News & Events

37 MERL Events and MERL Talks found.



Learn about the MERL Seminar Series.



  •  EVENT    MERL's Virtual Open House 2022
    Date & Time: Monday, December 12, 2022; 1:00pm-5:30pm ET
    Location: Mitsubishi Electric Research Laboratories (MERL)/Virtual
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video
    Brief
    • Join MERL's virtual open house on December 12th, 2022! Featuring a keynote, live sessions, research area booths, and opportunities to interact with our research team. Discover who we are and what we do, and learn about internship and employment opportunities.
  •  
  •  TALK    [MERL Seminar Series 2022] Prof. Jiajun Wu presents talk titled Understanding the Visual World Through Naturally Supervised Code
    Date & Time: Tuesday, November 1, 2022; 1:00 PM
    Speaker: Jiajun Wu, Stanford University
    MERL Host: Anoop Cherian
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Abstract
    • The visual world has its inherent structure: scenes are made of multiple identical objects; different objects may have the same color or material, with a regular layout; each object can be symmetric and have repetitive parts. How can we infer, represent, and use such structure from raw data, without hampering the expressiveness of neural networks? In this talk, I will demonstrate that such structure, or code, can be learned from natural supervision. Here, natural supervision can be from pixels, where neuro-symbolic methods automatically discover repetitive parts and objects for scene synthesis. It can also be from objects, where humans during fabrication introduce priors that can be leveraged by machines to infer regular intrinsics such as texture and material. When solving these problems, structured representations and neural nets play complementary roles: it is more data-efficient to learn with structured representations, and they generalize better to new scenarios with robustly captured high-level information; neural nets effectively extract complex, low-level features from cluttered and noisy visual data.
  •  
  •  EVENT    SANE 2022 - Speech and Audio in the Northeast
    Date: Thursday, October 6, 2022
    Location: Kendall Square, Cambridge, MA
    MERL Contacts: Anoop Cherian; Jonathan Le Roux
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    Brief
    • SANE 2022, a one-day event gathering researchers and students in speech and audio from the Northeast of the American continent, was held on Thursday October 6, 2022 in Kendall Square, Cambridge, MA.

      It was the 9th edition in the SANE series of workshops, which started in 2012 and was held every year alternately in Boston and New York until 2019. Since the first edition, the audience has grown to a record 200 participants and 45 posters in 2019. After a 2-year hiatus due to the pandemic, SANE returned with an in-person gathering of 140 students and researchers.

      SANE 2022 featured invited talks by seven leading researchers from the Northeast: Rupal Patel (Northeastern/VocaliD), Wei-Ning Hsu (Meta FAIR), Scott Wisdom (Google), Tara Sainath (Google), Shinji Watanabe (CMU), Anoop Cherian (MERL), and Chuang Gan (UMass Amherst/MIT-IBM Watson AI Lab). It also featured a lively poster session with 29 posters.

      SANE 2022 was co-organized by Jonathan Le Roux (MERL), Arnab Ghoshal (Apple), John Hershey (Google), and Shinji Watanabe (CMU). SANE remained a free event thanks to generous sponsorship by Bose, Google, MERL, and Microsoft.

      Slides and videos of the talks will be released on the SANE workshop website.
  •  
  •  TALK    [MERL Seminar Series 2022] Prof. Chuang Gan presents talk titled Learning to Perceive Physical Scenes from Multi-Sensory Data
    Date & Time: Tuesday, September 6, 2022; 12:00 PM EDT
    Speaker: Chuang Gan, UMass Amherst & MIT-IBM Watson AI Lab
    MERL Host: Jonathan Le Roux
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
    Abstract
    • Human sensory perception of the physical world is rich and multimodal and can flexibly integrate input from all five sensory modalities -- vision, touch, smell, hearing, and taste. However, in AI, attention has primarily focused on visual perception. In this talk, I will introduce my efforts in connecting vision with sound, which will allow machine perception systems to see objects and infer physics from multi-sensory data. In the first part of my talk, I will introduce a. self-supervised approach that could learn to parse images and separate the sound sources by watching and listening to unlabeled videos without requiring additional manual supervision. In the second part of my talk, I will show we may further infer the underlying causal structure in 3D environments through visual and auditory observations. This enables agents to seek the sound source of repeating environmental sound (e.g., alarm) or identify what object has fallen, and where, from an intermittent impact sound.
  •  
  •  TALK    [MERL Seminar Series 2022] Prof. Vincent Sitzmann presents talk titled Self-Supervised Scene Representation Learning
    Date & Time: Wednesday, March 30, 2022; 11:00 AM EDT
    Speaker: Vincent Sitzmann, MIT
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Abstract
    • Given only a single picture, people are capable of inferring a mental representation that encodes rich information about the underlying 3D scene. We acquire this skill not through massive labeled datasets of 3D scenes, but through self-supervised observation and interaction. Building machines that can infer similarly rich neural scene representations is critical if they are to one day parallel people’s ability to understand, navigate, and interact with their surroundings. This poses a unique set of challenges that sets neural scene representations apart from conventional representations of 3D scenes: Rendering and processing operations need to be differentiable, and the type of information they encode is unknown a priori, requiring them to be extraordinarily flexible. At the same time, training them without ground-truth 3D supervision is an underdetermined problem, highlighting the need for structure and inductive biases without which models converge to spurious explanations.

