) ∈R, from its current location q ∈ Q
to the destination labeled by the proposition qd = L−1(πr).
For each request, we compute a monotonically decreasing
cost function Θ(r) along the paths in Pr, designed to
encourage the trailer to advance towards its destination
progressively,

Θ(q, r) = { c ⋅ d(q, qd), qd = L−1(πr) ∧ q ∈ Pr

C, otherwise
,

(16)
where c and C ∈ Z≥0 such that c ≤ C are constant bounds
for the cost function, and d(q, qd) is the Dijkstra computed
distance. Therefore, the cost term representing the progress
towards the destination is

τp =
∥ϕ∥

∑
k=0

∑
j∈T

∑
q∈Q

Θ(q, r) ⋅ Tq,j,k, (17)

for all r ∈ R. The term in (17) becomes smaller if the state
gets closer to the requested goal along the set of paths. Again,
we construct a normalization weight σp = λp/(∥ϕ̃∥ ⋅ ∣T ∣),
where λp ∈ [0,1] is a priority weight.

2) Receding horizon with partial satisfaction MILP prob-
lem: For a receding horizon solution that progresses towards
the satisfaction of the MTL by partial satisfaction and
progress towards satisfaction, the cost function J is modified

into JR = zϕ̃0 +τB ⋅σB−τT ⋅σT −τp ⋅σp, and as a consequence
the MILP problem (14) is modified into

max
Y,u,T,v,B,Z

JR

s.t. Tq,j,k ⊧ ϕ̃,
(3), (4), (5), (6),
(7), (8), (9), (10).

(18)

In the receding horizon implementation, (18) is solved over
a fixed horizon, a part of the solution is stored, and then it is
solved again along a shifted horizon. Such an iterative solu-
tion may simply be a way to control the computational load,
i.e., without any feedback from the actual system, which
amounts to initializing the next problem from the previous
problem solution. However, the receding horizon solution
may also implement feedback by commanding the trucks
with the initial part of the sequence computed at the current
step, and then solving again at a future step over the shifted
horizon, using the updated positions of trucks and trailers at
that time, which may be different from the predicted one due
to imperfections in execution, model errors, or unexpected
external effects. Using feedback provides some degree of
robustness and prevents errors from accumulating, which is
especially important for long operations.

VI. CASE STUDIES

In this section, we present some case studies that show
the behavior of our proposed method. The case studies
were simulated on a desktop computer with 6 cores at
2.60 GHz and 16 GB of RAM, using Gurobi as MILP
solver, PyTeLo [20] and ANTLRv4 for encoding the MTL
specifications, and Networkx to design and log the states in
the the environment.

We consider the environment and abstracted tran-
sition system shown in Fig. 1, with nodes π =
{πroad, πcharging, πdocks, πparking, πarrive, πdepart}, ∣Y ∣ = 7
trucks, ∣T ∣ = 9 trailers. For e = (q, q′) ∈ E , De = −2 if
q ≠ q′, and De = 0 if q = q′, i.e., for self-loops, and Ce = 10
for the self-loops at the charging station nodes, Ce = 0 zero
otherwise. Capacity constraints are Ny

q = 1 for road and dock
nodes, Ny

q = 4 for charging station node and departure area
nodes, Ny

q = 5 for arrival area nodes, and Ny
q = 2 for parking

area nodes. In the cost function, we consider λB = 0.5,
λT = 0.1, and λp = 1, which gives priority first to progress
towards satisfaction, then to energy conservation, and last to
minimization of unnecessary motions.

The MTL mission specification to satisfy is
ϕcs = ◊[9,10]r(t0,1, πD3) ∧ ◊[9,10]r(t1,1, πD2) ∧
◊[14,15]r(t2,1, πD4) ∧ ◊[14,15]r(t3,1, πD1) ∧
◊[9,10]r(t7,1, πD5) ∧ ◊[14,15]r(t8,1, πdepart) ∧
◊[16,17]r(t4,1, πparking), where for simplicity, we set
the duration of all the requests to a one-time unit.

Case study 1: Fully satisfiable mission: First, we consider
trailers and trucks to have an initial position at time k = 0,
as shown in Fig. 2, where trucks are represented by the
red rectangles and trailers the light blue rectangles. The
battery energy levels range from 0 to 100 energy units, and
initially, all trucks are at full charge capacity. For the given

https://github.com/erl-lehigh/PyTeLo


Fig. 2: Sequence of snapshots for the solution of case study 1. Trucks and trailers are red and blue rectangles, respectively.

