- Date: April 7, 2021
Where: Online
MERL Contact: Devesh K. Jha
Research Areas: Artificial Intelligence, Machine Learning, Robotics
Brief - Devesh Jha, a Principal Research Scientist in MERL's Data Analytics group, gave an invited talk at the robotics seminar series at the University of Leeds. The talk presented some of the recent work done at MERL in the areas of robotic manipulation and robot learning.
-
- Date: April 6, 2021
Where: Linköping University, Sweden
Research Areas: Control, Dynamical Systems, Robotics
Brief - MERL researcher Karl Berntorp was invited to give a lecture in the ELLIIT PhD course "Motion Planning and Control" at the Division of Vehicular Systems, Department of Electrical Engineering, Linköping University. The course is open for Ph.D. students as well as senior undergraduate students, and covers both fundamental algorithms and state-of-the-art methods for motion planning and control. The invited lecture described MERL research on the use of invariant sets for safe motion planning and control, with application to autonomous vehicles.
-
- Date: March 14, 2021 - April 20, 2021
Where: IROS
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Data Analytics, Robotics
Brief - Diego Romeres, a Principal Research Scientist in MERL's Data Analytics group, is serving as an Associate Editor (AE) for the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2021).
-
- Date: March 7, 2021
MERL Contact: Stefano Di Cairano
Research Areas: Control, Dynamical Systems, Robotics
Brief - Stefano Di Cairano has joined the Editorial Board of the IEEE Transactions on Intelligent Vehicles (T-IV) as an Associate Editor. The IEEE T-IV publishes peer-reviewed articles in the area of intelligent vehicles in a roadway environment, and in particular in automated vehicles. While primarily led by the IEEE ITS Society, IEEE T-IV is an IEEE multi-society journal.
As Associate Editor Stefano will be responsible for the review process of some of the papers submitted to T-IV and will work with the Editorial Board to monitor the status and continuously strengthen the journal.
-
- Date: February 15, 2021
Where: Virtual
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Machine Learning, Robotics
Brief - Diego Romeres, a Principal Research Scientist in MERL's Data Analytics group, gave the invited talk "Reinforcement Learning for Robotics" at the Autonomy Talks organized at ETH, Zurich. In the presentation, some directions to apply Model-based Reinforcement Learning algorithms to real-world applications are presented together with a novel MBRL algorithm called MC-PILCO. The link to the presentation is https://www.youtube.com/watch?v=wYgbgMa4j-s.
-
- Date: February 15, 2021
Where: The 2nd International Symposium on AI Electronics
MERL Contact: Chiori Hori
Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
Brief - Chiori Hori, a Senior Principal Researcher in MERL's Speech and Audio Team, will be a keynote speaker at the 2nd International Symposium on AI Electronics, alongside Alex Acero, Senior Director of Apple Siri, Roberto Cipolla, Professor of Information Engineering at the University of Cambridge, and Hiroshi Amano, Professor at Nagoya University and winner of the Nobel prize in Physics for his work on blue light-emitting diodes. The symposium, organized by Tohoku University, will be held online on February 15, 2021, 10am-4pm (JST).
Chiori's talk, titled "Human Perspective Scene Understanding via Multimodal Sensing", will present MERL's work towards the development of scene-aware interaction. One important piece of technology that is still missing for human-machine interaction is natural and context-aware interaction, where machines understand their surrounding scene from the human perspective, and they can share their understanding with humans using natural language. To bridge this communications gap, MERL has been working at the intersection of research fields such as spoken dialog, audio-visual understanding, sensor signal understanding, and robotics technologies in order to build a new AI paradigm, called scene-aware interaction, that enables machines to translate their perception and understanding of a scene and respond to it using natural language to interact more effectively with humans. In this talk, the technologies will be surveyed, and an application for future car navigation will be introduced.
