Internship Openings

9 / 23 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

MERL believes that having an internship be located in MERL's office allows for particularly good interaction between you and those that you will be working with at MERL. In addition, some intern projects, e.g., ones that require specialized laboratory equipment, can only be pursued in our office. Going forward, we expect that all internships will be in-person at MERL. If health and safety concerns do not permit this, we will reevaluate our plans and some internships might have to become remote.

It is a requirement at MERL that everyone working in MERL's space must be fully vaccinated. In order for you to have your internship at MERL, you will have to prove that you are fully vaccinated when you arrive at MERL, i.e., by showing your vaccination card.


  • MD1746: PWM inverter circuit design

    • MERL is looking for a self-motivated intern to work on PWM inverter drive circuit design and fabrication. The ideal candidate would be a Ph.D. candidate in electrical engineering with solid research background in power electronics. Experience in PWM inverter design, switching loss estimation, and EMI is desired. The intern is expected to collaborate with MERL researchers to design, simulate, and fabricate circuits, carry out experiments, analyze experimental data, and prepare manuscripts for scientific publications. The total duration is 3 months.

    • Research Areas: Control, Electric Systems, Signal Processing
    • Host: Dehong Liu
    • Apply Now
  • CI1711: Advanced Network Design

    • MERL is seeking a highly motivated and qualified intern to join the Signal Processing Group for a three month internship program. The ideal candidate will be expected to carry out research on network design and optimization methods including AI assisted networking. The candidate is expected to develop innovative network configuration technologies to support emerging IoT applications. The candidates should have knowledge of network technologies such as network slicing, software defined networking and/or semantic networking. Knowledge of the communication technologies such as 3GPP-5G or IEEE 802 WLAN/WPAN standards is a plus. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Communications, Control, Optimization
    • Host: Jianlin Guo
    • Apply Now
  • CA1728: Safe data-driven control of dynamical systems under uncertainty

    • MERL is looking for a highly motivated individual to work on safe control of data-driven, uncertain, dynamical systems. The research will develop novel optimization and learning-based control algorithms to guarantee safety and performance in various industrial applications, including autonomous driving. The ideal candidate should have experience in either one or multiple of the following topics: optimal control under uncertainty, (robust and stochastic) model predictive control, (convex and non-convex) optimization, and (reinforcement and statistical) learning. Ph.D. students in engineering or mathematics with a focus on control, optimization, and learning are encouraged to apply. A successful internship will result in submission of relevant results to peer-reviewed conference proceedings and journals, and development of well-documented (Python/MATLAB) code for MERL. The expected duration of the internship is 3-6 months, and the start date is Summer 2022.

    • Research Areas: Artificial Intelligence, Control, Dynamical Systems, Optimization, Robotics
    • Host: Abraham Vinod
    • Apply Now
  • CA1742: Mixed-Integer Programming for Motion Planning and Control

    • MERL is looking for a highly motivated individual to work on tailored computational algorithms and applications of mixed-integer programming for decision making, motion planning and control of hybrid systems. The research will involve the study and development of numerical optimization techniques and/or the implementation and validation of algorithms for industrial applications, e.g., related to autonomous driving and robotics. The ideal candidate should have experience in either one or multiple of the following topics: branch-and-bound type methods, heuristics for mixed-integer programming (pre-solve, cutting planes, warm starting, integer-feasible solutions), modeling and formulation of MIPs for hybrid control systems, convex and non-convex optimization, machine learning and real-time optimization. PhD students in engineering or mathematics, especially with a focus on mixed-integer programming or numerical optimization, are encouraged to apply. Publication of relevant results in conference proceedings and journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is expected; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3-6 months and the start date is flexible.

    • Research Areas: Control, Machine Learning, Optimization, Robotics
    • Host: Rien Quirynen
    • Apply Now
  • CA1869: Learning for Connected Vehicles and Smart Cities

    • MERL is seeking a research intern to collaborate with the Control for Autonomy team in the development of learning for connected vehicles and/or smart cities. The intern will develop technologies for optimizing Advanced Driver Assistance Systems (ADAS) and/or for learning road conditions and to leverage such information using data-sharing between vehicles. The ideal candidate has knowledge of at least one of machine learning, statistical estimation, connected vehicles, and vehicle control systems. Knowledge of one or more traffic and/or multi-vehicle simulators (SUMO, etc.) is a plus. Good programming skills in Matlab or Python are required. PhD students in engineering, mathematics, or similar are encouraged to apply. The expected duration of the internship is 3-6 months. The start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning
    • Host: Marcel Menner
    • Apply Now
  • CA1706: Perception-aware vehicle control

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control algorithms accounting for perception of the uncertain surrounding environment. The ideal candidate is expected to be working towards a PhD with strong emphasis in control or planning algorithms, and to have interest and background in as many as possible of: predictive control algorithms for linear and nonlinear systems, stochastic constrained control, e.g., chance constraints, stochastic optimization, statistical estimation, perception system modeling, and vehicle modeling and control. Good programming skills in MATLAB, Python or C/C++ are required. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Optimization, Signal Processing
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1858: Estimation and Sensor Fusion for Autonomous Vehicles

    • MERL is looking for a highly motivated individual to work on estimation and sensor fusion with application to autonomous vehicles. The ideal candidate is a senior Ph.D. student with background in statistical signal processing and estimation, and with experience in at least some of the following areas: application and theory of Bayesian inference, Kalman filters, variational Bayes, automotive, autonomous vehicles, distributed estimation, sensor fusion including camera radar and/or GNSS. Proficiency in Matlab is expected, and knowledge of Python/C/C++ is a plus. The duration of the internship is 3-6 months. Start date is flexible.

    • Research Areas: Control, Signal Processing
    • Host: Karl Berntorp
    • Apply Now
  • CA1707: Autonomous vehicles guidance and control

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control for autonomous vehicles. The research domain includes algorithms for path planning, vehicle control, high level decision making, sensor-based navigation, driver-vehicle interaction. The ideal candidate is expected to be working towards a PhD with strong emphasis in vehicle guidance and control, and to have interest and background in as many as possible of: vehicle dynamics modeling and control, predictive control algorithms linear and nonlinear systems, motion planning, convex, non-convex, and mixed -integer optimization, statistical estimation, cooperative control. Good programming skills in MATLAB, Python or C/C++ are required, knowledge of rapid prototyping systems, automatic code generation or ROS is a plus. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1864: Motion planning and control: Design and experimental validation

    • MERL is seeking a highly motivated intern to collaborate in the development and experimental validation of control and motion planning methods in various robotic testbeds (quadrotors and mini-cars) at MERL. The ideal candidate is enrolled in a Masters/PhD program in Electrical, Mechanical, Aerospace Engineering, Robotics, Computer Science or related program, with prior experience in motion planning, control, optimization and their application in mobile robots, including experimental validation. The successful candidate is proficient in ROS, C/C++ and Python, and at least familiar with MATLAB. The expected duration of the internship is at least 3 months with possible extensions and with a flexible start date in the Fall 2022.

    • Research Areas: Control, Dynamical Systems, Robotics
    • Host: Abraham Vinod
    • Apply Now