abstracted environment and these initial conditions of trucks
and trailers, ϕcs is a feasible specification. Snapshots at time
instant k = 0, k = 6, k = 12, and k = 18 for the solution of
the MILP (14) are shown in Fig. 2, where ∥ϕcs∥ = 18. At
k = 6, the trucks have already moved, three trailers are being
transported by allocated trucks, and one truck is picking
up a trailer at the arriving trailer parking area. At k = 12,
three trailers have reached their destination, and all requested
trailers are being transported by trucks. Finally, at k = 18, all
the trailers have reached their destinations and fully satisfied
the mission. The truck trajectories are collision-free since
Ny

q = 1 for road and dock nodes.
In the same scenario, we have applied the encoding,

enabling partial satisfaction of the MTL specification and
obtained identical trajectories, suggesting that the partial
satisfaction encoding may have a limited impact on the
performance when the MTL specification is fully satisfiable.
Then, we modify ϕcs according to (15) for receding horizon
solution, where we arbitrarily set lb = 0 and ub = 7 for all
requests, and run the MILP optimization problem in (18).
The trajectories this way differ slightly from those obtained
from (14). After three iterations, the specification is fully
satisfied and at ∥ϕ̃cs∥ = 24. The receding horizon approach
does not require the temporal specifications to be feasible,
as, in fact, it will be impossible to satisfy all of them within
ub = 7, but this comes at the expense of increased time to
complete the overall mission. However, when specifications
are more complex and change dynamically during execution,
e.g., due to the introduction of new requests, the reduction
in performance may be a worthwhile price to pay for not
requiring that the specification be initially feasible.

Case study 2: Unfeasible mission: Next, we consider
a scenario where the initial conditions are the same as in
the previous case study, but three trucks are placed close
to the charging stations. All trucks’ initial battery energy
levels are now 40 energy units, which is not enough to
execute the entire mission. In this scenario, the MILP (14)
is infeasible since there does not exist a trajectory that can
satisfy the mission in the requested time, also reinforcing
that guaranteeing feasibility for a specification for all initial
conditions may be hard. For the MILP (14) with partial
satisfaction encoding, the solution satisfies around 85% of
the specification and, specifically, six out of seven requests.
For the receding horizon approach solving MILP (18), we
consider two different instances, one where the cost function
of (18) includes the progress term (17), and another without
it. The satisfaction rate with respect to the iteration instance
is shown in Fig. 3 for both cases. The instance with the

Fig. 3: Rate of satisfaction per iteration for case study 2.

progress term in the cost function considered only requires 4
iterations to reach full satisfaction, while the instance without
such terms requires 11 iterations to reach full satisfaction.
Accordingly, there is a significant difference in the mission
completion time, which is 32 time units for the case with
the progress term in the case, and 88 time units without
it. Thus, the progress term appears effective in promoting
progress towards the goal, and reducing both the number of
iterations and the time to complete the mission. A sequence
of snapshots of the solution is shown in Fig. 4, where the
initial conditions at time k = 0 are first shown. The trucks
close to the charging station go charging until there is enough
energy to serve all the requests. At time k = 20, some of
the requests have been satisfied, and all available trucks are
working to satisfy the remaining requests, except for one
truck that is unnecessary for the mission and is commanded
to recharge and stay out of the main road. At time k = 32,
all requests have been effectively satisfied. It is important to
notice again that 32 is not the optimal time to complete the
mission, as this is not guaranteed by the receding horizon
solution. In fact, for different parameters, a solution could
be computed in only 3 iterations, with a lower completion
time of 24 time units.

Methods performance comparison: Here, we compare
the computation time for the solutions of case study 1
and case study 2 for different combinations of previously
described methods. The results are shown in Fig. 5, where
“FS” stands for full satisfaction encoding, i.e., MILP prob-
lem in (14), “PS” stands for the partial satisfaction en-
coding, “PS+progress” is the partial satisfaction encoding
with the addition of the progress term in the cost function,
“RH+PS” is the receding horizon approach with partial
satisfaction encoding, i.e., (18) without progress term, and
“RH+PS+Progress” also include the progress term. For the



Fig. 4: Sequence of snapshots for the solution of case study 2.

Fig. 5: Time performance comparison for both case studies,
with different combinations of MILP problems.

second case, there is no data in the full satisfaction encoding
since the problem is unfeasible. For both case studies, the
MILP (18) is significantly faster to solve than (14). This
difference in the methods’ performance is expected to be
even larger when the number of requests, the size of the
environment, and the number of trailers and trucks grow.
The computation time is particularly sensitive to growing the
environment, since most of the MILP variables scale with the
number of states and edges in the transition system.

VII. CONCLUSIONS

This paper proposes a method to coordinate multiple
trucks, autonomous or manually driven by operators fol-
lowing centralized directions, in managing the operations of
warehouse trailers. Trucks transport trailers in the environ-
ment to satisfy requests to carry a specific trailer to a specific
location in the warehouse site. We consider the truck’s en-
ergy consumption by modeling the battery discharge during
motion and allowing for recharging at charging stations.
We have formulated the requests as the primitive unit of a
mission specification expressed using MTL, combined with
network flows to capture and impose constraints on the
motion of trucks and trailers. We have proposed different
encodings based on full and partial satisfaction and allowing
receding-horizon solutions where an additional term of the
cost function encourages making decisions toward satisfying
requests.
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