-
- Date: December 7, 2020 - December 11, 2020
Where: Taipei, Taiwan
MERL Contacts: Toshiaki Koike-Akino; Philip V. Orlik; Pu (Perry) Wang; Ye Wang
Research Areas: Communications, Computational Sensing, Machine Learning, Signal Processing
Brief - MERL researchers have published four papers in 2020 IEEE Global Communications Conference (GlobeComm). This conference is one of the two IEEE Communications Societies flagship conferences dedicated to Communications for Human and Machine Intelligence. Topics of the published papers include, transmit diversity schemes, coding for molecular networks, and location and human activity sensing via WiFi signals.
-
- Date: November 16, 2020
MERL Contacts: Devesh K. Jha; Daniel N. Nikovski; Diego Romeres
Research Areas: Artificial Intelligence, Machine Learning, Robotics
Brief - MERL researchers, in collaboration with researchers from MELCO and the Department of Brain and Cognitive Science at MIT, have released simulation software Circular Maze Environment (CME). This system could be used as a new benchmark for evaluating different control and robot learning algorithms. The control objective in this system is to tip and the tilt the maze so as to drive one (or multiple) marble(s) to the innermost ring of the circular maze. Although the system is very intuitive for humans to control, it is very challenging for artificial intelligence agents to learn efficiently. It poses several challenges for both model-based as well as model-free methods, due to its non-smooth dynamics, long planning horizon, and non-linear dynamics. The released Python package provides the simulation environment for the circular maze, where movement of multiple marbles could be simulated simultaneously. The package also provides a trajectory optimization algorithm to design a model-based controller in simulation.
-
- Date: October 29, 2020
MERL Contact: Devesh K. Jha
Research Areas: Artificial Intelligence, Machine Learning, Optimization, Robotics
Brief - MERL Researcher Devesh Jha has been appointed to the editorial board of the IEEE Robotics and Automation Letters (RA-L) as an Associate Editor. IEEE RA-L publishes peer-reviewed articles in the areas of robotics and automation which can also be presented at the annual flagship conferences of RAS like ICRA, IROS and CASE.
-
- Date: October 13, 2020
MERL Contact: Siddarth Jain
Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
Brief - Computer vision and robotics researcher, Siddarth Jain, has been appointed to the editorial board of the IEEE Robotics and Automation Letters (RA-L) as an Associate Editor. Siddarth joined MERL in September 2019 after obtaining his Ph.D. in robotics from Northwestern University, where he developed novel robotics systems to help people with motor-impairments in performing activities of daily living tasks.
RA-L publishes peer-reviewed articles in areas of robotics and automation. RA-L also provides a unique feature to the authors with the opportunity to publish a paper in a peer-reviewed journal and present the same paper at the annual flagship robotics conferences of IEEE RAS, including ICRA, IROS, and CASE.
-
- Date: October 8, 2020
Where: Linkoping University
Research Areas: Control, Dynamical Systems, Robotics, Signal Processing
Brief - MERL researcher Karl Berntorp was invited to give a lecture in the class "Autonomous vehicles – planning, control, and learning systems" at the Division of Vehicular Systems, Department of Electrical Engineering, Linkoping University. The course is for the engineering-program students at Linkoping University and gives a basic understanding of the available models, methods, and software libraries to work on autonomous vehicles, with particular focus on motion-planning and control methods. The invited lecture described the different system components and design of motion planning and predictive control methods targeted to autonomous driving.
-
- Date: October 9, 2020
Research Area: Dynamical Systems
Brief - M. Benosman will give an invited talk at the SIAM student chapter at Virginia Tech. to speak about several applications of mathematics to industrial problems.
The Society for Industrial and Applied Mathematics (SIAM) Student Chapter at Virginia Tech will host a number of talks by mathematicians working in industry. The speakers will describe the path they followed to reach this point in their careers and also tell us more about their industry and how mathematics is used.
-
- Date: October 13, 2020
Where: online
Research Areas: Communications, Electronic and Photonic Devices
Brief - MERL researcher Dr. Rui Ma is invited to give a talk on the latest insights on RF power Amplifier design, which is one of series invited courses organized by IEEE Boston Section.
