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Safe Interactive Motion Planning by Differentiable Optimal Control
and Online Preference Learning

Andres S. Chavez Armijos, Karl Berntorp, and Stefano Di Cairano,

Abstract— We present an interactive motion planner that
integrates online learning of human driver preferences with
parametric control barrier functions. Using stochastic models
with Gaussian disturbances to capture human-driven vehicle
behavior uncertainty, we update parameters in real-time pa-
rameter by Kalman filtering while ensuring safety by control
barrier functions. A case study on highway lane-changing tasks
demonstrates improved traffic flow, reduced disruptions, and
lighter actuation effort compared to non-adaptive algorithms.

I. INTRODUCTION

The development of autonomous vehicles (AVs) has
gained significant interest due to their potential to improve
safety and optimize traffic flow. However, the successful de-
ployment of AVs in real-world environments requires robust
motion planners that can manage complex interactions with
human-driven vehicles (HDVs) exhibiting diverse driving
behaviors [1]. Traditional approaches assume HDVs follow
fixed rules or rely on simplified models, which may result
in continuous plan adjustments when interacting with HDVs
due to varying driving styles [2].

Recently, learning-based methods have shown promise for
learning policies from interactions with other agents [3], [4],
at the price of extensive training data and possible challenges
in generalization. Other approaches are based on modeling
vehicle interactions as multi-agent games [5], which can be
computationally intensive and require accurate models of
other agents’ behaviors, which are hard to obtain. Combining
learning and optimization methods allows for maximizing
both strengths [6], and also for ensuring safety through
control barrier functions (CBFs) designed from data [7], [8].
However, this may still require a significant amount of data.

In this paper we propose an approach that leverages
automated controller calibration by uses an Extended Kalman
filter (EKF) [9] to learn stochastic models of HDV behaviors
and CBFs for safety, which allows the ego vehicle to adapt
as it interacts with HDVs. We demonstrate the effectiveness
of our approach in highway lane-changing scenarios, where
the proposed adaptive algorithm show reduced traffic flow
disruption compared to non-adaptive methods.

Next, Section II defines the problem, Section III describes
the control design and Section IV describes the proposed
learning algorithm. Section V present a case study on lane-
changing maneuvers and Section VI present the conclusions.
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Fig. 1: Interactive scenario with ego vehicle and HDVs. The
latent parameter vector Θ affects each vehicle’s trajectory as
well as its minimum ellipsoidal safety distances.

Preliminaries. Consider the control-affine system

ẋ = f(x) + g(x)u, (1)

where x ∈ X ⊂ Rnx and u ∈ U ⊂ Rnu are the state
and control input vectors, respectively, X and U are the
corresponding admissible sets, and f : Rn → Rn g : Rm →
Rn×m are locally Lipschitz continuous.

Definition 1.1: A continuously differentiable function b :
Rn → R is a control barrier function [10] (CBF) for
(1) if there exists a K∞ function [11] α(·) such that
supu∈U [Lfb(x) + Lgb(x)u] ≥ −α (b(x)) for all x ∈ C,
C := {x ∈ Rn : b(x) ≥ 0}, where Lh denotes the Lie
derivative along h.

Definition 1.2: A function V : Rn → R such that
there exist c1, c2, c3 > 0, c1|x|2 ≤ V (x) ≤ c2|x|2,
infu∈U [LfV (x) + LgV (x)u+ c3V (x)] ≤ 0 for all x ∈
Rn, is a control Lyapunov function (CLF) for (1).

II. PROBLEM FORMULATION

Consider a scenario S where an autonomous ego vehicle e
drives around N HDVs H = {1, 2, . . . , N}. The ith HDV’s
behavior, such as safety distances and actuation effort prefer-
ences, is influenced by the latent variable Θi ∈ Rd. Figure 1
shows an example scenario where the preferences are the
minimum safety distances for each HDV represented by
ellipsoids of different sizes. The predicted trajectory ξ̂i(Θi)
for each vehicle depends on latent parameters Θi. Thus,
for predicting the HDVs control actions for an ego vehicle
trajectory, we need to learn the HDVs latent variables.
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Fig. 2: Online adaptation of motion planning using EKF to update HDVs latent parameters (e.g., safety preferences).

