- Date & Time: Wednesday, March 1, 2023; 1:00 PM
Speaker: Shaowu Pan, Rensselaer Polytechnic Institute
MERL Host: Saviz Mowlavi
Research Areas: Computational Sensing, Data Analytics, Machine Learning
Abstract
High-dimensional spatio-temporal dynamics can often be encoded in a low-dimensional subspace. Engineering applications for modeling, characterization, design, and control of such large-scale systems often rely on dimensionality reduction to make solutions computationally tractable in real-time. Common existing paradigms for dimensionality reduction include linear methods, such as the singular value decomposition (SVD), and nonlinear methods, such as variants of convolutional autoencoders (CAE). However, these encoding techniques lack the ability to efficiently represent the complexity associated with spatio-temporal data, which often requires variable geometry, non-uniform grid resolution, adaptive meshing, and/or parametric dependencies. To resolve these practical engineering challenges, we propose a general framework called Neural Implicit Flow (NIF) that enables a mesh-agnostic, low-rank representation of large-scale, parametric, spatial-temporal data. NIF consists of two modified multilayer perceptrons (MLPs): (i) ShapeNet, which isolates and represents the spatial complexity, and (ii) ParameterNet, which accounts for any other input complexity, including parametric dependencies, time, and sensor measurements. We demonstrate the utility of NIF for parametric surrogate modeling, enabling the interpretable representation and compression of complex spatio-temporal dynamics, efficient many-spatial-query tasks, and improved generalization performance for sparse reconstruction.
-
- Date & Time: Tuesday, February 28, 2023; 12:00 PM
Speaker: Prof. Kevin Lynch, Northwestern University
MERL Host: Diego Romeres
Research Areas: Machine Learning, Robotics
Abstract - Research at the Center for Robotics and Biosystems at Northwestern University includes bio-inspiration, neuromechanics, human-machine systems, and swarm robotics, among other topics. In this talk I will focus on our work on manipulation, including autonomous in-hand robotic manipulation and safe, intuitive human-collaborative manipulation among one or more humans and a team of mobile manipulators.
-
- Date: December 9, 2022
Where: Pittsburg, PA
MERL Contact: Jonathan Le Roux
Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
Brief - MERL Senior Principal Research Scientist and Speech and Audio Senior Team Leader, Jonathan Le Roux, was invited by Carnegie Mellon University's Language Technology Institute (LTI) to give an invited talk as part of the LTI Colloquium Series. The LTI Colloquium is a prestigious series of talks given by experts from across the country related to different areas of language technologies. Jonathan's talk, entitled "Towards general and flexible audio source separation", presented an overview of techniques developed at MERL towards the goal of robustly and flexibly decomposing and analyzing an acoustic scene, describing in particular the Speech and Audio Team's efforts to extend MERL's early speech separation and enhancement methods to more challenging environments, and to more general and less supervised scenarios.
-
- Date: February 16, 2023 - February 17, 2023
Where: Pennsylvania State University
MERL Contact: Christopher R. Laughman
Research Areas: Control, Machine Learning, Multi-Physical Modeling
Brief - On February 16 and 17, Chris Laughman, Senior Team Leader of the Multiphysical Systems Team, presented lectures for the Systems, Robotics, and Controls Seminar Series in the School of Engineering, and for the Distinguished Speaker Series in Architectural Engineering. His talk was titled "Architectural Thermofluid Systems: Next-Generation Challenges and Opportunities," and described characteristics of these systems that require specific attention in model-based system engineering processes, as well as MERL research to address these challenges.
-
- Date & Time: Tuesday, February 14, 2023; 12:00 PM
Speaker: Stefanie Tellex, Brown University
MERL Host: Daniel N. Nikovski
Research Area: Robotics
Abstract - Robots can act as a force multiplier for people, whether a robot assisting an astronaut with a repair on the International Space station, a UAV taking flight over our cities, or an autonomous vehicle driving through our streets. Existing approaches use action-based representations that do not capture the goal-based meaning of a language expression and do not generalize to partially observed environments. The aim of my research program is to create autonomous robots that can understand complex goal-based commands and execute those commands in partially observed, dynamic environments. I will describe demonstrations of object-search in a POMDP setting with information about object locations provided by language, and mapping between English and Linear Temporal Logic, enabling a robot to understand complex natural language commands in city-scale environments. These advances represent steps towards robots that interpret complex natural language commands in partially observed environments using a decision theoretic framework.