Dr. Ma is addressing the advancement of digital radio transmitter based on enabling technology of GaN for next generation wireless communications.
This six week lecture series is intended to give a broad overview of state-of-the-art RF PA techniques with practical aspects for working professionals together with students for future RF PA designers, from fundamentals to applications. It begins with a review of RF power amplifier concepts then teaches handset PA design techniques, issues and solutions faced with designing RF PAs for mobile applications. It also discusses high efficiency amplifier structures with different classes of operation, and other architectures. A high linearity techniques lecture with behavioral modelling will follow. GaAs/GaN MMIC level millimeter-wave amplifier design tutorials and techniques will be lectured including foundry/technology selection, loadpull, loadline analysis and simulations with EDA tools. Lastly, digital perspective transmitters will be presented using GaN technology together with FPGA and ASICs.
-
- Date: September 30, 2020
Where: Rice University
Research Areas: Dynamical Systems, Optimization
Brief - MERL researcher Dr. S. Nabi was invited to give a talk on the state-of-the-art methods for airflow optimization and control at Rice University. Several industrial applications to buoyancy-driven flows in the built environment, atmospheric flows, and prevention of transmission of COVID-19 were discussed. Furthermore, some novel advances on data-driven fluid mechanics for industrial applications were covered.
-
- Date: February 4, 2021
Where: N/A
MERL Contact: Diego Romeres
Research Areas: Artificial Intelligence, Data Analytics, Machine Learning
Brief - Dr. Diego Romeres, Principal Research Scientist in the Data Analytics group, will serve on the Programme Committee for the Thirty-Third Annual Conference on Innovative Applications of Artificial Intelligence (IAAI), 2021.
-
- Date: August 23, 2020
Where: European Conference on Computer Vision (ECCV), online, 2020
MERL Contact: Anoop Cherian
Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
Brief - MERL Principal Research Scientist Anoop Cherian gave an invited talk titled "Sound2Sight: Audio-Conditioned Visual Imagination" at the Multi-modal Video Analysis workshop held in conjunction with the European Conference on Computer Vision (ECCV), 2020. The talk was based on a recent ECCV paper that describes a new multimodal reasoning task called Sound2Sight and a generative adversarial machine learning algorithm for producing plausible video sequences conditioned on sound and visual context.
-
- Date: August 25, 2020
MERL Contact: Ankush Chakrabarty
Research Areas: Artificial Intelligence, Control, Data Analytics, Dynamical Systems, Machine Learning, Optimization, Robotics
Brief - Ankush Chakrabarty co-organized an invited session on “Data-Driven Control For Industrial Applications” at the IEEE Conference on Control Technology and Applications with Shahin Shahrampour (Asst. Prof., Texas A&M). Talks covered topics including reinforcement learning for aerospace systems, constrained reinforcement learning for motors, deep Q learning for traffic systems and participants included speakers from Stanford University, North Carolina State University, Texas A&M, Oklahoma State University, University of Science and Technology at Beijing, and TU Delft.
MERL presented research (Chakrabarty, Danielson, Wang) on constraint-enforcing output-tracking with approximate dynamic programming for servomotor systems.
-
- Date: August 3, 2020
Where: Cambridge, MA
MERL Contact: Abraham P. Vinod
Research Areas: Artificial Intelligence, Control, Optimization, Robotics
Brief - Mitsubishi Electric Research Laboratories is excited to welcome Abraham P. Vinod as the newest member of its research staff, in the Control for Autonomy Team. Abraham joins MERL from the University of Texas, Austin, where he was a Postdoctoral Research Fellow. He obtained his Ph.D. from the University of New Mexico. His PhD research produced scalable algorithms for providing safety guarantees for stochastic, control-constrained, dynamical systems, with applications to motion planning. In his postdoctoral research, Abraham studied theory and algorithms for on-the-fly, data-driven control of unknown systems under severely limited data. His current research interests lie in the intersection of optimization, control, and learning. Abraham won the Best Student Paper Award at the 2017 ACM Hybrid Systems: Computation and Control Conference, was a finalist for the Best Paper Award in the 2018 ACM Hybrid Systems: Computation and Control Conference, and won the best undergraduate student research project award at the Indian Institute of Technology, Madras.
