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Geostationary Satellite Station Keeping and Collocation under
High-Thrust Impulsive Control

Natalia Pavlasek1, Stefano Di Cairano2, and Avishai Weiss3

Abstract— Ensuring that satellites in geostationary Earth
orbit (GEO) remain in their allocated station-keeping windows
necessitates accurate station-keeping algorithms. Due to the
direct relationship between the fuel efficiency of station-keeping
trajectories and satellite mass, optimizing propellant consump-
tion can extend satellite lifetime, increase payload capacity,
and lower launch costs. In this paper, we propose a nonlinear
model predictive control (NMPC) policy for station keeping
and collocation of multiple GEO satellites under infrequent
high-thrust impulsive control. We develop a sequential convex
programming-based approach to find locally fuel-optimal tra-
jectories with enforced separation distances between collocated
satellites. Numerical simulations with NASA’s General Mission
Analysis Tool demonstrate the effectiveness of the proposed
NMPC policy for both GEO satellite station keeping and as a
collocation strategy for three GEO satellites in a single station-
keeping window.

I. INTRODUCTION

Satellites in geostationary Earth orbit (GEO) require sta-
tion keeping in order to counteract orbital perturbation-
induced drift. Early GEO station-keeping methods deter-
mined the thrust requirements for maintaining a satellite
in a station-keeping window analytically, by directly com-
pensating for drift in orbital elements [1]–[3]. These meth-
ods require manual operation and are not necessarily fuel-
optimal. Recently, work on station keeping has focused
on optimization-based approaches for satellites equipped
with low-thrust electric propulsion, see [4]–[7] and refer-
ences therein. Due to the low-thrust magnitudes of elec-
tric propulsion, and thus the relatively high frequency of
the required station-keeping maneuvers, optimization-based
station-keeping methods for low-thrust satellites use rela-
tively short prediction horizons to keep the size of the
optimization problem manageable.

In contrast, satellites equipped with chemical propulsion
systems apply thrust with approximately 100 times the
magnitude of low-thrust systems [8]. The high thrust mag-
nitude enables these satellites to apply thrust less frequently.
However, infrequent station-keeping maneuvers mean that
optimization-based station-keeping algorithms must predict
the motion of the satellite accurately for long periods of
time, without the ability to compensate for modeling errors
using feedback [9], [10]. Comparatively less research has
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been performed in this area in recent years. To ensure that
their satellite prediction models are accurate, the methods
in [9], [10] constrain the satellite to remain near the trajectory
about which the dynamics are linearized. Such a constraint
is conservative, as it encourages the satellite to stay near the
center of the station-keeping window.

The problem of positioning multiple satellites in the
same station-keeping window, referred to as collocation,
introduces additional complexity; collocated satellites must
maintain suitable distance from one another. One approach
for GEO collocation separates the group of satellites by
eccentricity and inclination such that the satellites occupy
slightly different orbits with low probability of collision [11],
[12]. Eccentricity and inclination separation constrains each
satellite to occupy only a subset of the allocated station-
keeping window, and as such is a conservative approach.
More recent methods for GEO collocation use optimization-
based techniques [10], [13], but are typically only applicable
to satellites with low-thrust propulsion.

Recent advances in trajectory optimization lend them-
selves well to high-thrust satellite station keeping and col-
location. Exact discretization methods [14], [15] provide
highly accurate linear dynamics models that can be used
within the sequential convex programming (SCP) framework
to provide a local solution to a nonconvex optimization
problem [16], [17]. Recently, the use of an isoperimetric
constraint reformulation within an SCP-based framework has
been shown to provide continuous-time constraint satisfac-
tion, allowing coarse time discretization [18]. These methods
can be used within the model predictive control (MPC)
framework [19]. MPC is a receding-horizon control strategy
that exploits a model of the system dynamics to determine
a control trajectory and corresponding state trajectory that
is optimal with respect to an objective function, subject to
constraints [20].

