-
CI2091: Robust AI for Operational Technology Security
MERL is seeking a highly motivated and qualified intern to work on operational technology security. The ideal candidate would have significant research experience in cybersecurity for operational technology, anomaly detection, robust machine learning, and defenses against adversarial examples. A mature understanding of modern machine learning methods, proficiency with Python, and familiarity with deep learning frameworks are expected. Candidates at or beyond the middle of their Ph.D. program are encouraged to apply. The expected duration is 3 months with flexible start dates.
- Research Areas: Artificial Intelligence, Machine Learning
- Host: Ye Wang
- Apply Now
-
CA2132: Optimization Algorithms for Motion Planning and Predictive Control
MERL is looking for a highly motivated and qualified individual to work on tailored computational algorithms for optimization-based motion planning and predictive control applications in autonomous systems (vehicles, mobile robots). The ideal candidate should have experience in either one or multiple of the following topics: convex and non-convex optimization, stochastic predictive control (e.g., scenario trees), interaction-aware motion planning, machine learning, learning-based model predictive control, mathematical programs with complementarity constraints (MPCCs), optimal control, and real-time optimization. PhD students in engineering or mathematics, especially with a focus on research related to any of the above topics are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is required; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3 months, and the start date is flexible.
- Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
- Host: Stefano Di Cairano
- Apply Now
-
CA2213: Mobile robotics: Sensing, Planning, and Control
MERL is seeking a highly motivated intern to collaborate in the development and experimental validation of sensing, planning, and control methods in various robotic testbeds (quadrotors, turtlebots, and mini-cars) at MERL. The ideal candidate is enrolled in a Masters/PhD program in Electrical, Mechanical, Aerospace Engineering, Robotics, Computer Science or related program, with prior experience in some or all of the following: motion planning, control, optimization, learning, computer vision, and their application in mobile robots, including experimental validation. The successful candidate is proficient in ROS2, C/C++, and Python, and at least familiar with MATLAB. The expected duration of the internship is 4-6 months with a flexible start date in the late Fall/Winter 2024.
- Research Areas: Artificial Intelligence, Control, Robotics
- Host: Abraham Vinod
- Apply Now
-
CA2182: Motion Planning and Control for Articulated Vehicles
MERL is seeking a highly skilled and self-motivated intern to work on motion planning of articulated vehicles. The ideal candidate should have solid backgrounds in established path/motion planning algorithms (A*, D*, graph-search) and optimization-based control for ground and articulated vehicles. Excellent coding skills in MATLAB/Simulink and publication records are necessary. Experience with CasADi and dSPACE is a plus. Ph.D. students in robotics, computer science, control, electrical engineering, or related areas are encouraged to apply. Start date for this internship is flexible, and the expected duration is about 4-6 months.
- Research Areas: Control, Dynamical Systems, Optimization, Robotics
- Host: Stefano Di Cairano
- Apply Now
-
CA2131: Collaborative Legged Robots
MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on control and planning algorithms for legged robots for support activities of and collaboration with humans. The ideal candidate is expected to be working towards a PhD with strong emphasis in robotics control and planning and to have interest and background in as many as possible of: motion planning algorithms, control for legged robot locomotions, legged robots, perception and sensing with multiple sensors, SLAM, vision-based control. Good programming skills in Python or C/C++ are required. The expected start of of the internship is flexible, with duration of 3--6 months.
- Research Areas: Control, Dynamical Systems, Optimization, Robotics
- Host: Stefano Di Cairano
- Apply Now
-
EA2168: Blockchain Solutions for Factory Automation 2
MERL is seeking an intern to work on blockchain based solutions for factory automation. The ideal candidate will have experience implementing a blockchain network with Hyperledger Fabric, have experience working with smart contracts, and be fluent languages common in the blockchain space such as js, Go, etc. Experience deploying cloud based applications and docker is highly desirable. The start date is flexible and the duration is 3-4 months.