-
- Date: July 22, 2020
Where: Tokyo, Japan
MERL Contacts: Anoop Cherian; Chiori Hori; Jonathan Le Roux; Tim K. Marks; Anthony Vetro
Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Speech & Audio
Brief - Mitsubishi Electric Corporation announced that the company has developed what it believes to be the world’s first technology capable of highly natural and intuitive interaction with humans based on a scene-aware capability to translate multimodal sensing information into natural language.
The novel technology, Scene-Aware Interaction, incorporates Mitsubishi Electric’s proprietary Maisart® compact AI technology to analyze multimodal sensing information for highly natural and intuitive interaction with humans through context-dependent generation of natural language. The technology recognizes contextual objects and events based on multimodal sensing information, such as images and video captured with cameras, audio information recorded with microphones, and localization information measured with LiDAR.
Scene-Aware Interaction for car navigation, one target application, will provide drivers with intuitive route guidance. The technology is also expected to have applicability to human-machine interfaces for in-vehicle infotainment, interaction with service robots in building and factory automation systems, systems that monitor the health and well-being of people, surveillance systems that interpret complex scenes for humans and encourage social distancing, support for touchless operation of equipment in public areas, and much more. The technology is based on recent research by MERL's Speech & Audio and Computer Vision groups.
-
- Date: July 14, 2020
Where: Tokyo, Japan
Research Areas: Communications, Electronic and Photonic Devices
Brief - Mitsubishi Electric Corporation announced today its developement of a new technology to realize a gallium nitride (GaN) power amplifier module for 5G base-stations that offers a combination of compact (6mm by 10mm) footprint and high power-efficiency, the latter exceeding an unprecedented rating of 43%.
MERL and Mitsubishi Electric researchers collaborated to develop high density mounting technology and matching circuit that uses a minimum number of chip components to achieve efficient, wide-band power amplification in the 3.4-3.8GHz bands used for 5G communication.
Please see the link below for the full Mitsubishi Electric press release text. Technical details of the new module will be presented at the IEEE International Microwave Symposium this coming August.
-
- Date: July 10, 2020
Where: Virtual Baltimore, MD
MERL Contact: Jonathan Le Roux
Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
Brief - MERL Senior Principal Research Scientist and Speech and Audio Senior Team Leader Jonathan Le Roux was invited by the Center for Language and Speech Processing at Johns Hopkins University to give a plenary lecture at the 2020 Frederick Jelinek Memorial Summer Workshop on Speech and Language Technology (JSALT). The talk, entitled "Deep Learning for Multifarious Speech Processing: Tackling Multiple Speakers, Microphones, and Languages", presented an overview of deep learning techniques developed at MERL towards the goal of cracking the Tower of Babel version of the cocktail party problem, that is, separating and/or recognizing the speech of multiple unknown speakers speaking simultaneously in multiple languages, in both single-channel and multi-channel scenarios: from deep clustering to chimera networks, phasebook and friends, and from seamless ASR to MIMO-Speech and Transformer-based multi-speaker ASR.
JSALT 2020 is the seventh in a series of six-week-long research workshops on Machine Learning for Speech Language and Computer Vision Technology. A continuation of the well known Johns Hopkins University summer workshops, these workshops bring together diverse "dream teams" of leading professionals, graduate students, and undergraduates, in a truly cooperative, intensive, and substantive effort to advance the state of the science. MERL researchers led such teams in the JSALT 2015 workshop, on "Far-Field Speech Enhancement and Recognition in Mismatched Settings", and the JSALT 2018 workshop, on "Multi-lingual End-to-End Speech Recognition for Incomplete Data".