      I will demonstrate how we can equip neural networks with inductive biases that enables them to learn 3D geometry, appearance, and even semantic information, self-supervised only from posed images. I will show how this approach unlocks the learning of priors, enabling 3D reconstruction from only a single posed 2D image, and how we may extend these representations to other modalities such as sound. I will then discuss recent work on learning the neural rendering operator to make rendering and training fast, and how this speed-up enables us to learn object-centric neural scene representations, learning to decompose 3D scenes into objects, given only images. Finally, I will talk about a recent application of self-supervised scene representation learning in robotic manipulation, where it enables us to learn to manipulate classes of objects in unseen poses from only a handful of human demonstrations.
  •  
  •  EVENT    Prof. Melanie Zeilinger of ETH to give keynote at MERL's Virtual Open House
    Date & Time: Thursday, December 9, 2021; 1:00pm - 5:30pm EST
    Location: Virtual Event
    Speaker: Prof. Melanie Zeilinger, ETH
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
    Brief
    • MERL is excited to announce the second keynote speaker for our Virtual Open House 2021:
      Prof. Melanie Zeilinger from ETH .

      Our virtual open house will take place on December 9, 2021, 1:00pm - 5:30pm (EST).

      Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Zeilinger's talk is scheduled for 3:15pm - 3:45pm (EST).

      Registration: https://mailchi.mp/merl/merlvoh2021

      Keynote Title: Control Meets Learning - On Performance, Safety and User Interaction

      Abstract: With increasing sensing and communication capabilities, physical systems today are becoming one of the largest generators of data, making learning a central component of autonomous control systems. While this paradigm shift offers tremendous opportunities to address new levels of system complexity, variability and user interaction, it also raises fundamental questions of learning in a closed-loop dynamical control system. In this talk, I will present some of our recent results showing how even safety-critical systems can leverage the potential of data. I will first briefly present concepts for using learning for automatic controller design and for a new safety framework that can equip any learning-based controller with safety guarantees. The second part will then discuss how expert and user information can be utilized to optimize system performance, where I will particularly highlight an approach developed together with MERL for personalizing the motion planning in autonomous driving to the individual driving style of a passenger.
  •  
  •  EVENT    Prof. Ashok Veeraraghavan of Rice University to give keynote at MERL's Virtual Open House
    Date & Time: Thursday, December 9, 2021; 1:00pm - 5:30pm EST
    Location: Virtual Event
    Speaker: Prof. Ashok Veeraraghavan, Rice University
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
    Brief
    • MERL is excited to announce the first keynote speaker for our Virtual Open House 2021:
      Prof. Ashok Veeraraghavan from Rice University.

      Our virtual open house will take place on December 9, 2021, 1:00pm - 5:30pm (EST).

      Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities. Prof. Veeraraghavan's talk is scheduled for 1:15pm - 1:45pm (EST).

      Registration: https://mailchi.mp/merl/merlvoh2021

      Keynote Title: Computational Imaging: Beyond the limits imposed by lenses.

      Abstract: The lens has long been a central element of cameras, since its early use in the mid-nineteenth century by Niepce, Talbot, and Daguerre. The role of the lens, from the Daguerrotype to modern digital cameras, is to refract light to achieve a one-to-one mapping between a point in the scene and a point on the sensor. This effect enables the sensor to compute a particular two-dimensional (2D) integral of the incident 4D light-field. We propose a radical departure from this practice and the many limitations it imposes. In the talk we focus on two inter-related research projects that attempt to go beyond lens-based imaging.