- Research Area: Electric Systems
- Host: Bram Goldsmith
- Apply Now
-
EA2050: Electric Motor Design and Electromagnetic Analysis
MERL is seeing a motivated and qualified individual to conduct research on electric motor design and modeling, with a strong focus on electromagnetic analysis. Ideal candidates should be Ph.D. students with solid background and publication record in one more research area on electric machines: electric and magnetic modeling, new machine design and prototyping, harmonic analysis, fault detection, and predictive maintenance. Research experiences on modeling and analysis of electric machines and fault diagnosis are required. Hands-on experience with new motor design and data analysis techniques are highly desirable. Start date for this internship is flexible and the duration is 3-6 months.
- Research Areas: Applied Physics, Multi-Physical Modeling
- Host: Bingnan Wang
- Apply Now
-
ST2090: Radiation Source Localization
The Computational Sensing Team at MERL is seeking an intern to work on estimation algorithms for radioactive source localization. The candidate should have experience with statistical modeling and estimation theory. A detailed knowledge of interactions of particles with matter, imaging inverse problems, and/or computed tomography is preferred. Hands-on experience with high-energy physics simulators (e.g., Geant4) is beneficial but not required. Strong programming skills in Python are essential. Publication of the results produced during our internships is expected. The duration is anticipated to be 3-6 months.
- Research Areas: Applied Physics, Computational Sensing, Electronic and Photonic Devices, Signal Processing
- Host: Joshua Rapp
- Apply Now
-
ST1763: Technologies for Multimodal Tracking and Imaging
MERL is seeking a motivated intern to assist in developing hardware and algorithms for multimodal imaging applications. The project involves integration of radar, camera, and depth sensors in a variety of sensing scenarios. The ideal candidate should have experience with FMCW radar and/or depth sensing, and be fluent in Python and scripting methods. Familiarity with optical tracking of humans and experience with hardware prototyping is desired. Good knowledge of computational imaging and/or radar imaging methods is a plus.
- Research Areas: Computational Sensing, Signal Processing
- Host: Petros Boufounos
- Apply Now
-
ST1762: Computational Sensing Technologies
The Computational Sensing team at MERL is seeking motivated and qualified individuals to assist in the development of computational methods for a variety of sensing applications. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, deep learning for inverse problems, large-scale optimization, blind inverse scattering, radar/lidar/THz imaging, joint communications and sensing, multimodal sensor fusion, object or human tracking, sensing of dynamical systems, or wave-based inversion. Experience with experimentally measured data is desirable. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible.
- Research Areas: Computational Sensing, Signal Processing
- Host: Petros Boufounos
- Apply Now
-
ST2083: Deep Learning for Radar Perception
The Computation Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in radar perception. Expertise in deep learning-based object detection, multiple object tracking, data association, and representation learning (detection points, heatmaps, and raw radar waveforms) is required. Previous hands-on experience on open indoor/outdoor radar datasets is a plus. Familiarity with the concept of FMCW, MIMO, and range-Doppler-angle spectrum is an asset. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with MERL in-house testbed, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.
- Research Areas: Artificial Intelligence, Computational Sensing, Computer Vision, Dynamical Systems, Machine Learning, Optimization, Signal Processing
- Host: Perry Wang
- Apply Now
-
OR2196: Visuo-tactile Learning for Dexterous Manipulation
MERL is looking for a highly motivated individual to work on robotic manipulation using visuo-tactile learning. The research will develop robot motor skills for complex, dexterous manipulation using vision and tactile perception. The ideal candidate should have experience in either one or multiple of the following topics: manipulation, tactile sensing, Reinforcement Learning, sim-to-real techniques for manipulation, and grasping. Senior PhD students in robotics and engineering with a focus on contact-rich manipulation are encouraged to apply. Prior experience working with physical robotic systems (and vision and tactile sensors) is required as results need to be implemented on a physical hardware. Good coding skills in Python ML libraries like PyTorch etc. is required. A successful internship will result in submission of results to a peer-reviewed robotics journal in collaboration with MERL researchers. The expected duration of internship is 4-5 months with start date in Aug/Sept 2024. This internship is preferred to be onsite at MERL.
- Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
- Host: Devesh Jha
- Apply Now