In this paper, we propose a nonlinear MPC policy for
station keeping and collocation under high-thrust impulsive
control. We use SCP to solve for optimal control inputs,
while considering the nonconvex dynamics and constraints.
Time dilation [18], [21]–[24] is used make thruster firing
time a problem variable. We additionally apply the constraint
reformulation described in [18] to enforce satellite separa-
tion distance between discrete-time samples of the position
trajectory in a three-satellite collocation scenario. We use
NASA’s General Mission Analysis Tool (GMAT) in order to
validate and assess the performance of our control strategy.
Our simulations close the loop between the proposed MPC
policy and the GMAT propagator; the MPC policy computes
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Fig. 1: Illustration of satellite orbiting the Earth with J2000
inertial frame, FG and Hill frame, FH .

optimal control inputs, which are then applied to a satellite
and propagated through GMAT. The propagated satellite state
is then used to initialize the controller during the next MPC
period.

The remainder of this paper is organized as follows.
Section II introduces the concepts used in the proposed fuel-
optimal station-keeping formulation, which is introduced in
Section III. The problem is extended to satellite collocation
in Section IV. Section V presents results. Finally, concluding
remarks are given in Section VI.

A. Notation
The following notation is used throughout this work. A

frame FA is defined by three orthonormal basis vectors
{ a→↑

1
, a→↑

2
, a→↑

3}. The physical vector r→↑ resolved in FA is
denoted by rA. The relationship between rA and rB is
rA = CABrB , where CAB ↓ SO(3). The physical vector
describing the position of point c relative to point d is
denoted by r→↑

cd. The time derivative of r→↑
cd with respect

to frame A is denoted v→↑
cd/A = r→↑

cd·A . The n↔n identity
matrix is denoted In, and the n↔m matrix of zeros is denoted
0n→m. We denote the number of elements in vector z by
nz. The set of real numbers and non-negative real numbers
are denoted by R and R+, respectively. Given a continuous-
time signal x(t) sampled with period !T , we denote the
value of the signal at time instant k!T , k ↓ {1, · · · ,K},
by xk = x(k!T ).

II. PROBLEM MODELLING
We consider the development of a controller that maintains

a GEO satellite within a range of longitudes and latitudes,
which define a station-keeping window.

A. Satellite model
Consider the J2000 inertial frame, denoted FG, and the

Hill frame, FH , defined by the basis vectors { h→↑
1
, h→↑

2
, h→↑

3},
where h→↑

1 is aligned with the nominal GEO orbital radius,
h→↑

3 is orthogonal to the orbital plane, and h→↑
2 completes

the right-handed coordinate frame depicted in Figure 1. We
assume the existence of an unforced particle w located at
the center of the Earth, and denote a point at the center
of mass of the GEO satellite by s. For the purposes of

defining a station-keeping window, introduced in Section II-
B, it is useful to define a reference point ω that moves along
a nominal Keplerian geostationary orbit. The translational
equation of motion for the satellite relative to the inertial
frame FG is given by

r̈→↑
sw(t) = →µ

earth
r→↑

sw(t)
∥∥∥ r→↑

sw(t)
∥∥∥
3

2

+ a→↑
pert(t) + a→↑

ctrl(t), (1)

where r→↑
sw : R+ ↑ R3 is the position trajectory of s relative

to w, µearth ↓ R is the standard gravitational parameter of
the Earth, a→↑

pert : R+ ↑ R3 is the acceleration induced by
perturbing forces, and a→↑

ctrl : R+ ↑ R3 is the input applied
to the satellite.

We consider perturbing accelerations from three sources:
gravitational forces between the Sun and the Moon and the
satellite, solar radiation pressure, and Earth’s non-Keplerian
gravitational potential. Gravitational forces between the Sun
and Moon and the satellite result in a perturbing acceleration
applied to the satellite, computed according to

a→↑
grav,j(t) = µ

j
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(2)

where j ↓ {sun,moon}, and µ
j ↓ R is the standard

gravitational parameter of body j. The impact of photons
with the satellite results in an acceleration due to solar
radiation pressure, computed as [25]

a→↑
srp(t) =

p
s.r.

c
refl

s
facing

ms

r→↑
sun,w(t)→ r→↑

sw(t)
∥∥∥ r→↑

sun,w(t)→ r→↑
sw(t)

