-
MS0098: Internship - Control and Estimation for Large-Scale Thermofluid Systems
MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.
- Research Areas: Optimization, Machine Learning, Control, Multi-Physical Modeling
- Host: Chris Laughman
- Apply Now
-
CV0075: Internship - Multimodal Embodied AI
MERL is looking for a self-motivated intern to work on problems at the intersection of multimodal large language models and embodied AI in dynamic indoor environments. The ideal candidate would be a PhD student with a strong background in machine learning and computer vision, as demonstrated by top-tier publications. The candidate must have prior experience in designing synthetic scenes (e.g., 3D games) using popular graphics software, embodied AI, large language models, reinforcement learning, and the use of simulators such as Habitat/SoundSpaces. Hands on experience in using animated 3D human shape models (e.g., SMPL and variants) is desired. The intern is expected to collaborate with researchers in computer vision at MERL to develop algorithms and prepare manuscripts for scientific publications.
Required Specific Experience
- Experience in designing 3D interactive scenes
- Experience with vision based embodied AI using simulators (implementation on real robotic hardware would be a plus).
- Experience training large language models on multimodal data
- Experience with training reinforcement learning algorithms
- Strong foundations in machine learning and programming
- Strong track record of publications in top-tier computer vision and machine learning venues (such as CVPR, NeurIPS, etc.).
- Research Areas: Artificial Intelligence, Computer Vision, Speech & Audio, Robotics, Machine Learning
- Host: Anoop Cherian
- Apply Now
-
CV0078: Internship - Audio-Visual Learning with Limited Labeled Data
MERL is looking for a highly motivated intern to work on an original research project on multimodal learning, such as audio-visual learning, using limited labeled data. A strong background in computer vision and deep learning is required. Experience in audio-visual (multimodal) learning, weakly/self-supervised learning, continual learning, and large (vision-) language models is an added plus and will be valued. The successful candidate is expected to have published at least one paper in a top-tier computer vision or machine learning venue, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS or AAAI, and possess solid programming skills in Python and popular deep learning frameworks such as Pytorch. The intern will collaborate with MERL researchers to develop and implement novel algorithms and prepare manuscripts for scientific publications. Successful applicants are typically graduate students on a Ph.D. track or recent Ph.D. graduates. Duration and start date are flexible, but the internship is expected to last for at least 3 months.
Required Specific Experience
- Prior publications in top-tier computer vision and/or machine learning venues, such as CVPR, ECCV, ICCV, ICML, ICLR, NeurIPS or AAAI.
- Knowledge of the latest self-supervised and weakly-supervised learning techniques.
- Experience with Large (Vision-) Language Models.
- Proficiency in scripting languages, such as Python, and deep learning frameworks such as PyTorch or Tensorflow.
- Research Areas: Computer Vision, Machine Learning, Speech & Audio, Artificial Intelligence
- Host: Moitreya Chatterjee
- Apply Now
-
CV0101: Internship - Multimodal Algorithmic Reasoning
MERL is looking for a self-motivated intern to research on problems at the intersection of multimodal large language models and neural algorithmic reasoning. An ideal intern would be a Ph.D. student with a strong background in machine learning and computer vision. The candidate must have prior experience with training multimodal LLMs for solving vision-and-language tasks. Experience in participating and winning mathematical Olympiads is desired. Publications in theoretical machine learning venues would be a strong plus. The intern is expected to collaborate with researchers in the computer vision team at MERL to develop algorithms and prepare manuscripts for scientific publications.
Required Specific Experience
- Experience with training large vision-and-language models
- Experience with solving mathematical reasoning problems
- Experience with programming in Python using PyTorch
- Enrolled in a PhD program
- Strong track record of publications in top-tier computer vision and machine learning venues (such as CVPR, NeurIPS, etc.).