-
- Date & Time: Tuesday, January 31, 2023; 11:00 AM
Speaker: Rupert way, University of Oxford
MERL Host: Ye Wang Abstract
Rapidly decarbonising the global energy system is critical for addressing climate change, but concerns about costs have been a barrier to implementation. Historically, most energy-economy models have overestimated the future costs of renewable energy technologies and underestimated their deployment, thereby overestimating total energy transition costs. These issues have driven calls for alternative approaches and more reliable technology forecasting methods. We use an approach based on probabilistic cost forecasting methods to estimate future energy system costs in a variety of scenarios. Our findings suggest that, compared to continuing with a fossil fuel-based system, a rapid green energy transition will likely result in net savings of many trillions of dollars - even without accounting for climate damages or co-benefits of climate policy.
-
- Date & Time: Tuesday, December 20, 2022; 1:00 PM
Speaker: William M. Sisson, WBCSD North America
MERL Host: Scott A. Bortoff Abstract
Sustainability today encompasses three interconnected imperatives that all businesses must face and help to address: the increasing impact of climate change, the degradation of natural systems, and the growth of inequality. Business leaders today are increasingly understanding, particularly with the engagement of capital markets, that investors, consumers, and other business stakeholders are setting expectations on how companies are responding to these challenges and preparing for their business impact. More and more companies have shifted from sustainability as a single function in the company to one the is integrated across the firm. This translates directly into how companies are rethinking their product design and innovation efforts for sustainability and the technologies they will require. Some product categories, like heating and air conditioning systems for buildings, are both a part of the problem as well as potentially offering real solutions.
-
- Date: December 15, 2022 - December 17, 2022
MERL Contacts: Jianlin Guo; Philip V. Orlik; Kieran Parsons
Research Areas: Artificial Intelligence, Data Analytics, Machine Learning
Brief - The performance of manufacturing systems is heavily affected by downtime – the time period that the system halts production due to system failure, anomalous operation, or intrusion. Therefore, it is crucial to detect and diagnose anomalies to allow predictive maintenance or intrusion detection to reduce downtime. This talk, titled "Anomaly detection and diagnosis in manufacturing systems using autoencoder", focuses on tackling the challenges arising from predictive maintenance in manufacturing systems. It presents a structured autoencoder and a pre-processed autoencoder for accurate anomaly detection, as well as a statistical-based algorithm and an autoencoder-based algorithm for anomaly diagnosis.
-
- Date: December 9, 2022 - December 11, 2022
MERL Contact: Yebin Wang
Research Areas: Communications, Control, Optimization
Brief - Future factory, in the era of industry 4.0, is characterized by autonomy, digital twin, and mass customization. This talk, titled "Future factory automation and cyber-physical system: an industrial perspective," focuses on tackling the challenges arising from mass customization, for example reconfigurable machine controller and material flow.
-
- Date: December 8, 2022
MERL Contacts: Toshiaki Koike-Akino; Pu (Perry) Wang
Research Areas: Artificial Intelligence, Communications, Computational Sensing, Machine Learning, Signal Processing
Brief - On December 8, 2022, MERL researchers Toshiaki Koike-Akino and Pu (Perry) Wang gave a 3.5-hour tutorial presentation at the IEEE Global Communications Conference (GLOBECOM). The talk, titled "Post-Deep Learning Era: Emerging Quantum Machine Learning for Sensing and Communications," addressed recent trends, challenges, and advances in sensing and communications. P. Wang presented on use cases, industry trends, signal processing, and deep learning for Wi-Fi integrated sensing and communications (ISAC), while T. Koike-Akino discussed the future of deep learning, giving a comprehensive overview of artificial intelligence (AI) technologies, natural computing, emerging quantum AI, and their diverse applications. The tutorial was conducted remotely. MERL's quantum AI technology was partly reported in the recent press release (https://us.mitsubishielectric.com/en/news/releases/global/2022/1202-a/index.html).