∥∥∥
2

, (3)

where p
s.r. ↓ R is the flux pressure, computed as p

s.r. =
p0

c
, where p0 = 1367.0 W

m2 is the solar constant, and
c = 299792458m

s is the speed of light, c
refl ↓ R is the

reflectivity constant, sfacing ↓ R is the Sun-facing area, and
m

s ↓ R is the satellite mass. Earth’s oblateness results in
a non-uniform gravitational potential, defined by spherical
harmonic functions, which induces an additional perturbing
acceleration, a→↑

s.h. [26]. Spherical harmonic gravitational
potential terms up to the 10th order are computed using [27].
The resulting perturbing acceleration is

a→↑
pert = a→↑

grav,sun + a→↑
grav,moon + a→↑

srp + a→↑
s.h.

. (4)

We assume the satellite is actuated by impulsive acceler-
ations, resulting in instantaneous velocity changes !v. The
acceleration input a→↑

ctrl(t) in (1) is given by

a→↑
ctrl(t) = ε(t) u→↑(t), (5)

where u : R+ ↑ R3 is the control input, and ε(t) is the
Dirac delta function.

We define the satellite’s state to be the concatenation of
its position and velocity, both resolved in FG, so that the



state trajectory x : R+ ↑ R6 is

x(t) =

[
rsw
G
(t)

vsw/G

G
(t)

]
, (6)

where vsw/G

G
(t) is the time derivative of rsw

G
(t), taken with

respect to frame FG, resolved in FG. The system dynamics
are given by

ẋ(t) =



 vsw/G

G

→µ
earth rswG

↗rswG ↗3

2

+ apert
G

+ ε(t)uG



 , (7a)

= f(t,x,u), (7b)

where we have defined u = uG.

B. Station keeping

The station-keeping window can be described relative to
reference point ω. We make the following assumption.

Assumption 1. The distance between the satellite and ref-
erence point ω, projected onto h→↑

1 is small.

Assumption 1 enables the translation from longitudinal
and latitudinal constraints to box constraints on the satellite
position relative to the position of reference point ω, resolved
in FH . Given the maximum deviation from the nominal
longitude, ϑmax

1 ↓ R, and the maximum deviation from the
nominal latitude, ϑmax

2 ↓ R, the station-keeping constraint
can be expressed as

∣∣rsw
H,i

(t)→ rωw
H,i

(t)
∣∣ ↘ a0 tanϑ

max
i↑1 , i ↓ {2, 3}, (8)

where a0 ↓ R is the semi-major axis of the nominal
geostationary orbit, and rjw

H,i
(t) is the i

th element of rjw
H

(t),
j ↓ {s, ω}.

C. Sequential convex programming

We employ the prox-linear method [28], which is closely
related to the penalized trust region (PTR) algorithm [21],
[29], to solve the nonconvex problem of finding a fuel-
minimizing trajectory under the nonconvex dynamics given
in (7).

D. Time dilation

Time dilation can be used to transform a free-final-time
optimal control problem (OCP) to an equivalent fixed-final-
time problem [18], [21]–[24]. Let t be a strictly increasing,
continuously-differentiable mapping t : [0, 1] ↑ R+, with
boundary conditions t(0) = ti, t(1) = tf . The derivative of
the map is

s(ϖ) =
dt(ϖ)

dϖ
, (9)

where ϖ ↓ [0, 1]. We refer to s as the dilation factor, and treat
it as a control input, and augment the state with time. The
augmented control input and augmented states are defined as

ũ(ϖ) =

[
u(ϖ)
s(ϖ)

]
, x̃(ϖ) =

[
x(ϖ)
t(ϖ)

]
. (10)

We denote a derivative with respect to ϖ as
↓
↭. The dynamics

in (7) can be expressed with respect to ϖ , as
↓
x̃ =

dx̃

dt

dt(ϖ)

dϖ
, (11a)

=

[
f (t(ϖ),x(ϖ),u(ϖ)) ,

1

]
s(ϖ), (11b)

=: fs (x̃(ϖ), ũ(ϖ)) , (11c)

where fs : Rnx ↔ R+ ↔ Rnu ↔ R ↑ Rnx+1.

