Internship Openings

7 / 24 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

The COVID pandemic has impacted every aspect of life-how we live, work, and interact. At MERL, we are committed to maintaining our internship program through these challenging times.

MERL continues to actively seek candidates for research internships -- some of the posted positions are immediately available, while others target the summer of 2021. Please consider applying for positions of interest. Our researchers will follow up to schedule an interview by phone or video conference for qualified candidates.

Due to the situation with the COVID-19 pandemic, our current internships are mostly remote. Next summer we hope the situation will be better and our internships will be at MERL, but if it is not, most internships will continue to be remote. However, some of the internships require onsite work. Please check for any specific requirements for onsite work in the job description.


  • CV1546: Vibration analysis in video sequences

    • MERL is looking for a self-motivated intern to work on vibration analysis in video sequences. The ideal candidate would be a Ph.D. student with a strong background in machine learning, optimization and computer vision. Experience in computational photography and MATLAB/Python is a plus. You are expected to collaborate with MERL researchers to develop algorithms and prepare manuscripts for scientific publications. The internship is for a minimum of 3 months and the start date is flexible. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Computer Vision, Machine Learning, Optimization
    • Host: Jeroen van Baar
    • Apply Now
  • CA1565: Connected Vehicle Driver Assistance Systems

    • MERL is seeking a highly motivated qualified intern to collaborate with the Control for Autonomy team and the Signal Processing group in the development of Advanced Driver Assistance Systems (ADAS) for Connected Vehicles. The intern will collaborate in the development of methods for distributed learning and optimization of ADAS using data-sharing between connected vehicles and infrastructure. The ideal candidate has knowledge of machine learning, optimization and connected vehicles. Knowledge of one or more traffic and/or multi-vehicle simulators (SUMO, Vissim, etc.) is a plus. Good programming skills in MATLAB, Python, or C/C++ are required. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply. The expected duration of the internship is 3-6 months, starting in Spring or Summer 2021, but later starting periods may also be considered. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Machine Learning, Optimization
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1530: Hybrid Control of Cyberphysical Systems

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in the development of hybrid control algorithms for cyberphysical system. The potential subjects include formal methods for control synthesis, control barrier-functions, stabilizing control for hybrid dynamical systems, and optimal control of hybrid dynamics. The ideal candidate is expected to be working towards a PhD with strong emphasis in control theory, and to have interest and background in as many as possible among: predictive control, Lyapunov stability, formal methods for control, constrained control, optimization, and machine learning. Good programming skills in MATLAB, and/or Python are required. The expected duration of the internship is in the Spring of 2021, for a duration of 3-6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1646: Path Planning and Model Predictive Control for Autonomous Vehicles

    • MERL is seeking highly motivated and qualified interns to collaborate on the implementation and experimental validation of algorithms for path/motion planning and optimization-based tracking control in autonomous vehicles. An ideal candidate should have experience in path planning and/or model predictive control (MPC) for autonomous vehicles, and the candidate should be familiar with Matlab and Simulink. Any experience with dSPACE (e.g., MicroAutoBox) or C/C++ code generation is a plus. Both MS and PhD students are welcome to apply. Start date for this internship is as soon as possible, and the expected duration is about 3 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA1531: Learning-based multi-agent motion planning

    • MERL is seeking a highly motivated intern to research multi-agent motion planning by combining optimization-based methods with machine learning. The ideal candidate is enrolled in a PhD program in Electrical, Mechanical, Aerospace Engineering, Robotics, Computer Science or related program, with prior experience in multi-agent motion planning, machine learning (especially supervised, reinforcement, and safe ML), and convex and non-convex optimization. A successful internship will result in innovative methods for multiagent planning, in the development of well-documented (Python/MATLAB) code for validating the proposed methods, and in the submission of relevant results for publication in peer-reviewed conference proceedings and journals. The expected duration of the internship is 3 months with a flexible start date in the Spring/Summer 2021. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
    • Host: Abraham P. Vinod
    • Apply Now
  • MD1593: Design Optimization for Electric Machines

    • MERL is seeking a motivated and qualified intern to conduct research on design optimization of electrical machines. The ideal candidate should have solid background and demonstrated research experience in mathematical optimization methods, especially in topology optimization, robust optimization, sensitivity analysis, and machine learning techniques. Hands-on experiences with the implementation of optimization algorithms, machine learning and deep learning methods are highly desirable. Knowledge and experience with electric machine principle, design and finite-element analysis is a strong plus. Senior Ph.D. students in related expertise are encouraged to apply. Start date for this internship is flexible and the duration is about 3-6 months. This internship is preferred to be onsite at MERL, but may be done remotely where you live if the COVID pandemic makes it necessary.

    • Research Areas: Artificial Intelligence, Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Bingnan Wang
    • Apply Now
  • MD1300: Compiler Optimizations for Linear Algebra Kernels

    • MERL is looking for a highly motivated individual to work on automatic, compiler based techniques for optimizing linear algebra kernels. The ideal candidate is a Ph.D. student in computer science with extensive experience in compiler design and source code optimization techniques. In particular, the successful candidate will have a strong working knowledge of polyhedral optimization techniques, the LLVM compiler, and Polly. Strong C/C++ skills and knowledge of LLVM at the source level are required. Publication of results in conference proceedings and journals is expected. The expected duration of the internship is 3 months and the start date is flexible.

    • Research Areas: Control, Machine Learning, Optimization
    • Host: Abraham Goldsmith
    • Apply Now