-
ST0105: Internship - Surrogate Modeling for Sound Propagation
MERL is seeking a motivated and qualified individual to work on fast surrogate models for sound emission and propagation from complex vibrating structures, with applications in HVAC noise reduction. The ideal candidate will be a PhD student in engineering or related fields with a solid background in frequency-domain acoustic modeling and numerical techniques for partial differential equations (PDEs). Preferred skills include knowledge of the boundary element method (BEM), data-driven modeling, and physics-informed machine learning. Publication of the results obtained during the internship is expected. The duration is expected to be at least 3 months with a flexible start date.
- Research Areas: Artificial Intelligence, Dynamical Systems, Machine Learning, Multi-Physical Modeling
- Host: Saviz Mowlavi
- Apply Now
-
ST0141: Internship - Uncertainty Quantification in Computational Physics
The Computational Sensing team at MERL is seeking a highly motivated PhD student for an internship focused on uncertainty quantification (UQ) in computational modeling of physical systems. The goal of this project is to advance the methodology and practice of UQ, with a focus on reduced-order stochastic modeling and optimal sensor placement for Bayesian inverse problems. The research will draw upon foundational ideas and techniques in applied mathematics and statistics for applications in wave propagation, fluid dynamics, and more generally high-dimensional systems. The ideal candidate will be a PhD student in engineering, applied mathematics, computer science, or related fields with a solid background and publication record in any of the following areas: stochastic modeling, dimensionality reduction, Bayesian inference, optimal experimental design, and tensor methods. Programming skills in Python or MATLAB are required. Publication of the results obtained during the internship is expected. The duration is anticipated to be at least 3 months with a flexible start date.
- Research Areas: Computational Sensing, Dynamical Systems, Applied Physics, Machine Learning, Optimization
- Host: Wael Ali
- Apply Now
-
CA0117: Internship - Feedforward-Feedback Co-Design
MERL is seeking a graduate student to develop a scalable optimization-based framework for feedforward-feedback co-design for nonlinear dynamical systems subject to path constraints. The framework will 1) support modeling and operational uncertainties, and 2) guarantee static and dynamic feasibility in closed-loop. The solution approach will leverage the state-of-the-art in sequential convex programming, contraction analysis, and first-order methods for semidefinite programming. The methods will be evaluated on high-dimensional motion planning problems in robotics. The results of the internship are expected to be published in top-tier conferences and/or journal in robotics, control systems, and optimization.
The internship is expected to start in Spring or Summer 2025 with an expected duration of 3-6 months depending on the agreed scope and intermediate progress.
Required Specific Experience
- Current/Past enrollment in a Ph.D. program in Mechanical, Aerospace, Electrical Engineering, Computer Science, or Applied Mathematics.
- 2+ years of research in at least some of: first-order algorithms for SDPs, contraction analysis, nonconvex trajectory optimization.
- Strong programming skills in Python and/or C/C++.
- Research Areas: Control, Optimization, Robotics, Dynamical Systems
- Host: Purnanand Elango
- Apply Now
-
CA0111: Internship - Nonconvex Trajectory Optimization
MERL is seeking a graduate student to develop an optimization-based framework for nonconvex trajectory generation with emphasis on continuous-time modeling/constraint satisfaction, convergence guarantees, and real-time performance. The framework will support hybrid dynamical systems, spatio-temporal logical specifications, multi-body systems, and contact-rich motion. The methods will be evaluated on real-world robotics applications based on locomotion, manipulation, and motion planning. The results of the internship are expected to be published in top-tier conferences and/or journal in robotics, control systems, and optimization.
The internship is expected to start in Spring or Summer 2025 with an expected duration of 3-6 months depending on the agreed scope and intermediate progress.
Required Specific Experience
- Current/Past enrollment in a Ph.D. program in Mechanical, Aerospace, Electrical Engineering, Computer Science, or Applied Mathematics.
- 2+ years of research in at least some of: sequential convex programming, augmented Lagrangian, operator-splitting first-order optimization algorithms, contact-rich motion, multi-body systems, signal temporal logic specifications, direct shooting and collocation methods.
- Experience in design and simulation tools for robotics such as ROS, Mujoco, Gazebo, Isaac Lab.
- Strong programming skills in Python and/or C/C++.
- Research Areas: Control, Optimization, Robotics, Dynamical Systems
- Host: Purnanand Elango
- Apply Now
-
EA0074: Internship - Control Policy Learning with Guarantee
MERL is seeking a highly motivated and qualified individual to conduct research in the integration of model- and learning-based control to achieve high precision positioning with guaranteed safety and robustness. The ideal candidate should have solid backgrounds in dynamical systems, control theory and state-of-the-art control policy learning algorithms, and strong coding skills. Prior experience on ultra-high precision motion control systems is a plus. Ph.D. students in learning and control are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.
- Research Areas: Control, Machine Learning, Dynamical Systems
- Host: Yebin Wang
- Apply Now
-
MS0102: Internship - Estimation and Calibration of Multi-physical Systems Using Experiments
MERL is looking for a highly motivated and qualified candidate to work on estimation and calibration of muti-physical systems governed by differential algebraic equations (DAEs). The research will involve study, development and efficient implementation of estimation/calibration approaches for large-scale nonlinear systems, e.g., vapor compression cycles, with limited experimental data. The ideal candidate will have a strong background in one or multiple of the following topics: nonlinear control and estimation, optimization, and model calibration; with expertise demonstrated via, e.g., peer-reviewed publications. Prior experience in working with experimental data, and programming in Julia/Modelica is a plus. Senior PhD students in mechanical, electrical, chemical engineering or related fields are encouraged to apply. The typical duration of internship is 3 months, and the start date is flexible.
Required Specific Experience
- Graduate student with 2+ years of relevant research experience
Additional Desired Experience
- Strong programming skills in Julia or Modelica
- Prior experience in working with thermofluid systems
- Prior experience in estimation/calibration of complex nonlinear systems using experimental data
- Research Areas: Multi-Physical Modeling, Optimization, Control, Dynamical Systems, Applied Physics
- Host: Vedang Deshpande
- Apply Now