      First, we discuss our lab’s recent efforts to build flat, extremely thin imaging devices by replacing the lens in a conventional camera with an amplitude mask and computational reconstruction algorithms. These lensless cameras, called FlatCams can be less than a millimeter in thickness and enable applications where size, weight, thickness or cost are the driving factors. Second, we discuss high-resolution, long-distance imaging using Fourier Ptychography, where the need for a large aperture aberration corrected lens is replaced by a camera array and associated phase retrieval algorithms resulting again in order of magnitude reductions in size, weight and cost. Finally, I will spend a few minutes discussing how the wholistic computational imaging approach can be used to create ultra-high-resolution wavefront sensors.
  •  
  •  EVENT    MERL Virtual Open House 2021
    Date & Time: Thursday, December 9, 2021; 100pm-5:30pm (EST)
    Location: Virtual Event
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio, Digital Video, Human-Computer Interaction, Information Security
    Brief
    • Mitsubishi Electric Research Laboratories cordially invites you to join our Virtual Open House, on December 9, 2021, 1:00pm - 5:30pm (EST).

      The event will feature keynotes, live sessions, research area booths, and time for open interactions with our researchers. Join us to learn more about who we are, what we do, and discuss our internship and employment opportunities.

      Registration: https://mailchi.mp/merl/merlvoh2021
  •  
  •  TALK    [MERL Seminar Series 2021] Dr. Hsiao-Yu (Fish) Tung presents talk at MERL entitled Learning to See by Moving: Self-supervising 3D scene representations for perception, control, and visual reasoning
    Date & Time: Tuesday, November 2, 2021; 1:00 PM EST
    Speaker: Dr. Hsiao-Yu (Fish) Tung, MIT BCS
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
    Abstract
    • Current state-of-the-art CNNs can localize and name objects in internet photos, yet, they miss the basic knowledge that a two-year-old toddler has possessed: objects persist over time despite changes in the observer’s viewpoint or during cross-object occlusions; objects have 3D extent; solid objects do not pass through each other. In this talk, I will introduce neural architectures that learn to parse video streams of a static scene into world-centric 3D feature maps by disentangling camera motion from scene appearance. I will show the proposed architectures learn object permanence, can imagine RGB views from novel viewpoints in truly novel scenes, can conduct basic spatial reasoning and planning, can infer affordability in sentences, and can learn geometry-aware 3D concepts that allow pose-aware object recognition to happen with weak/sparse labels. Our experiments suggest that the proposed architectures are essential for the models to generalize across objects and locations, and it overcomes many limitations of 2D CNNs. I will show how we can use the proposed 3D representations to build machine perception and physical understanding more close to humans.
  •  
  •  TALK    [MERL Seminar Series 2021] Dr. Ruohan Gao presents talk at MERL entitled Look and Listen: From Semantic to Spatial Audio-Visual Perception
    Date & Time: Tuesday, September 28, 2021; 1:00 PM EST
    Speaker: Dr. Ruohan Gao, Stanford University
    MERL Host: Gordon Wichern
    Research Areas: Computer Vision, Machine Learning, Speech & Audio
    Abstract
    • While computer vision has made significant progress by "looking" — detecting objects, actions, or people based on their appearance — it often does not listen. Yet cognitive science tells us that perception develops by making use of all our senses without intensive supervision. Towards this goal, in this talk I will present my research on audio-visual learning — We disentangle object sounds from unlabeled video, use audio as an efficient preview for action recognition in untrimmed video, decode the monaural soundtrack into its binaural counterpart by injecting visual spatial information, and use echoes to interact with the environment for spatial image representation learning. Together, these are steps towards multimodal understanding of the visual world, where audio serves as both the semantic and spatial signals. In the end, I will also briefly talk about our latest work on multisensory learning for robotics.
  •  
  •  EVENT    MERL Virtual Open House 2020
    Date & Time: Wednesday, December 9, 2020; 1:00-5:00PM EST
    Location: Virtual
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
    Brief
  •  
  •  EVENT    MERL is a Proud Sponsor of the Grace Hopper Celebration 2018!
    Date: Wednesday, September 26, 2018 - Friday, September 28, 2018
    Location: Houston, Texas
    MERL Contacts: Chiori Hori; Elizabeth Phillips
    Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
    Brief
    • "MERL, in partnership with Mitsubishi Electric was a Gold Sponsor of the Grace Hopper Celebration 2018 (GHC18) held in Houston, TX on September 26-28th. Presented by AnitaB.org and the Association for Computing Machinery, this is world's largest gathering of women technologists. Chiori Hori and Elizabeth Phillips from MERL, and Yoshiyuki Umei, Jared Baker and Lien Randle from MEUS, proudly represented Mitsubishi Electric at the recruiting expo, that drew over 20,000 female technologists this year.
  •  
  •  EVENT    MERL 3rd Annual Open House
    Date & Time: Thursday, November 29, 2018; 4-6pm
    Location: 201 Broadway, 8th floor, Cambridge, MA
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Research Areas: Applied Physics, Artificial Intelligence, Communications, Computational Sensing, Computer Vision, Control, Data Analytics, Dynamical Systems, Electric Systems, Electronic and Photonic Devices, Machine Learning, Multi-Physical Modeling, Optimization, Robotics, Signal Processing, Speech & Audio
    Brief
    • Snacks, demos, science: On Thursday 11/29, Mitsubishi Electric Research Labs (MERL) will host an open house for graduate+ students interested in internships, post-docs, and research scientist positions. The event will be held from 4-6pm and will feature demos & short presentations in our main areas of research including artificial intelligence, robotics, computer vision, speech processing, optimization, machine learning, data analytics, signal processing, communications, sensing, control and dynamical systems, as well as multi-physyical modeling and electronic devices. MERL is a high impact publication-oriented research lab with very extensive internship and university collaboration programs. Most internships lead to publication; many of our interns and staff have gone on to notable careers at MERL and in academia. Come mix with our researchers, see our state of the art technologies, and learn about our research opportunities. Dress code: casual, with resumes.