The IEEE GLOBECOM is a highly anticipated event for researchers and industry professionals in the field of communications. Organized by the IEEE Communications Society, the flagship conference is known for its focus on driving innovation in all aspects of the field. Each year, over 3,000 scientific researchers submit proposals for program sessions at the annual conference. The theme of this year's conference was "Accelerating the Digital Transformation through Smart Communications," and featured a comprehensive technical program with 13 symposia, various tutorials and workshops.
-
- Date: December 2, 2022 - December 8, 2022
MERL Contacts: Matthew Brand; Toshiaki Koike-Akino; Jing Liu; Saviz Mowlavi; Kieran Parsons; Ye Wang
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Signal Processing
Brief - In addition to 5 papers in recent news (https://www.merl.com/news/news-20221129-1450), MERL researchers presented 2 papers at the NeurIPS Conference Workshop, which was held Dec. 2-8. NeurIPS is one of the most prestigious and competitive international conferences in machine learning.
- “Optimal control of PDEs using physics-informed neural networks” by Saviz Mowlavi and Saleh Nabi
Physics-informed neural networks (PINNs) have recently become a popular method for solving forward and inverse problems governed by partial differential equations (PDEs). By incorporating the residual of the PDE into the loss function of a neural network-based surrogate model for the unknown state, PINNs can seamlessly blend measurement data with physical constraints. Here, we extend this framework to PDE-constrained optimal control problems, for which the governing PDE is fully known and the goal is to find a control variable that minimizes a desired cost objective. We validate the performance of the PINN framework by comparing it to state-of-the-art adjoint-based optimization, which performs gradient descent on the discretized control variable while satisfying the discretized PDE.
- “Learning with noisy labels using low-dimensional model trajectory” by Vasu Singla, Shuchin Aeron, Toshiaki Koike-Akino, Matthew E. Brand, Kieran Parsons, Ye Wang
Noisy annotations in real-world datasets pose a challenge for training deep neural networks (DNNs), detrimentally impacting generalization performance as incorrect labels may be memorized. In this work, we probe the observations that early stopping and low-dimensional subspace learning can help address this issue. First, we show that a prior method is sensitive to the early stopping hyper-parameter. Second, we investigate the effectiveness of PCA, for approximating the optimization trajectory under noisy label information. We propose to estimate the low-rank subspace through robust and structured variants of PCA, namely Robust PCA, and Sparse PCA. We find that the subspace estimated through these variants can be less sensitive to early stopping, and can outperform PCA to achieve better test error when trained on noisy labels.
- In addition, new MERL researcher, Jing Liu, also presented a paper entitled “CoPur: Certifiably Robust Collaborative Inference via Feature Purification" based on his previous work before joining MERL. His paper was elected as a spotlight paper to be highlighted in lightening talks and featured paper panel.
-
- Date & Time: Monday, December 12, 2022; 1:00pm - 5:30pm
Location: MERL, Virtual
Speaker: Prof. Paris Smaragdis, University of Illinois at Urbana-Champaign Brief - MERL is excited to announce the featured keynote speaker for our Virtual Open House 2022:
Prof. Paris Smaragdis from University of Illinois at Urbana-Champaign.
Our virtual open house will take place on December 12, 2022, 1:00pm - 5:30pm (EST).
Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Smaragdis' talk is scheduled for 3:15pm - 3:45pm (EST).
Registration: https://mailchi.mp/merl/voh2022
Keynote Title: Dragging Audio Processing Past the 1970s (and the 2010s!)
Abstract: Audio processing has not changed appreciably in the last 50 years. However, novel tasks, new computational demands, attention to human-centered evaluation, and a strong influence from machine learning, all point towards new ways of thinking about sound. In this talk I will go over multiple examples of how one can modernize standard audio processing in order to serve ambitious project goals. I will specifically talk about the use of meta learning for adaptive filtering, and how we can outperform humans in the game of optimizer design; I will show new ways to represent and process time series based on graph networks that results in highly desirable scaling properties for audio and speech recognition; and I will also talk about how we can move towards unsupervised learning from real-world data in a way that (almost) matches curated data performance and allows highly-distributed learning from audio devices in the wild.