-
- Date: July 12, 2020 - July 18, 2020
Where: Vienna, Austria (virtual this year)
MERL Contacts: Anoop Cherian; Devesh K. Jha; Daniel N. Nikovski
Research Areas: Artificial Intelligence, Computer Vision, Data Analytics, Dynamical Systems, Machine Learning, Optimization, Robotics
Brief - MERL researchers are presenting three papers at the International Conference on Machine Learning (ICML 2020), which is virtually held this year from 12-18th July. ICML is one of the top-tier conferences in machine learning with an acceptance rate of 22%. The MERL papers are:
1) "Finite-time convergence in Continuous-Time Optimization" by Orlando Romero and Mouhacine Benosman.
2) "Can Increasing Input Dimensionality Improve Deep Reinforcement Learning?" by Kei Ota, Tomoaki Oiki, Devesh Jha, Toshisada Mariyama, and Daniel Nikovski.
3) "Representation Learning Using Adversarially-Contrastive Optimal Transport" by Anoop Cherian and Shuchin Aeron.
-
- Date: July 1, 2020 - July 3, 2020
Where: Denver, Colorado (virtual)
MERL Contacts: Ankush Chakrabarty; Stefano Di Cairano; Yebin Wang; Avishai Weiss
Research Areas: Control, Machine Learning, Optimization
Brief - At the American Control Conference, MERL presented 10 papers on subjects including autonomous-vehicle decision making and motion planning, nonlinear estimation for thermal-fluid models and GNSS positioning, learning-based reference governors and reference governors for railway vehicles, and fail-safe rendezvous control.
-
- Date: June 22, 2020
Research Areas: Artificial Intelligence, Machine Learning, Speech & Audio
Brief - We are excited to announce that Dr. Zhong-Qiu Wang, who recently obtained his Ph.D. from The Ohio State University, has joined MERL's Speech and Audio Team as a Visiting Research Scientist. Zhong-Qiu brings strong expertise in microphone array processing, speech enhancement, blind source/speaker separation, and robust automatic speech recognition, for which he has developed some of the most advanced machine learning and deep learning methods.
Prior to joining MERL, Zhong-Qiu received the B.Eng. degree in 2013 from Harbin Institute of Technology, Harbin, China, and the M.Sc. and Ph.D. degree in 2017 and 2020 from The Ohio State University, Columbus, USA, all in Computer Science. He was a summer research intern at Microsoft Research, Mitsubishi Electric Research Laboratories, and Google AI. He received a Best Student Paper Award at ICASSP 2018 for his work as an intern at MERL, and a Graduate Research Award from OSU Department of Computer Science and Engineering in 2020.
-
- Date: June 7, 2020 - June 11, 2020
Where: Dublin, Ireland
MERL Contacts: Toshiaki Koike-Akino; Ye Wang
Research Areas: Communications, Machine Learning, Signal Processing, Digital Video
Brief - Due to COVID-19, MERL Network Intelligence Team scientists remotely presented 5 papers at the IEEE International Conference on Communications (ICC) 2020, that was scheduled to be held in Dublin Ireland from June 7-11, 2020. Topics presented include recent advances in deep learning methods for communications and new access systems. Presentation videos are also found on our YouTube channel. Our developed technologies can facilitate a great advancement in broadband virtual conferencing which is required in post-COVID-19 society.
IEEE ICC is one of the IEEE Communications Society’s two flagship conferences dedicated to driving innovation in nearly every aspect of communications. Each year, more than 2,900 scientific researchers submit proposals for program sessions to be held at the annual conference. The high-quality proposals are selected for the conference program, which includes technical papers, tutorials, workshops and industry sessions designed specifically to advance technologies, systems and infrastructure that are continuing to reshape the world and provide all users with access to an unprecedented spectrum of high-speed, seamless and cost-effective global telecommunications services.
-