E. Parametrization and time discretization
The dynamics in (11) and constraints in (8) result in

an infinite-dimensional OCP. To form a tractable numeri-
cal OCP, we time-discretize the system to obtain a finite-
dimensional nonconvex OCP. We propose a direct method
that uses an inverse-free exact discretization scheme referred
to as multiple-shooting [30] to solve the OCP. We parame-
terize the augmented control using a zero-order hold.

We first note that the continuous-time dynamics in (11)
can equivalently be expressed as

x̃k+1 = x̃k +

∫
εk+1

εk

fs(x̃(ϖ), ũ(ϖ))dϖ, (12)

where x̃k is the augmented state sampled at ϖk. We start by
computing the partial derivatives of the dynamics in (11), to
obtain

Ā(ϖ) =
ϱfs(x̃, ũ)

ϱx̃

∣∣∣∣∣
¯̃x(ε),¯̃u(ε)

, B̄(ϖ) =
ϱfs(x̃, ũ)

ϱũ

∣∣∣∣∣
¯̃x(ε),¯̃u(ε)

,

where Ā : [0, 1] ↑ Rnx̃→nx̃ , B̄ : [0, 1] ↑ Rnx̃→nũ , and ¯̃x(ϖ)
and ¯̃u(ϖ) are the state and control trajectories, respectively,
about which the dynamics are linearized.

Consider the initial value problem
↓
!x̃(ϖ, ϖk) = Ā(ϖ)!x̃(ϖ, ϖk), (13a)
↓
!ũ(ϖ, ϖk) = Ā(ϖ)!ũ(ϖ, ϖk) + B̄(ϖ), (13b)
!x̃(ϖk, ϖk) = Inx̃ , (13c)
!ũ(ϖk, ϖk) = 0nx̃→nũ . (13d)

Equation (13) can be solved to obtain

Āk = !x̃(ϖk+1, ϖk), (14a)
B̄k = !ũ(ϖk+1, ϖk), (14b)
z̄k = ¯̃x(ϖk+1)→ Āk

¯̃xk → B̄k
¯̃uk. (14c)

where Āk ↓ Rnx̃→nx̃ , and B̄k ↓ Rnx̃→nũ .
The discrete-time linear dynamics are then given by

x̃k+1 ≃ Ākx̃k + B̄kũk + z̄k. (15)

F. Continuous-time constraint satisfaction
Direct methods for trajectory optimization typically en-

force constraints at discrete sample points, xk = x(tk),
with k ↓ {0, . . . ,K}, which allows for inter-sample con-
straint violation, or the violation of constraints between
samples [18], [24]. In contrast, methods with isoperimetric
constraint reformulation [18], [24] impose constraints as path



constraints, which are enforced along the full trajectory.
Consider the constraint function g : R+ ↔Rnx ↔Rnu ↑ R,
and the penalty function

” (t,x(t),u(t)) = max {0, g(t,x(t),u(t))}2 . (16)

Constraint g(t,x(t),u(t)) ↘ 0 is satisfied almost everywhere
in [ti, tf ] if and only if

∫
tf

ti

” (t,x(t),u(t)) dt = 0. (17)

We introduce y : R+ ↑ R with dynamics and boundary
value

ẏ(t) = ” (t,x(t),u(t)) , (18a)
y(0) = y(tf ), (18b)

which accumulates constraint violation. Within an OCP,
(18a) is imposed by augmenting the vehicle dynamics with
state y.

Applying time dilation, as discussed in Section II-D, yields

ẏ(ϖ) = s(ϖ)” (x̃(t(ϖ)), ũ(t(ϖ))) , (19a)
y(0) = y(1). (19b)

As discussed in [18], in order to satisfy the linear inde-
pendence constraint qualification (LICQ), (19b) is enforced
as

y(1)→ y(0) ↘ ς
y
, (20)

where ς
y ↓ R is a numerically significant but physically

insignificant quantity. See [18] for details.

