Internship Openings

9 / 25 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • ST2083: Deep Learning for Radar Perception

    • The Computation Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in radar perception. Expertise in deep learning-based object detection, multiple object tracking, data association, and representation learning (detection points, heatmaps, and raw radar waveforms) is required. Previous hands-on experience on open indoor/outdoor radar datasets is a plus. Familiarity with the concept of FMCW, MIMO, and range-Doppler-angle spectrum is an asset. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with MERL in-house testbed, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Computer Vision, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • OR2105: Preference-based Multi-Objective Bayesian Optimization

    • MERL is looking for a self-motivated and qualified candidate to work on Bayesian Optimization algorithms applied to industrial applications. The ideal candidate is a PhD student with experience and peer-reviewed publications in the general field of derivative-free/zeroth-order optimization, preference will be given to candidates who have contributed to theoretical advances or practical application of Bayesian optimization, especially for multi-objective optimization problems. The ideal candidate will have a strong general understanding of numerical optimization and probabilistic machine learning e.g. Gaussian process regression, and is expected to develop, in collaboration with MERL researchers, state of the art algorithms to optimize parameters for industrial processes or control systems. Proficiency in Python is required. An expected outcome of the internship is one or more peer-reviewed publications. The expected duration is 3-4 months, with flexible starting date.

    • Research Areas: Artificial Intelligence, Machine Learning, Optimization
    • Host: Diego Romeres
    • Apply Now
  • SA2114: Multilayer broadband metalenses

    • MERL is seeking a talented researcher to collaborate in the development of design algorithms for metalenses that are freeform, multilayer, and broadband. The ideal applicant will have a strong background in the relevant physics & maths, and has some fluency with the topology optimization and EM simulation tools commonly used in metasurface optics. Also desirable: familiarity with machine learning / AI tools and methods.

    • Research Areas: Applied Physics, Machine Learning, Optimization
    • Host: Matt Brand
    • Apply Now
  • MS1851: Dynamic Modeling and Control for Grid-Interactive Buildings

    • MERL is looking for a highly motivated and qualified candidate to work on modeling for smart sustainable buildings. The ideal candidate will have a strong understanding of modeling renewable energy sources, grid-interactive buildings, occupant behavior, and dynamical systems with expertise demonstrated via, e.g., peer-reviewed publications. Hands-on programming experience with Modelica is preferred. The minimum duration of the internship is 12 weeks; start time is flexible.

    • Research Areas: Machine Learning, Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • MS1958: Simulation, Control, and Optimization of Large-Scale Systems

    • MERL is seeking a motivated graduate student to research numerical methods pertaining to the simulation, control, and optimization of large-scale systems. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in numerical methods, control, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.

    • Research Areas: Control, Multi-Physical Modeling, Optimization
    • Host: Chris Laughman
    • Apply Now
  • CA2124: Map-building using mobile robots: Design & experimental validation

    • MERL is looking for a highly motivated individual to develop and validate map building algorithms for autonomous mobile robots. The ideal candidate will have published in one or more of these topics: planning and control of ground robots, map building, (visual) SLAM, and sensor fusion. The candidate should be proficient in ROS and C/C++, familiar with Python, and has demonstrable experience working with mobile robots. The minimum duration of the internship is 3 months; the start time is Summer/Fall 2024.

    • Research Areas: Artificial Intelligence, Control, Dynamical Systems, Optimization, Robotics
    • Position ID: CA2124
    • Contact: Abraham Vinod
    • Email: vinod[at]merl[dot]com
    • To be considered please send CV and Position ID to the contact email.
  • CA2131: Collaborative Legged Robots

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on control and planning algorithms for legged robots for support activities of and collaboration with humans. The ideal candidate is expected to be working towards a PhD with strong emphasis in robotics control and planning and to have interest and background in as many as possible of: motion planning algorithms, control for legged robot locomotions, legged robots, perception and sensing with multiple sensors, SLAM, vision-based control. Good programming skills in Python or C/C++ are required. The expected start of of the internship is flexible, with duration of 3--6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA2132: Optimization Algorithms for Motion Planning and Predictive Control

    • MERL is looking for a highly motivated and qualified individual to work on tailored computational algorithms for optimization-based motion planning and predictive control applications in autonomous systems (vehicles, mobile robots). The ideal candidate should have experience in either one or multiple of the following topics: convex and non-convex optimization, stochastic predictive control (e.g., scenario trees), interaction-aware motion planning, machine learning, learning-based model predictive control, mathematical programs with complementarity constraints (MPCCs), optimal control, and real-time optimization. PhD students in engineering or mathematics, especially with a focus on research related to any of the above topics are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is required; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3 months, and the start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1940: Autonomous vehicle planning and contro in uncertain environments

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control for autonomous vehicles in uncertain surrounding environments. The research domain includes algorithms for path planning and control in environments that are uncertain and perceived by sensing and predicted according to models and data. The ideal candidate is expected to be working towards a PhD with strong emphasis in vehicle guidance and control, and to have interest and background in as many as possible of: vehicle dynamics modeling and control, sensor uncertainty modeling, data-driven prediction, predictive control for uncertain systems, motion planning. Good programming skills in MATLAB, Python are required, knowledge of C/C++, rapid prototyping systems, automatic code generation, vehicle simulation packages (CarSim, CarMaker) or ROS are a plus. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now