      Pre-registration for the event is strongly encouraged:
      merlopenhouse.eventbrite.com

      Current internship and employment openings:
      www.merl.com/internship/openings
      www.merl.com/employment/employment

      Information about working at MERL:
      www.merl.com/employment.
  •  
  •  TALK    Advances in Accelerated Computing
    Date & Time: Friday, February 2, 2018; 12:00
    Speaker: Dr. David Kaeli, Northeastern University
    MERL Host: Abraham M. Goldsmith
    Research Areas: Control, Optimization, Machine Learning, Speech & Audio
    Abstract
    • GPU computing is alive and well! The GPU has allowed researchers to overcome a number of computational barriers in important problem domains. But still, there remain challenges to use a GPU to target more general purpose applications. GPUs achieve impressive speedups when compared to CPUs, since GPUs have a large number of compute cores and high memory bandwidth. Recent GPU performance is approaching 10 teraflops of single precision performance on a single device. In this talk we will discuss current trends with GPUs, including some advanced features that allow them exploit multi-context grains of parallelism. Further, we consider how GPUs can be treated as cloud-based resources, enabling a GPU-enabled server to deliver HPC cloud services by leveraging virtualization and collaborative filtering. Finally, we argue for for new heterogeneous workloads and discuss the role of the Heterogeneous Systems Architecture (HSA), a standard that further supports integration of the CPU and GPU into a common framework. We present a new class of benchmarks specifically tailored to evaluate the benefits of features supported in the new HSA programming model.
  •  
  •  EVENT    MERL 2nd Annual Open House
    Date & Time: Thursday, November 30, 2017; 4-6pm
    Location: 201 Broadway, 8th floor, Cambridge, MA
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Brief
    • Snacks, demos, science: On Thursday 11/30, Mitsubishi Electric Research Labs (MERL) will host an open house for graduate+ students interested in internships, post-docs, and research scientist positions. The event will be held from 4-6pm and will feature demos & short presentations in our main areas of research: algorithms, multimedia, electronics, communications, computer vision, speech processing, optimization, machine learning, data analytics, mechatronics, dynamics, control, and robotics. MERL is a high impact publication-oriented research lab with very extensive internship and university collaboration programs. Most internships lead to publication; many of our interns and staff have gone on to notable careers at MERL and in academia. Come mix with our researchers, see our state of the art technologies, and learn about our research opportunities. Dress code: casual, with resumes.