III. SATELLITE STATION KEEPING

The control architecture can now be described. We develop
a receding-horizon nonlinear MPC policy that uses SCP to
solve for state and control trajectories. The control input is
infrequent and impulsive, and is constrained to be in the east-
west (EW) direction, along h→↑

2, and in the north-south (NS)
direction, along h→↑

3.

A. Maneuver timing

We consider a satellite equipped with a chemical propul-
sion system, which has fixed-directional thrust with restricted
firing times. We define the thrust to be an impulsive accel-
eration, and denote the set of times at which north-south
(NS) thrust is applied by T NS, and the set of times at which
east-west (EW) thrust is applied by T EW. We define the
control period to be a user-defined period of time in which
a specified number of NS-pointing thruster firings, nNS, and
of EW-pointing thruster firings, nEW, can occur.

In order to make firing time a free variable, we apply time
dilation, as introduced in Section II-D. In this framework,
thrust is applied at fixed intervals in dilated-time space,
however the corresponding true times are made free through
the mapping from dilated time to true time.

B. Station keeping as a nonconvex optimization problem

We make the following assumption, which enables the use
of state-independent rotation matrices.

Assumption 2. The rotation from the inertial frame, FG, to
the Hill frame, FH , is a good approximation for the rotation
from the inertial frame to the satellite orbit frame.

The continuous-time OCP of minimizing fuel, subject to
time-dilated dynamics (11c), initial condition, and station-
keeping constraint (8), can be expressed as

min
ũ(ε),x̃(ε)

↗u(ϖ)↗1 (21a)

s.t.
↓
x̃(ϖ) = fs(x̃(ϖ), ũ(ϖ)), ⇐ϖ ↓ [0, 1], (21b)
x̃(0) = ¯̃x0, (21c)∣∣∣Ci,:

HG
(ϖ)


rsw
G
(ϖ)→ rωw

G
(ϖ)

∣∣∣ ↘ a0 tanϑ
max
i↑1 ,

ϖ ↓ [0, 1], i ↓ {2, 3}, (21d)

where Ci,:
HG

denotes the i
th row of the rotation matrix that

transforms vectors in FG into FH , and the dynamics in (21b)
are defined by (11b) and (7a).

C. Discrete-time convex subproblem

Problem (21) is infinite-dimensional since the states are
continuous-time quantities. The problem must be time-
discretized in order to solve it numerically. We use the
discretization scheme presented in II-E to discretize (21b). In
the discrete-time system, the impulsive acceleration in (7a)
becomes a step input in velocity.

We define INS and IEW to be the indices at which the
thrust firing times t ↓ T NS and t ↓ T EW occur. Using SCP,
we express the convex subproblem as

min
ũ0:K→1,x̃0:K

K↑1

k=0


↗uk↗2 + w

dyn ↗ωk↗1 + w
sk ↗φk↗1

+ w
tr,x

∥∥x̃k → ¯̃xk

∥∥2
2
+ w

tr,s ↗sk → s̄k↗22


(22a)
s.t. ωk = Ākx̃k + B̄s

k
sk + IEW(k)B̄EW

k
u
EW
k

+ INW(k)B̄NS
k

u
NS
k

+ z̄k → x̃k+1,

k ↓ {0, . . . ,K}, (22b)
x̃0 = ¯̃x0, (22c)∣∣∣Ci,:

HkG


rskw
G

→ rωkw
G

∣∣∣→ a0 tanϑ
max
i↑1 ↘ φ

1
k↑1,

k ↓ {1, . . . ,K}, i ↓ {2, 3}, (22d)

where w
dyn ↓ R, wsk ↓ R, wtr,x ↓ R, and w

tr,s ↓ R are
user-selected dynamics, station-keeping, state trust-region,
and time-dilation factor trust-region weights, respectively,
and we have defined B̄EW

k
to be the column of B̄k cor-

responding to EW thrust, B̄NS
k

to be the column of B̄k

corresponding to NS thrust, and B̄s
k

to be the column of B̄k

corresponding to the dilation factor. The indicator function
Ij (k), j ↓ {EW,NS} evaluates to 1 if k ↓ Ij , and to 0

otherwise. The station-keeping constraints (22d) are imposed



with slack variables to allow minimal violation of the station-
keeping constraint. This prevents the optimization problem
from prioritizing satisfying the station-keeping constraint
while sacrificing dynamic feasibility.