Speaker Bio:
Paris Smaragdis is a Professor and an Associate Department Head in the Computer Science department in the University of Illinois at Urbana-Champaign. He completer his graduate studies and postdoc at MIT in 2001. He has been a research scientist at Mitsubishi Electric Research Labs in Cambridge MA, a senior research scientist at Adobe Research, and an Amazon Scholar with AWS. His research lies in the intersection of signal processing and machine learning, where he has contributed multiple widely used methods for source separation and audio analysis throughout his 150+ publications and 60+ US and international patents. His research has been productized many times worldwide, has been widely used in personal computers and commercial systems, and has been used in award winning movies and music releases. He was recognized by the MIT Technology Review as one of the "world's top innovators under 35 years old" in 2006 (TR35 award) and he has received the IEEE Signal Processing Society (SPS) Best Paper Award twice (2017,2020). He was elected an IEEE Fellow (class of 2015), and selected as an IEEE SPS Distinguished Lecturer (2016-2017). Within IEEE SPS he has served as the chair the Machine Learning for Signal Processing Technical Committee, the Audio and Acoustic Signal Processing Technical Committee, and the Data Science Initiative. He has been elected to and served in the IEEE Signal Processing Society Board of Governors, and is currently the Editor in Chief of the ACM/IEEE Transactions on Audio, Speech, and Language Processing.
-
- Date: December 5, 2022
Where: Cancun, Mexico
Research Areas: Control, Machine Learning
Brief - Karl Berntorp was an invited speaker at the workshop on Gaussian Process Learning-Based Control organized at the Conference on Decision and Control (CDC) 2022 in Cancun, Mexico.
The talk was part of a tutorial-style workshop aimed to provide insight into the fundamentals behind Gaussian processes for modeling and control and sketching some of the open challenges and opportunities using Gaussian processes for modeling and control. The talk titled ``Gaussian Processes for Learning and Control: Opportunities for Real-World Impact" described some of MERL's efforts in using Gaussian processes (GPs) for learning and control, with several application examples and discussing some of the key benefits and limitations with using GPs for learning-based control.
-
- Date & Time: Tuesday, November 29, 2022; 1:00 PM
Speaker: Mathew Hampshire-Waugh, Net-Zero Consulting Services LTD
MERL Host: Ye Wang Abstract
A seminar based upon the Author’s bestselling book, CLIMATE CHANGE and the road to NET-ZERO. The session shall explore how humanity has broken free from the shackles of poverty, suffering, and war and for the first time in human history grown both population and prosperity. It will also delve into how a single species has reconfigured the natural world, repurposed the Earth’s resources, and begun to re-engineer the climate.
Using these conflicting narratives, the talk will explore the science, economics, technology, and politics of climate change. Constructing an argument that demonstrates, under many energy transition pathways, solving global warming requires no trade-off between the economy and environment, present and future generations, or rich and poor. Ultimately concluding that a twenty-year transition to a zero-carbon system provides a win-win solution for all on planet Earth.
-
- Date: October 28, 2022
MERL Contacts: Dehong Liu; Bingnan Wang; Jinyun Zhang
Research Areas: Applied Physics, Data Analytics, Multi-Physical Modeling
Brief - MERL researcher Bingnan Wang gave seminar talk at Wisconsin Electric Machines and Power Electronics Consortium (WEMPEC), which is recognized globally for its sustained contributions to electric machines and power electronics technology. He gave an overview of MERL research, especially on electric machines, and introduced our recent work on quantitative eccentricity fault diagnosis technologies for electric motors, including physical-model approach using improved winding function theory, and data-driven approach using topological data analysis to effectively differentiate signals from different fault conditions.
The seminar was given on Teams. MERL researchers Jin Zhang, Dehong Liu, Yusuke Sakamoto and Bingnan Wang held meetings with WEMPEC faculty members before the seminar to discuss various research topics, and met virtually with students after the talk.