      Pre-registration for the event is strongly encouraged:
      https://merlopenhouse2.eventbrite.com/

      Current internship and employment openings:
      http://www.merl.com/internship/openings
      http://www.merl.com/employment/employment.
  •  
  •  EVENT    Tim Marks to give lunch talk at Face and Gesture 2017 conference
    Date: Thursday, June 1, 2017
    Location: IEEE Conference on Automatic Face and Gesture Recognition (FG 2017), Washington, DC
    Speaker: Tim K. Marks
    MERL Contact: Tim K. Marks
    Research Area: Machine Learning
    Brief
    • MERL Senior Principal Research Scientist Tim K. Marks will give the invited lunch talk on Thursday, June 1, at the IEEE International Conference on Automatic Face and Gesture Recognition (FG 2017). The talk is entitled "Robust Real-Time 3D Head Pose and 2D Face Alignment.".
  •  
  •  EVENT    Society for Industrial and Applied Mathematics panel for students on careers in industry
    Date & Time: Monday, July 10, 2017; 6:15 PM - 7:15 PM
    Location: David Lawrence Convention Center, Pittsburgh PA
    Speaker: Andrew Knyazev and other panelists, MERL
    Brief
    • Andrew Knyazev accepted an invitation to represent MERL at the panel on Student Careers in Business, Industry and Government at the annual meeting of the Society for Industrial and Applied Mathematics (SIAM).

      The format consists of a five minute introduction by each of the panelists covering their background and an overview of the mathematical and computational challenges at their organization. The introductions will be followed by questions from the students.
  •  
  •  EVENT    MERL to participate in Xconomy Forum on AI & Robotics
    Date & Time: Tuesday, March 28, 2017; 1:30 - 5:30PM
    Location: Google (355 Main St., 5th Floor, Cambridge MA)
    MERL Contacts: Daniel N. Nikovski; Anthony Vetro; Richard C. (Dick) Waters; Jinyun Zhang
    Brief
    • How will AI and robotics reshape the economy and create new opportunities (and challenges) across industries? Who are the hottest companies that will compete with the likes of Google, Amazon, and Uber to create the future? And what are New England innovators doing to strengthen the local cluster and help lead the national discussion?

      MERL will be participating in Xconomy's third annual conference on AI and robotics in Boston to address these questions. MERL President & CEO, Dick Waters, will be on a panel discussing the status and future of self-driving vehicles. Lab members will also be on hand demonstrate and discuss recent advances AI and robotics technology.

      The agenda and registration for the event can be found online: https://xconomyforum85.eventbrite.com.
  •  
  •  EVENT    MERL hosts Boston Imaging and Vision Meetup
    Date & Time: Tuesday, January 17, 2017; 6:00 pm
    Location: 201 Broadway, Cambridge, MA
    Speaker: Tim Marks, Esra Cansizoglu and Carl Vondrick, MERL and MIT
    Research Area: Computer Vision
    Brief
    • MERL was pleased to host the Boston Imaging and Vision Meetup held on January 17. The meetup is an informal gathering of people interested in the field of computer imaging and vision. According to the group's website "the meetup provides an opportunity for the image processing/computer vision community to network, socialize and learn". The event held at MERL featured three speakers, Tim Marks and Esra Cansizoglu from MERL, as well as Carl Vondrick, an MIT CS graduate student in the group of Prof. Antonio Torralba. Roughly 70 people attended to eat pizza, hear the speakers and network.
  •  
  •  EVENT    MERL Open House
    Date & Time: Thursday, December 8, 2016; 4:00-7:00pm
    Location: 201 Broadway, 8th Floor, Cambridge, MA
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Brief
    • Snacks, demos, science: On Thursday 12/8, Mitsubishi Electric Research Labs (MERL) will host an open house for graduate+ students interested in internships, post-docs, and research scientist positions. The event will be held from 4-7pm and will feature demos & short presentations in our main areas of research: algorithms, multimedia, electronics, communications, computer vision, speech processing, optimization, machine learning, data analytics, mechatronics, dynamics, control, and robotics. MERL is a high impact publication-oriented research lab with very extensive internship and university collaboration programs. Most internships lead to publication; many of our interns and staff have gone on to notable careers at MERL and in academia. Come mix with our researchers, see our state of the art technologies, and learn about our research opportunities. Dress code: casual, with resumes.