Our objective is to design a control policy that solves that
controls the ego vehicle towards its goal while learning the
HDV behavior and ensuring avoidance of collision to a suf-
ficient degrees of confidence. To this end we: (i) Design an
optimal control problem that models the interactions between
the ego vehicle and surrounding HDVs, considering dynamic
constraints, safety requirements, and vehicle observations;
(ii) construct an estimate of the safety function bi(·) for each
vehicle i to model its reactions and behaviors; (iii) learn the
maximum likelihood set of HDV latent parameter vectors Θi,
Θ, based on the dataset D of past interactions; (iv) solve
the optimal control problem to determine the action of the
ego vehicle and the expected reactions of the HDVs. The
schematic of the overall method is shown in Figure 2.

III. INTERACTION-BASED PARAMETRIC OPTIMAL
CONTROL

First, we design a Parametric Optimal Control Problem
(POCP) that operates both as a planner for the ego vehicle
and as a trajectory estimator for HDV.

A. Dynamic Constraints

We model vehicles i ∈ {H, e} by the kinematic single-
track model [12]
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(2)
where xi, yi, ψi, vi are the longitudinal and lateral position,
heading angle and speed, ui is the acceleration, ϕi is the
steering angle, and Lw is the wheelbase length.

Model (2) is subject to state and input constraints xi ∈ Xi

and ui ∈ Ui, which include speed limits, road boundaries,
lane restrictions, and vehicle limitations. The combined traf-
fic model is obtained by concatenating states and inputs for
each vehicle, Xt ∈ Rnx×(N+1), U t ∈ Rnu×(N+1).

B. Parametric Cost Function

The cost function for the interacting vehicles is based on
deviation from an intended trajectory. Here, an intention is
defined as a predicted control input or goal.

Assumption 1 (Availability of Intentions): The ego vehi-
cle e has access to a “stand-alone” trajectory predictor
F(X(t0),S(t0)) : R4×N → R2×N×T that maps the traffic
state X(t0) and scenario S(t0) to the “stand-alone” inten-
tions {x̂i

t, û
i
t} for t ∈ (t0, T ] for each vehicle i ∈ H.

Based on Assumption 1, the ego vehicle can predict each
HDV’s intended path ξ̂i = {x̂i

t, û
i
t} in isolation, with no

interactions. Any predictor, e.g., [13], [14], can be used.
Thus, the cost function is

J (Uk;Θ) = ∥ue
t∥Qe︸ ︷︷ ︸

Je(ue
t )

+

N∑
i=1

(
∥ui

t − ûi
t∥Qθdev

i

+ ∥ui
t∥Qθu

i

)
︸ ︷︷ ︸

Ji(ui
t,û

i
t;Θ

i)
(3)

where Qe,Q
θdev
i ,Qθu

i ≥ 0 are nonnegative weight matrices.
For each HDV i ∈ H, Ji(·) penalizes deviation from the
predicted control input ûi

t and minimizes the actuation effort
using the parametric matrices, while Je(·) minimizes the
actuation efforts of the ego vehicle.

C. Parametric Safety Description

We consider joint safety where both vehicles contribute to
maintaining safety.

Definition 3.1 (Joint Safety): Let Si
S := {xi | gS(xi) ≥

0} and Sj
S := {xj | gS(xj) ≥ 0} denote the safety sets for

vehicles i and j, respectively. The joint safety set is

SS := Si
S ∩ Sj

S = {x | Ψij
S (xi,xj) ≥ 0}, (4)

where Ψij
S (xi,xj) characterizes the intersection.

Based on Definition 3.1, we make the following assumption.
Assumption 2 (Rational Drivers): Every HDV on the

road is considered rational and safe, and thus avoids situ-
ations where a collision cannot be averted.

Under Assumption 2 and Definition 3.1, we model the
safety set as a belief dependent on Θ. Then, safety is defined



using the ellipsoidal CBF constraint
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dmax
+ a depends on the velocity difference

between the vehicles vit and vjt , the maximum deceleration
dmax, and a baseline semiaxis a, while b remains constant.
We derive the CBF constraint as
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The function α
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represents the safety margin for con-

straint violation. The safety preference of a vehicle pair (i, j)
is parameterized by the safety margin function α

Ä
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S

ä
. A

larger α(·) indicates a more cautious preference, while a
smaller value represents a more aggressive preference.