-
- Date: November 14, 2022
Where: Zoom
Research Areas: Control, Dynamical Systems, Optimization, Robotics
Brief - Rien Quirynen will give an invited talk at the Electrical and Computer Engineering Department, University of California Santa Cruz on "Real-time Motion Planning and Predictive Control by Mixed-integer Programming for Autonomous Vehicles". The talk will present recent work on a tailored branch-and-bound method for real-time motion planning and decision making on embedded processing units, and recent results for two applications related to automated driving and traffic control.
-
- Date: November 11, 2022
MERL Contact: Avishai Weiss
Research Areas: Control, Dynamical Systems, Optimization
Brief - Avishai Weiss will give an invited talk at the William Maxwell Reed Seminar Series, Mechanical and Aerospace Engineering Department, University of Kentucky on "Fail-Safe Spacecraft Rendezvous." The talk will present some recent developments at MERL on guaranteeing safe rendezvous trajectories that avoid colliding with the target in the event of thruster anomalies.
-
- Date: October 26, 2022 - October 28, 2022
Where: American Modelica Conference 2022
MERL Contacts: Scott A. Bortoff; Christopher R. Laughman
Research Area: Multi-Physical Modeling
Brief - MERL researchers provided some key contributions to the 2022 American Modelica Conference, held October 26-28 at the University of Texas, Dallas. Chris Laughman, Senior Team Leader, Multiphysical Systems, was the Executive Coordinator of the conference, and worked to plan and stage the event. Scott A. Bortoff, Chief Scientist, gave a keynote address entitled "Sustainable HVAC: Research Opportunities for Modelicans." The talk posed the question: What are the modeling and control research challenges that, if addressed, will drive meaningful innovation in sustainable building HVAC systems in the next 20 years? In addition, the paper "Performance Enhancements for Zero-Flow Simulation of Vapor Compression Cycles," by Principal Research Scientist Hongtao Qiao and Chris Laughman, was a finalist for the conference Best Paper Award.
-
- Date & Time: Tuesday, November 1, 2022; 1:00 PM
Speaker: Jiajun Wu, Stanford University
MERL Host: Anoop Cherian
Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
Abstract
The visual world has its inherent structure: scenes are made of multiple identical objects; different objects may have the same color or material, with a regular layout; each object can be symmetric and have repetitive parts. How can we infer, represent, and use such structure from raw data, without hampering the expressiveness of neural networks? In this talk, I will demonstrate that such structure, or code, can be learned from natural supervision. Here, natural supervision can be from pixels, where neuro-symbolic methods automatically discover repetitive parts and objects for scene synthesis. It can also be from objects, where humans during fabrication introduce priors that can be leveraged by machines to infer regular intrinsics such as texture and material. When solving these problems, structured representations and neural nets play complementary roles: it is more data-efficient to learn with structured representations, and they generalize better to new scenarios with robustly captured high-level information; neural nets effectively extract complex, low-level features from cluttered and noisy visual data.
-
- Date & Time: Wednesday, October 26, 2022; 1:00 PM
Speaker: Ufuk Topcu, The University of Texas at Austin
MERL Host: Abraham P. Vinod
Research Areas: Control, Dynamical Systems, Optimization
Abstract - Autonomous systems are emerging as a driving technology for countlessly many applications. Numerous disciplines tackle the challenges toward making these systems trustworthy, adaptable, user-friendly, and economical. On the other hand, the existing disciplinary boundaries delay and possibly even obstruct progress. I argue that the nonconventional problems that arise in designing and verifying autonomous systems require hybrid solutions in the intersection of learning, formal methods, and controls. I will present examples of such hybrid solutions in the context of learning in sequential decision-making processes. These results offer novel means for effectively integrating physics-based, contextual, or structural prior knowledge into data-driven learning algorithms. They improve data efficiency by several orders of magnitude and generalizability to environments and tasks that the system had not experienced previously.
-
- Date: October 20, 2022
Where: University Park, PA
MERL Contact: Devesh K. Jha
Research Areas: Artificial Intelligence, Control, Robotics
Brief - Devesh Jha, a Principal Research Scientist in the Data Analytics Group at MERL, delivered an invited talk at The Penn State Seminar Series on Systems, Control and Robotics. This talk presented some of the recent work done at MERL in the areas of optimization and control for robotic manipulation in unstructured environment.