D. Model predictive control
The GEO station-keeping problem is solved over long

horizons, with uncontrolled periods of several days. We use
MPC to determine optimal control inputs over a receding
horizon, and to provide feedback to the system.

For each MPC period, (21) is solved locally by iteratively
solving (22), linearized about the previous solution, (¯̃x, ¯̃u),
to convergence. The system is propagated using GMAT for
time [ti, tapp], where t

app
< tf with the control inputs found

by solving the OCP. The state of the system at the end of
the propagation becomes the initial state x̄0 in Problem (21)
for the next MPC period.

IV. SATELLITE COLLOCATION
The algorithm proposed in Section III can be extended

to the problem of collocating multiple satellites in a single
station-keeping window. In order to maintain suitable dis-
tance between satellites, a pairwise separation constraint is
added to Problem (21). For each pair of satellites, si and s

j ,
the nonconvex pairwise separation constraint is given by

∥∥∥rs
iw
G

(t)→ rs
jw
G

(t)
∥∥∥
2
⇒ d

min
, (23)

where si is a point at the center of mass of satellite i, and
d
min ↓ R is the minimum allowable separation distance

between two satellites. Constraint (23) can be linearized
and enforced at {t1, t2, . . . , tK} using the SCP framework.
However, in the proposed problem formulation, the long
MPC prediction horizons and infrequent control demands
coarse sampling periods, such that the problem is optimized
over states occurring several hours apart. Due to the risk
of satellite collisions between samples, we adopt the frame-
work in [18], where (23) is subjected to an isoperimetric
reformulation to avoid inter-sample constraint violation.

Consider the penalty function ” : R+ ↔ R2nr ↑ R+

”

t, r

sikw
G

, rs
jw
G


= max


0, dmin →

∥∥rsiw
G

→ r
sjw
G

∥∥
2

2
.

(24)

Using the formulation described in Section II-F, we augment
the dynamics in (7) with (19a) and (24), and enforce (19b)
in the OCP. This framework enforces satisfaction of (23) at
all points in the trajectory at SCP convergence.

V. GEO SATELLITE RESULTS
We demonstrate the proposed algorithm in simulation

using GMAT. Results for single-satellite station keeping and
three-satellite collocation are presented. In both cases, an
MPC policy is used. We consider a scenario in which the
satellite has a two-week control cycle, during which its
north-south (NS) thruster can fire once, and its east-west
(EW) thruster can fire twice. The thrust is assumed to result
in an instantaneous change in the satellite’s velocity. The

Fig. 2: Satellite position relative to the center of the station-
keeping window, resolved in FH (blue) over 504 day period,
with station-keeping window boundary (orange).

maximum deviation from the nominal latitude and longitude
is ϑ

max
1 = ϑ

max
2 = 0.1↓, so that the station-keeping window

measures 0.2↓ in latitude and longitude. We use a time-
discretization step of 8 hours. The constants used to compute
the solar radiation pressure are c

refl = 1.09, sfacing = 50 m2,
and m

s = 2500 kg.

A. Single-satellite station keeping
We first demonstrate the proposed algorithm on a single-

satellite station-keeping scenario. An MPC horizon of 16
weeks is used to compute the control inputs applied to the
satellite. Once computed, the system is propagated for 2
weeks, before recomputing the control inputs. The simulation
is performed over 504 days.

Figure 2 shows the position of the satellite relative to
the center of the station-keeping window, resolved in the
Hill frame. The dashed line represents the boundary of
the station-keeping window. The satellite remains inside the
station-keeping window throughout the simulation.

Figure 3 shows the cumulative control input over time.
The annual !v in the EW direction is 1.8m

s for the first 365
days, and 1.9m

s for the last 365 days. In the NS direction,
the annual !v is 50.2m

s for the first 365 days and 53.8m
s

for the last 365 days. The total !v requirement is therefore
52.0m

s for the first 365 days and 55.7m
s .