- Research Areas: Artificial Intelligence, Computer Vision, Machine Learning
- Host: Anoop Cherian
- Apply Now
-
OR0115: Internship - Whole-body dexterous manipulation
MERL is looking for a highly motivated individual to work on whole-body dexterous manipulation. The research will develop robot motor skills for whole-body, dexterous manipulation using optimization and/or learning algorithms. The ideal candidate should have experience in either one or multiple of the following topics: Optimization Algorithms for contact systems, Reinforcement Learning, control through contacts, and Behavioral cloning. Senior PhD students in robotics and engineering with a focus on contact-rich manipulation are encouraged to apply. Prior experience working with physical robotic systems (and vision and tactile sensors) is required as results need to be implemented on a physical hardware. Good coding skills in Python ML libraries like PyTorch etc. and/or relevant Optimization packages is required. A successful internship will result in submission of results to a peer-reviewed robotics journal in collaboration with MERL researchers. The expected duration of internship is 4-5 months with start date in May/June 2025. This internship is preferred to be onsite at MERL.
Required Specific Experience
- Prior experience working with physical hardware system is required.
- Prior publication experience in robotics venues like ICRA,RSS, CoRL.
- Research Areas: Robotics, Optimization, Artificial Intelligence, Machine Learning
- Host: Devesh Jha
- Apply Now
-
OR0088: Internship - Robot Learning
MERL is looking for a highly motivated and qualified PhD student in the areas of machine learning and robotics, to participate in research on advanced algorithms for learning control of robots and other mechanisms. Solid background and hands-on experience with various machine learning algorithms is expected, and in particular with deep learning algorithms for image processing and object detection. Exposure to deep reinforcement learning and/or learning from demonstration is highly desirable. Familiarity with the use of machine learning algorithms for system identification of mechanical systems would be a plus, along with background in other areas of automatic control. Solid experimental skills and hands-on experience in coding in Python, PyTorch, and OpenCV are required for the position. Some experience with ROS2 and familiarity with classical mechanics and computational physics engines would be helpful, but is not required. The position will provide opportunities for exploring fundamental problems in incremental learning in humans and machines, leading to publishable results. The duration of the internship is 3 to 5 months, with a flexible starting date.
Required Specific Experience
- Python, PyTorch, OpenCV
- Research Areas: Artificial Intelligence, Computer Vision, Control, Machine Learning, Robotics
- Host: Daniel Nikovski
- Apply Now
-
EA0076: Internship - Machine Learning for Electric Motor Design
MERL is seeking a motivated and qualified intern to conduct research on machine learning based electric motor design and optimization. Ideal candidates should be Ph.D. students with a solid background and publication record in electric machine design, optimization, and machine learning. Hands-on experience with the implementation of optimization algorithms, machine learning and deep learning methods is required. Strong programming skills using Python/PyTorch are expected. Knowledge and experience with electric machine principle, design and finite-element analysis are highly desirable. Start date for this internship is flexible and the duration is about 3 months.
- Research Areas: Artificial Intelligence, Machine Learning, Optimization
- Host: Bingnan Wang
- Apply Now
-
EA0070: Internship - Multi-modal sensor fusion
MERL is looking for a self-motivated intern to work on multi-modal sensor fusion for health condition monitoring and predictive maintenance of motor drive systems. The ideal candidate would be a Ph.D. candidate in electrical engineering or computer science with solid research background in signal processing and machine learning. Experience in motor drive system is a plus. The intern is expected to collaborate with MERL researchers to collect data, explore multi-modal data relationship, and prepare manuscripts for publications. The total duration is anticipated to be 3 months and the start date is flexible.
Required Specific Experience
- Experience with multi-modal sensor fusion.
- Research Areas: Data Analytics, Electric Systems, Machine Learning, Signal Processing, Artificial Intelligence
- Host: Dehong Liu
- Apply Now
-
EA0073: Internship - Fault Detection for Electric Machines
MERL is seeking a motivated and qualified individual to conduct research on electric machine fault analysis and detection methods. Ideal candidates should be Ph.D. students with a solid background and publication record in one more research area on electric machines: electric and magnetic modeling, machine design and prototyping, harmonic analysis, fault detection, and predictive maintenance. Knowledge on data analysis and machine learning algorithms, and strong programming skills using Python/PyTorch are expected. Research experience on modeling and analysis of electric machines and fault diagnosis is desired. Senior Ph.D. students in related expertise, such as electrical engineering, mechanical engineering, and applied physics are encouraged to apply. Start date for this internship is flexible and the duration is 3 months.