-
- Date: October 24, 2022
Where: Online, 10/24/2022 9:00am (Eastern time)
MERL Contact: Stefano Di Cairano
Research Areas: Control, Dynamical Systems, Optimization, Robotics
Brief - Dr. Stefano Di Cairano (Senior Team Leader at MERL) has been invited to give a public talk at the first IEEE CSS Day event on the status, challenges, and role of control in autonomous driving.
The talk, titled "The Long Voyage Towards Autonomous Driving, with Control Systems as the Co-Pilot", will review some history of autonomous driving, some of the open challenges that control technology may help address, and the next steps towards full-autonomy. The talk is designed for a non-technical audience, to explain the role and impact of control in automated driving technology.
-
- Date & Time: Friday, October 14, 2022; 11:00 AM
Speaker: Gianmario Pellegrino, Politecnico di Tornio, Italy
Research Areas: Electric Systems, Electronic and Photonic Devices, Multi-Physical Modeling, Optimization
Abstract
This seminar presents a comprehensive design and simulation procedure for Permanent Magnet Synchronous Machines (PMSMs) for traction application. The design of heavily saturated traction PMSMs is a multidisciplinary engineering challenge that CAD software suites struggle to grasp, whereas design equations are way too approximated for the purpose. This tutorial will present the design toolchain of SyR-e, where magnetic and structural design equations are fast-FEA corrected for an insightful initial design, later FEA calibrated with free or commercial FEA tools. One e-motor will be designed from zero referring to the specs and size of the Tesla Model 3 rear-axle e-motor. The circuital model of one motor with inverter and discrete-time control will be automatically generated, in Simulink and PLECS, with accessible torque control source code, for simulation of healthy and faulty conditions, ready for real-time implementation (e.g. HiL).
-
- Date & Time: Thursday, October 13, 2022; 1:30pm-2:30pm
Speaker: Prof. Shaoshuai Mou, Purdue University
MERL Host: Yebin Wang
Research Areas: Control, Machine Learning, Optimization
Abstract - Modern society has been relying more and more on engineering advance of autonomous systems, ranging from individual systems (such as a robotic arm for manufacturing, a self-driving car, or an autonomous vehicle for planetary exploration) to cooperative systems (such as a human-robot team, swarms of drones, etc). In this talk we will present our most recent progress in developing a fundamental framework for learning and control in autonomous systems. The framework comes from a differentiation of Pontryagin’s Maximum Principle and is able to provide a unified solution to three classes of learning/control tasks, i.e. adaptive autonomy, inverse optimization, and system identification. We will also present applications of this framework into human-autonomy teaming, especially in enabling an autonomous system to take guidance from human operators, which is usually sparse and vague.
-
- Date: Thursday, October 6, 2022
Location: Kendall Square, Cambridge, MA
MERL Contacts: Anoop Cherian; Jonathan Le Roux
Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
Brief - SANE 2022, a one-day event gathering researchers and students in speech and audio from the Northeast of the American continent, was held on Thursday October 6, 2022 in Kendall Square, Cambridge, MA.
It was the 9th edition in the SANE series of workshops, which started in 2012 and was held every year alternately in Boston and New York until 2019. Since the first edition, the audience has grown to a record 200 participants and 45 posters in 2019. After a 2-year hiatus due to the pandemic, SANE returned with an in-person gathering of 140 students and researchers.
SANE 2022 featured invited talks by seven leading researchers from the Northeast: Rupal Patel (Northeastern/VocaliD), Wei-Ning Hsu (Meta FAIR), Scott Wisdom (Google), Tara Sainath (Google), Shinji Watanabe (CMU), Anoop Cherian (MERL), and Chuang Gan (UMass Amherst/MIT-IBM Watson AI Lab). It also featured a lively poster session with 29 posters.
SANE 2022 was co-organized by Jonathan Le Roux (MERL), Arnab Ghoshal (Apple), John Hershey (Google), and Shinji Watanabe (CMU). SANE remained a free event thanks to generous sponsorship by Bose, Google, MERL, and Microsoft.
Slides and videos of the talks will be released on the SANE workshop website.
-