B. Three-satellite collocation
We demonstrate the proposed algorithm for satellite collo-

cation with three satellites. As in the single-satellite station-
keeping scenario, an MPC horizon of 16 weeks is used,
and the system is propagated for two weeks. The minimum
separation distance between any two satellites is constrained
to be 2 km. We compare performance of the proposed
algorithm with the separation constraint applied with the
constraint reformulation framework described in Section IV
to a baseline with the separation constraint applied only at
the discrete time steps. We choose to apply the separation
constraint (23) with the constraint reformulation framework
and the station-keeping constraint (8) at the discrete sample
points since a collision between satellites is mission-critical.

Figure 4 shows the separation distance between each pair
of satellites, with the pairwise separation constraint (23)
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Fig. 3: Cumulative control input in EW and NS directions
for satellite station keeping over 504 day period.

applied with the isoperimetric constraint reformulation (Fig-
ure 4a) and applied only at the sample points (Figure 4b).
The guidance trajectory (orange) is the output of the opti-
mizer, in which the states are time-discretized with 8 hours
between samples. The propagated trajectory (blue) is the
result of propagating the nonlinear dynamics using GMAT.
Figure 4a shows that when the separation constraint is
applied with the isoperimetric constraint reformulation, the
nonlinear propagation of the satellite trajectories satisfy the
pairwise-separation constraint. Figure 4b shows that with
the separation constraint applied only at the discrete sample
points, several close approaches between satellites 1 and 2,
and satellites 2 and 3 occur. The closest approach occurs
between satellites 1 and 2 at just 0.39 km apart.

Figure 5 shows the position of each of the three satellites
relative to the center of the station-keeping window, resolved
in FH , with the pairwise separation constraint (23) applied
using the isoperimetric constraint reformulation (Figure 5a),
and applied only at the sample points (Figure 5b). The
station-keeping window boundary is denoted by the orange
dashed line. Note that since the station-keeping constraint (8)
is applied only at discrete sample points and treated as a soft
constraint, minor violations of the station-keeping window
are to be expected.

Figure 6 shows the cumulative !v in the EW and NS
directions for each of the three satellites over a 500 day
period. The annual !v values in the EW direction are 1.3 m

s ,
1.3 m

s , and 1.3 m
s in for the first 365 days, and 1.4 m

s ,
1.4 m

s , and 1.6 m
s for the last 365 days. In the NS direction,

the annual !v values are 50.7 m
s , 49.7 m

s , and 50.7 m
s in

for the first 365 days, and 54.6 m
s , 54.4 m

s , and 54.3 m
s

for the last 365 days. Note that compared to the single-
satellite station-keeping problem, the !v penalty incurred
by collocating three satellites in the same station keeping
window is small.

VI. CONCLUSION
A NMPC strategy employing SCP was presented for

satellite station keeping and collocation for satellites with
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(a) Proposed method.
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(b) Baseline method.

Fig. 4: Separation distance between each pair of satellites for
3 satellite collocation over 500 day period.

(a) Proposed method.

(b) Baseline method.

Fig. 5: Satellite position relative to the center of the station-
keeping window, resolved in FH (blue) for 3 satellite col-
location over 500 day period, with station-keeping window
boundary (orange).
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Fig. 6: Cumulative control input in EW and NS directions
for 3 satellite collocation over 500 day period.

high-thrust impulsive propulsion systems. Time dilation was
used to make thruster firing time a free variable. An
isoperimetric constraint reformulation was used to enforce
a pairwise satellite-separation constraints between sample
points in discrete time. The proposed NMPC policy provides
an accurate prediction model that enables station-keeping
maneuvers with infrequent feedback. The policy can be ex-
tended to handle the harder problem of collocating multiple
satellites within a single station-keeping window with the
same infrequent high-thrust control and infrequent feedback.
The resulting trajectory is locally fuel-optimal and uses the
entire station-keeping window for fuel-efficient performance.
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