Thus, the safety margin α
Ä
Ψij

S

ä
is parameterized by Θij .

We define α as an odd polynomial

αij(x
i
t,x

j
t ;Θ

ij) =

d∑
k=0

θ2k+1Ψ
ij
S (x

i
t,x

j
t )

2k+1, (7)

where d is the degree, and θ2k+1 are the parameters. Then,
α in (6) is parametrized by (7) resulting in the constraint

Gij
s (x

i
t,x

j
t ) ≥ −αij(x

i
t,x

j
t ;Θ

ij), (8)

where Θij ∈ Rm contains the parameters describing the
safety margin and Gij

s (x
i
t,x

j
t ) describes the LHS of (6).

D. Safety Robustification

The joint safety parameter vector Θei for the ego vehicle
e and an adjacent vehicle i contains uncertainties. Thus, we
robustify the safety constraints as chance constraints

Pr
(
Gej

s (xe
t ,x

i
t) ≥ −αei(x

e
t ,x

i
t;Θ

ei)
)
≤ 1− ϵ, ∀i ∈ H,

(9)
ensuring the probability of unsafe interactions between e and
any other vehicle i remains below a risk threshold ϵ while
accounting for the uncertainty. The constraint is parameter-
ized by Θei, which captures the interaction between the ego
vehicle and each i. It is assumed that every parameter θi
is corrupted by noise ν ∼ N (0, ω) with covariance matrix
CΘei = diag([ω1, . . . , ωm]). We reformulate (6), (7) as

αej(x
e
t ,x

i
t;Θ

ei) =

d∑
k=0

(θ2k+1 + ω2k+1)Ψ
ei
S (x
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(10)
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]
≥ 1− ϵ, .

Letting p = 1− ϵ and Φ−1(p) denote the p-th quantile of
the standard normal distribution. The safety constraint using
a radial basis function is

∀i ∈ H, Gr(x
e
t ,x

i
t;Θ
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»

tr (ΣΩ),

(12)

where Φ−1(p)
√

tr (ΣΩ) adjusts the safety margin to account
for the uncertainty. The robustified constraint ensures that the
probability of violating the safety condition remains below ϵ,
while accounting for uncertainty in the learned parameters.

E. Parametric Goal Description
To model the ego vehicle’s goal-reaching objectives (e.g.,

reaching a merging point or a specific lane), we construct a
deterministic CLF that minimizes the distance between the
current state xe

t and the goal xe
goal

Ve(x
e
t ,x

e
goal) = ||xe

t − xe
goal||2,

LgeVe(x
e
t ,x

e
goal)u+ LfeVe(x

e
t ,x

e
goal) + p2Ve(x

e
t ,x

e
goal) ≤ εe,

(13)
where p2 is a linear class-K function parameter and the slack
εe allows for relaxing the constraint to avoid infeasibility.

For each vehicle i ∈ H, we construct a CLF Vi(x
i
t) to

account for deviations from the predicted intention x̂i
t

Vi(x
i
t, x̂

i
t) = ||xi

t − x̂i
t||2, ∀i ∈ H,

LgiVi(x
i
t, x̂

i
t)u+ LfiVi(x

i
t, x̂

i
t) + θigVi(x

i
t, x̂

i
t) ≤ εi,

(14)

where θig is a linear parametric class-K function that ensures
Vi decreases over time, driving xi

t toward x̂i
t. Unlike (9), this

constraint does not require robustification since we cannot
control the assumed risk for vehicle i.

F. Robust Interactive CBF-CLF QP
We discretize the time interval [0, T ] into equal steps of

duration ∆t with a zero-order hold. To satisfy Definition 1.1,
we formulate the Quadratic Program (QP) as

min
Ut,Et

∥ue
t∥Qe︸ ︷︷ ︸

Je(ue
t )

+

N∑
i=1

E
(
∥ui

t − ûi
t∥Qθdev

i

+ ∥ui
t∥Rθu

i

)
︸ ︷︷ ︸

Ji(ui
t,û

i
t;Θ

i)

+EtP

s.t. (2), (12), (13), (14)

xi
t ∈ X , ui

t ∈ U ∀i ∈ {e,H}
(15)

where the objective function is the expected value of the cost
J (Xt,U t;Θ), accounting for the uncertainty in Θ, and Et
contains all slack variables in the CLF constraints, with slack
penalty vector P .