- Research Areas: Electric Systems, Machine Learning, Multi-Physical Modeling
- Host: Bingnan Wang
- Apply Now
-
CI0083: Internship - Human-Machine Interface with Biosignal Processing
MERL is excited to announce an internship opening for a talented researcher to join our team. We are looking for an individual to contribute to cutting-edge research in human-machine interfaces (HMI) using multi-modal bio-sensors. This is an exciting opportunity to make a real impact in the field of human-machine interaction and biosignal processing, with the aim of publishing at leading research venues.
Ideal Candidate:
- Experienced PhD student or post-graduate researcher
- Strong background in brain-machine interface (BMI)
- Proficient in deep learning and mixed reality (XR)
- Skilled in robot manipulation, bionics, and bio sensing
- Digital modeling of human and environment
- Hands-on experience in Unity3d, ROS, OpenBCI, and XR headsets
If you are passionate about advancing technology in these areas, we encourage you to apply and be part of our innovative research team!
- Research Areas: Artificial Intelligence, Machine Learning, Robotics, Signal Processing
- Host: Toshi Koike-Akino
- Apply Now
-
CI0082: Internship - Quantum AI
MERL is excited to announce an internship opportunity in the field of Quantum Machine Learning (QML) and Quantum AI (QAI). We are seeking a highly motivated and talented individual to join our research team. This is an exciting opportunity to make a real impact in the field of quantum computing and AI, with the aim of publishing at leading research venues.
Responsibilities:
- Conduct cutting-edge research in quantum machine learning.
- Collaborate with a team of experts in quantum computing, deep learning, and signal processing.
- Develop and implement algorithms using PyTorch and PennyLane.
- Publish research results at leading research venues.
Qualifications:
- Currently pursuing a PhD or a post-graduate researcher in a relevant field.
- Strong background and solid publication records in quantum computing, deep learning, and signal processing.
- Proficient programming skills in PyTorch and PennyLane are highly desirable.
What We Offer:
- An opportunity to work on groundbreaking research in a leading research lab.
- Collaboration with a team of experienced researchers.
- A stimulating and supportive work environment.
If you are passionate about quantum machine learning and meet the above qualifications, we encourage you to apply. Please submit your resume and a brief cover letter detailing your research experience and interests. Join us at MERL and contribute to the future of quantum machine learning!
- Research Areas: Artificial Intelligence, Machine Learning, Signal Processing, Applied Physics
- Host: Toshi Koike-Akino
- Apply Now
-
CI0080: Internship - Efficient AI
We are on the lookout for passionate and skilled interns to join our cutting-edge research team focused on developing efficient machine learning techniques for sustainability. This is an exciting opportunity to make a real impact in the field of AI and environmental conservation, with the aim of publishing at leading AI research venues.
What We're Looking For:
- Advanced research experience in generative models and computationally efficient models
- Hands-on skills for large language models (LLM), vision language models (VLM), large multi-modal models (LMM), foundation models (FoMo)
- Deep understanding of state-of-the-art machine learning methods
- Proficiency in Python and PyTorch
- Familiarity with various deep learning frameworks
- Ph.D. candidates who have completed at least half of their program
Internship Details:
- Duration: approximately 3 months
- Flexible start dates available
- Objective: publish research results at leading AI research venues
If you are a highly motivated individual with a passion for applying AI to sustainability challenges, we want to hear from you! This internship offers a unique chance to work on meaningful projects at the intersection of machine learning and environmental sustainability.
- Research Areas: Artificial Intelligence, Machine Learning
- Host: Toshi Koike-Akino
- Apply Now
-
CI0139: Internship - Trustworthy and General AI
MERL is seeking passionate and skilled research interns to join our team focused on developing trustworthy, safe, and robust machine learning technologies towards realizing more capable, general agents. This is an exciting opportunity to make an impact on the field of AI safety and generalization, with the aim of publishing at leading AI research venues.