      Pre-registration for the event is strongly encouraged:
      https://www.eventbrite.com/e/merl-open-house-tickets-29408503626

      Current internship and employment openings:
      http://www.merl.com/internship/openings
      http://www.merl.com/employment/employment.
  •  
  •  EVENT    MERL participating in Engineering Career Fair
    Date & Time: Wednesday, November 16, 2016; 3:30-6:30pm
    Location: Sheraton Commander (16 Garden Street, Cambridge, MA)
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Brief
    • MERL will be participating in the Engineering Career Fair Collaborative, which is being held on November 16, 2016 at the Sheraton Commander in Cambridge from 3:30-6:30pm. Graduate students with an interest in learning about internship and other employment opportunities at MERL are invited to visit our booth. Staff members will be on hand to discuss current openings. We will also be showing some demonstrations of current research projects.

      Current internship and employment openings:
      http://www.merl.com/internship/openings
      http://www.merl.com/employment/employment.
  •  
  •  EVENT    MERL Hosts 2nd Annual Women In Science Celebration
    Date & Time: Friday, July 22, 2016; 12:00 Noon
    Location: Cambridge Brewery
    MERL Contacts: Elizabeth Phillips; Jinyun Zhang
    Brief
    • MERL hosted its 2nd Annual "Women In Science Celebration". MERL's current team of female interns discussed and celebrated the contributions they've made during their internships at MERL.
  •  
  •  TALK    A computational spectral graph theory tutorial
    Date & Time: Wednesday, July 13, 2016; 2:30 PM - 3:30
    Speaker: Richard Lehoucq, Sandia National Laboratories
    Research Areas: Computer Vision, Digital Video, Machine Learning
    Abstract
    • My presentation considers the research question of whether existing algorithms and software for the large-scale sparse eigenvalue problem can be applied to problems in spectral graph theory. I first provide an introduction to several problems involving spectral graph theory. I then provide a review of several different algorithms for the large-scale eigenvalue problem and briefly introduce the Anasazi package of eigensolvers.
  •  
  •  EVENT    MERL celebrates 25 years of innovation
    Date: Thursday, June 2, 2016
    Location: Norton's Woods Conference Center at American Academy of Arts & Sciences, Cambridge, MA
    MERL Contacts: Elizabeth Phillips; Anthony Vetro
    Brief
    • MERL celebrated 25 years of innovation on Thursday, June 2 at the Norton's Woods Conference Center at the American Academy of Arts & Sciences in Cambridge, MA. The event was a great success, with inspiring keynote talks, insightful panel sessions, and an exciting research showcase of MERL's latest breakthroughs.

      Please visit the event page to view photos of each session, video presentations, as well as a commemorative booklet that highlights past and current research.
  •  
  •  TALK    On computer simulation of multiscale processes in porous electrodes of Li-ion batteries
    Date & Time: Friday, May 13, 2016; 12:00 PM
    Speaker: Oleg Iliev, Fraunhofer Institute for Industrial Mathematics, ITWM
    Research Area: Dynamical Systems
    Abstract
    • Li-ion batteries are widely used in automotive industry, in electronic devices, etc. In this talk we will discuss challenges related to the multiscale nature of batteries, mainly the understanding of processes in the porous electrodes at pore scale and at macroscale. A software tool for simulation of isothermal and non-isothermal electrochemical processes in porous electrodes will be presented. The pore scale simulations are done on 3D images of porous electrodes, or on computer generated 3D microstructures, which have the same characterization as real porous electrodes. Finite Volume and Finite Element algorithms for the highly nonlinear problems describing processes at pore level will be shortly presented. Model order reduction, MOR, empirical interpolation method, EIM-MOR algorithms for acceleration of the computations will be discussed, as well as the reduced basis method for studying parameters dependent problems. Next, homogenization of the equations describing the electrochemical processes at the pore scale will be presented, and the results will be compared to the engineering approach based on Newman's 1D+1D model. Simulations at battery cell level will also be addressed. Finally, the challenges in modeling and simulation of degradation processes in the battery will be discussed and our first simulation results in this area will be presented.

      This is joint work with A.Latz (DLR), M.Taralov, V.Taralova, J.Zausch, S.Zhang from Fraunhofer ITWM, Y.Maday from LJLL, Paris 6 and Y.Efendiev from Texas A&M.
  •