IV. ONLINE PARAMETER LEARNING

In the online learning process, we leverage POCP (15) to
predict trajectories and update the latent parameters based
on the observed interactions. Given a dataset D of previous
interactions, we learn Θ by solving

argmax
Θ

L(Θ;D), (16)

where L(Θ;D) is the likelihood of Θ given data in D. We
use an EKF to solve (16) and update the latent parameters
that encode the preferences on safety, actuation effort, and
deviation from the original intents for each HDV in the scene.
A neural network models these latent parameters and maps
them into the parametric constraints and objectives for each
HDV in the scene. At the next step, POCP (15) uses the
updated latent parameters and covariances from the EKF,
and updates the HDVs prediction.



A. Observer-Based Parameter Adaptation

We define a possibly nonlinear function fΘ(Xt) :
Rnx×(N+1) → Rnp that maps the current scenario state
Xt to the set of parameters Θt ∈ Rnp that form the
objectives and constraints within the POCP (15). In addition,
we introduce the function ξ̂t−T |t = h(fΘ(Xt),xt−T |t).
With a little abuse of notation, we denote the right-hand
side as ĥ(Θt). The actual trajectory ξt of the surrounding
vehicles is

ξt = ĥ(Θt) + νt, (17)

where νt is a noise term that accounts for the discrepancy
between the predicted and actual trajectories.

The prediction equations for the observer-based parameter
adaptation scheme are

Θt+1 = Θt +∆Θt (18a)

ξt = ĥ(Θt) + ∆νt (18b)

where ∆Θt and ∆νt are zero-mean Gaussian random vari-
ables with covariances CΘ and Cv , respectively, such that
∆Θt ∼ N (0, CΘ) and ∆νt ∼ N (0, Cv). The parameter
adaptation law is derived from the posterior distribution
Pr (Θk+1 | Θ0:t, y0:t) =

∏t
i=0 Pr (Θi+1 | Θi, ξi) Pr (Θ0),

where ξ0:t is the observed trajectory up to time t.
If ĥ(Θt) is differentiable, an EKF can be employed to

update the latent parameter vector

∆Θt = Kt

Ä
ξt − ĥ(Θt)

ä
, (19)

where Kt denotes the Kalman gain computed by

Kt = Pt|t−1H
T
t S

−1
t

St = HtPt|t−1H
T
t + Cv

Pt|t−1 = Pt−1|t−1 + CΘ

Pt|t = (I −KtHt)Pt|t−1,

(20)

Ht is the Jacobian of ĥ(Θt) with respect to Θt, Pt|t−1 and
Pt|t are the prediction and corrected covariance matrices.

To compute the Jacobian Ht, we construct the linearization
based on the chain rule,

Ht =
δĥ(Θt)

δΘt
=
δĥ(Θt)

δξt

δξt
δΘt

(21)

where δξt
δΘt

is computed by differentiating the KKT condi-
tions of the optimal control problem [15].

B. Parameter Mapping Functions

The latent parameters represent the HDV’s preferences
in the POCP ĥ(Θt). We consider two mapping functions
fΘ(Xt) from the current scenario state Xt to the latent
parameter vector Θt.

Direct mapping: The simplest mapping is the identity
function

Θt = fΘ(Xt) = Xt. (22)

Here, Θt directly corresponds to the cost and safety con-
straints, offering a straightforward interpretation. However,

this method may not capture complex relationships between
the system state and the optimal parameters.

Nonlinear mapping: To represent more complex relation-
ships, we use a Multilayer Perceptron (MLP)

fΘ(Xt; Θ) = WL (· · ·φ (W1Xt + b1)) + bL (23)

where L is the number layers, Wℓ and bℓ are the weights and
biases for each layer ℓ, and φ(·) is the activation function.

The variance propagation differs for the two mappings.
Direct mapping uses the variance from the EKF’s covariance
estimation in (20). For the MLP mapping, we propagate
the variance through each MLP layer, using Monte Carlo
sampling. Future work will explore variance approximations
as suggested in [16].

Remark 1: The EKF assumes latent parameter observabil-
ity, which requires sufficient system excitation. Conservative
initial parameters can limit this, affecting observability. Thus,
careful selection of initial conditions and system inputs is
crucial to balance safety and excitation for EKF estimation.