What We're Looking For:
- Advanced research experience with generative models related to the topics of AI safety, robustness, trustworthiness, and/or more capable agents.
- Hands-on skills for large language models (LLM), vision language models (VLM), large multi-modal models (LMM), foundation models (FoMo)
- Deep understanding of state-of-the-art machine learning methods
- Proficiency in Python and PyTorch
- Familiarity with other relevant deep learning frameworks
- Ph.D. candidates who have completed at least half of their program
Internship Details:
- Duration: approximately 3 months
- Flexible start dates available
- Objective: publish research results at leading AI research venues
If you're a highly motivated individual with a passion for tackling AI safety and privacy challenges, we want to hear from you! This internship offers a unique chance to work on meaningful AI research projects, combined with the opportunity to publish and add to your thesis.
- Research Areas: Artificial Intelligence, Machine Learning
- Host: Ye Wang
- Apply Now
-
ST0105: Internship - Surrogate Modeling for Sound Propagation
MERL is seeking a motivated and qualified individual to work on fast surrogate models for sound emission and propagation from complex vibrating structures, with applications in HVAC noise reduction. The ideal candidate will be a PhD student in engineering or related fields with a solid background in frequency-domain acoustic modeling and numerical techniques for partial differential equations (PDEs). Preferred skills include knowledge of the boundary element method (BEM), data-driven modeling, and physics-informed machine learning. Publication of the results obtained during the internship is expected. The duration is expected to be at least 3 months with a flexible start date.
- Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, Multi-Physical Modeling
- Host: Saviz Mowlavi
- Apply Now
-
ST0096: Internship - Multimodal Tracking and Imaging
MERL is seeking a motivated intern to assist in developing hardware and algorithms for multimodal imaging applications. The project involves integration of radar, camera, and depth sensors in a variety of sensing scenarios. The ideal candidate should have experience with FMCW radar and/or depth sensing, and be fluent in Python and scripting methods. Familiarity with optical tracking of humans and experience with hardware prototyping is desired. Good knowledge of computational imaging and/or radar imaging methods is a plus.
Required Specific Experience
- Experience with Python and Python Deep Learning Frameworks.
- Experience with FMCW radar and/or Depth Sensors.
- Research Areas: Computer Vision, Machine Learning, Signal Processing, Computational Sensing
- Host: Petros Boufounos
- Apply Now
-
CA0129: Internship - LLM-guided Active SLAM for Mobile Robots
MERL is seeking interns passionate about robotics to contribute to the development of an Active Simultaneous Localization and Mapping (Active SLAM) framework guided by Large Language Models (LLM). The core objective is to achieve autonomous behavior for mobile robots. The methods will be implemented and evaluated in high performance simulators and (time-permitting) in actual robotic platforms, such as legged and wheeled robots. The expectation at the end of the internship is a publication at a top-tier robotic or computer vision conference and/or journal.
The internship has a flexible start date (Spring/Summer 2025), with a duration of 3-6 months depending on agreed scope and intermediate progress.
Required Specific Experience
- Current/Past Enrollment in a PhD Program in Computer Engineering, Computer Science, Electrical Engineering, Mechanical Engineering, or related field
- Experience with employing and fine-tuning LLM and/or Visual Language Models (VLM) for high-level context-aware planning and navigation
- 2+ years experience with 3D computer vision (e.g., point cloud, voxels, camera pose estimation) and mapping, filter-based methods (e.g., EKF), and in at least some of: motion planning algorithms, factor graphs, control, and optimization
- Excellent programming skills in Python and/or C/C++, with prior knowledge in ROS2 and high-fidelity simulators such as Gazebo, Isaac Lab, and/or Mujoco
Additional Desired Experience
- Prior experience with implementation and/or development of SLAM algorithms on robotic hardware, including acquisition, processing, and fusion of multimodal sensor data such as proprioceptive and exteroceptive sensors
- Research Areas: Artificial Intelligence, Computer Vision, Control, Machine Learning, Optimization, Robotics
- Host: Alexander Schperberg
- Apply Now