V. CASE STUDY

We tested the proposed algorithm in a lane-changing
scenario to evaluate its effectiveness in ensuring safety and
efficiency during interactions with HDVs. All simulations
were conducted in Python using an AMD Ryzen 9 5900X,
3.70 GHz 12-core CPU without a GPU, utilizing JAX and
the OSQP solver [17].

A. Interactive Lane-Changing Problem Description
Consider an ego vehicle e encountering a slower HDV

(HDV 3) and two other HDVs in the adjacent lane. The
goal for e is to merge safely between HDV 1 and HDV 2,
minimizing sudden deceleration that could disrupt traffic.
The HDVs aim to maintain their lane and desired velocity.

The scenario includes constraints on lateral space due to
lane lines. The road width is l and the center of the slow lane
is the y = 0 axis. The ego vehicle’s initial lateral position
at t0 is ye(t0) = 0. The lateral positions of all vehicles are
constrained as − l

2 ≤ yit ≤ 3
2 l for all i ∈ {H, e}.

The maneuver starts at t0 and ends at tf when the ego
vehicle has fully transitioned to the target lane. The control
input and speed for all vehicles are constrained by ui

min ≤
ui
t ≤ and ui

max, vimin ≤ vit ≤ vimax, where ui
min and ui

max

are the control bounds, and vimin, v
i
max are the speed limits.

Each HDV aims at maintaining its lane, yit ∈ {yleft, yright},
and desired speed vides, hence using as CLFs

Vi
vdes

= (vit − vides)
2, (24a)

Vi
ydes

= (yit − yides)
2. (24b)

For the ego vehicle traveling on yright at t0, the goal is lane-
changing, thus Ve

ydes
= (yet − yleft)

2, with the desired speed
given by Ve

vdes
= (vet − vedes)

2. This ensures that the lateral
position constraint influences the control inputs, adapting to
varying conditions.

To address lateral constraints, we define CBFs

Ψymin

(
xi
t

)
= vit sin

(
ψi
t

)
− ymin + pymin(y

i
t − ymin),

Ψymax

(
xi
t

)
= −vit sin

(
ψi
t

)
− pymax(ymax − yit),

(25)



where pymin and pymax are positive constants. Additionally, for
speed constraints we implement

Ψvmin

(
xi
t

)
= vit − vmin, Ψvmax

(
xi
t

)
= vmax − vit. (26)

State CBF constraints are not parameterized as they are
determined by traffic rules and road topology. Instead, we
parameterize the ego vehicle’s safety constraints to facilitate
tracking. This may affect the accuracy of estimating other
vehicles’ trajectories but will not compromise safety.

B. Simulation Performance and Analysis

The speed and acceleration ranges used in the simulations
were v ∈ [15, 33]m/s and u ∈ [−7, 3.3]m/s. The target speed
for all vehicles was set to vdes = 30m/s, and the highway had
a lane width of l = 4m. Each vehicle followed the dynamics
in (2) with Lw = 5m.

For the collision avoidance CBFs in (5), we used
a = 1m, b = 3 m, and dmax = 5 m/s2. For
the CBFs from (26), (25), and the deterministic con-
trol Lyapunov functions (CLFs) in (24b), we defined lin-
ear class-K functions with gain p = 1. The time step
length was ∆t = 0.05 s. The initial states for each ve-
hicle were Xe(t0) = [20m, 0m, 0rad, 25m/s], X1(t0) =
[62m, 4m, 0rad, 29m/s], X2(t0) = [19.5m, 4m, 0rad, 25m/s],
X3(t0) = [62m, 4m, 0rad, 29m/s].

We defined two baseline scenarios: one without
robustness-promoting designs and another with robust
safety constraints. For adaptive cases, we consider use of
direct mapping (22) and of nonlinear mapping (23). The
MLP for nonlinear mapping had two hidden layers of size
32, initialized with Θ = 0.01 and covariance CΘ = 0.1I .
The risk parameter was ϵ = 0.25.

Table I presents performance metrics including total actu-
ation effort, speed disruption, and computation times. Total
speed disruption,

∑T
t=0(v

i
t−vides)

2∆t, serves as an indicator
of smooth interactions [18]. The adaptive methods generally
showed lower total speed disruption for HDV 2 compared
to baseline cases. The robust baseline case was overly
conservative, avoiding lane changes, while the non-robust
baseline resulted in aggressive maneuvers and significant
speed disruptions.

For a safety degree of 1, direct mapping exhibited con-
servative behavior with smoother accelerations and longer
maneuver times (14.5s), resulting in the lowest total speed
disruption for both the ego vehicle (539.196) and HDV 2
(922.523). The nonlinear mapping case showed more conser-
vative maneuvers (16.3s) but with lower actuation effort (9.0
for the ego). Robustness improved safety in the nonlinear
mapping at the cost of slightly higher speed disruptions.

Figures 3 to 6 provide further analysis. State history plots
(Figure 3) show that the baseline case without robustness
led to significant speed fluctuations for HDV 2, indicating
poor adaptation. The robust baseline avoided lane changes
due to its conservative nature. Direct and nonlinear mapping
cases achieved a balanced approach, with nonlinear mapping
showing better actuation effort and adaptation.

The 2D trajectory plot (Figure 4) shows that adaptive cases
maintained smoother trajectories and respected safety ellip-
soids, whereas the baseline case violated safety constraints,
causing abrupt deceleration of HDV 2. RMS error analysis
(Figure 5) indicates that nonlinear mapping achieved lower
prediction errors, reflecting better adaptation. The parameter
learning plot (Figure 6) shows faster convergence in the
nonlinear mapping case.

In summary, while including robustness in adaptive meth-
ods like nonlinear mapping enhances safety, it introduces
a trade-off between speed disruption and maneuverability.
These findings emphasize the need to balance safety and ef-
ficiency in adaptive control systems for autonomous driving.

Fig. 3: State history sample of all vehicles for Direct Map-
ping, Nonlinear Mapping, and Baseline cases with a safety
degree of 1. Adaptive approaches result in smoother traffic
flow, reducing abrupt speed changes.

Fig. 4: Sample 2D trajectories of HDV 2 and Ego for
Direct Mapping, Nonlinear Mapping, and Baseline cases.
Adaptive cases maintain smoother trajectories and respect
safety ellipsoids.

VI. CONCLUSIONS AND FUTURE WORK

We introduced an interactive motion planning framework
that combines online learning of human driver preferences



TABLE I: Performance Metrics Comparison Table

Total Actuation
1
2

∑T
t=0 (u

e
t )

2 ∆t

Total Speed Disruption∑T
t=0

(
vit − vides

)2 Avg. Speed Disruption
1
2

∑T
t=0

(
vit − vides

)2Case Safety
Degree

QP Avg.
Computation

Time [s]

Belief update
Computation

Time [s]

Maneuver
Time
[s] Ego HDV 2 Ego HDV 2 Ego HDV 2

direct mapping 1 0.056 0.278 14.500 7.597 9.397 539.196 922.523 1.859 3.871
nonlinear mapping 1 0.129 0.347 16.300 9.000 8.331 610.398 821.368 1.872 2.826

baseline 1 0.075 NA 5.950 9.057 6.866 228.291 1058.341 1.918 8.894
baseline robust 1 0.077 NA 19.950 20.854 0.734 1139.645 509.305 2.849 1.273

Fig. 5: Average RMS prediction error for all vehicles over
time. Lower RMS error in the nonlinear mapping case
indicates better adaptation and accurate prediction of vehicle
behaviors.

Fig. 6: Collision parameters learned for HDV 2 as a function
of time. Nonlinear mapping shows faster adaptation and
parameter convergence, indicating more efficient learning.

with parametric optimal control and parametric control bar-
rier functions, robustified by chance constraints for the
uncertainty from parameter learning.

Simulations in a lane-changing scenario show the ef-
fectiveness of the methods in improving traffic flow and
reducing disruptions to human-driven vehicles. Among the
proposed parameter mapping, direct mapping results in
smoother maneuvers, while nonlinear mapping effectively
maintains traffic flow at the expense of more conservative
maneuvers, emphasizing the need for adaptability in mixed-
traffic settings.

While our framework updates uncertainties online, it uses
a predefined basis for safety constraints. Future work will
focus on learning the basis from large-scale datasets and ex-
tending the prediction horizon to further increase robustness.
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