-
CI0197: Internship - Embodied AI & Humanoid Robotics
Those who are passionate about pushing the boundaries of embodied AI, join our cutting-edge research team as an intern and contribute to the development of generalist AI agents for humanoid robots. This is a unique opportunity to work on impactful projects aimed at publishing in top-tier AI and robotics venues.
What We’re Looking For
We’re seeking highly motivated individuals with:
- Advanced research experience in robotic AI, edge AI, and agentic AI systems.
- Hands-on expertise in Vision-Language-Action (VLA) models and Foundation Models
- Strong proficiency with Python, PyTorch/JAX, deep learning, and robotic agent frameworks
Internship Details
- Duration: ~3 months
- Start Date: Flexible
- Goal: Publish research at leading AI/robotics conferences and journals
If you're excited about shaping the future of humanoid robotics and AI agents, we’d love to hear from you!
The pay range for this internship position will be 6-8K per month.
- Research Areas: Applied Physics, Artificial Intelligence, Computer Vision, Control, Machine Learning, Robotics, Signal Processing, Speech & Audio, Optimization
- Host: Toshi Koike-Akino
- Apply Now
-
CI0190: Internship-IoT Network Methodology
MERL is seeking a highly motivated and qualified intern to carry out research on UAV assisted IoT network methodology. The candidate is expected to develop innovative path planning technologies to support UAV swarm navigation in IoT network environments. The candidates should have knowledge of communication network technologies such as path planning and cooperative network operations. Knowledge of control technology and path management is a plus. Start date for this internship is flexible and the duration is about 3 months.
Responsibilities for this position include:
- Research on UAV assisted IoT networks
- Develop path planning technologies to support UAV coordination in IoT networks
- Simulate and analyze the performance of developed technology
Qualifications for this position are:
- Junior and senior year Ph.D students
The pay range for this internship position will be 6-8K per month.
- Research Areas: Communications, Control, Dynamical Systems, Machine Learning, Optimization, Robotics, Signal Processing
- Host: Jianlin Guo
- Apply Now
-
SA0191: Human-Robot Interaction Based on Multimodal Scene Understanding
We are looking for a graduate student interested in advancing the field of multimodal scene understanding, focusing on scene understanding using natural language for robot dialog and/or indoor monitoring with a large language model. The intern will collaborate with MERL researchers to derive and implement new models and optimization methods, conduct experiments, and prepare results for publication. Internships regularly lead to one or more publications in top-tier venues, which can later become part of the intern's doctoral work. The ideal candidates are senior Ph.D. students with experience in deep learning for audio-visual, signal, and natural language processing. Good programming skills in Python and knowledge of deep learning frameworks such as PyTorch are essential. Multiple positions are available with a flexible start date (not just Spring/Summer but throughout 2026) and duration (typically 3-6 months).
Required Specific Experience
- Experience with ROS2, C/C++, Python, and deep learning frameworks such as PyTorch are essential.
The pay range for this internship position will be 6-8K per month.
- Research Areas: Artificial Intelligence, Machine Learning, Robotics, Speech & Audio
- Host: Chiori Hori
- Apply Now
-
EA0235: Internship - Planning and Control of Mobile Manipulators
MERL is seeking a highly motivated and qualified individual to conduct research on fast/robust whole-body motion planning and control of mobile manipulators for agility, safety and precision. The ideal candidate should demonstrate solid background and track record of publications in the areas of robotic dynamics, motion planning, and control. Strong C++ and Python coding skills, knowledge of robotic software such as Pinocchio/Pybullet/MuJoCo, and optimization tools such as CasADi/PyTorch are a necessity. Ph.D. students in mechanical engineering, robotics, computer science, and electrical engineering are encouraged to apply. Start date for this internship is around summer 2026 and the duration is about 3 months.
Required Specific Experience
- Experience with robotic software such as Pinocchio/Pybullet/MuJoCo/ROS
- Strong C++ and Python coding skills
- Optimization tools such as CasADi/PyTorch
The pay range for this internship position will be 6-8K per month.
- Research Areas: Control, Robotics, Optimization, Machine Learning
- Host: Yebin Wang
- Apply Now
-
OR0164: Internship - Robotic 6D grasp pose estimation
MERL is looking for a highly motivated and qualified intern to work on methods for task-oriented 6-dof grasp pose detection using vision and tactile sensing. The objective is to enable a robot to identify multiple 6-DoF grasp poses tailored to specific tasks, allowing it to effectively grasp and manipulate objects. The ideal candidate would be a Ph.D. student familiar with the state-of-the-art methods for robotic grasping, object tracking, and imitation learning. This role involves developing, fine-tuning and deploying models on hardware. The successful candidate will work closely with MERL researchers to develop and implement novel algorithms, conduct experiments, and publish research findings at a top-tier conference. Start date and expected duration of the internship is flexible. Interested candidates are encouraged to apply with their updated CV and list of relevant publications.
Required Specific Experience
- Prior experience in robotic grasping
- Experience in Machine Learning
- Excellent programing skills
The pay range for this internship position will be6-8K per month.
- Research Areas: Artificial Intelligence, Computer Vision, Machine Learning, Robotics
- Host: Radu Corcodel
- Apply Now
-
OR0179: Internship - Robot Learning
MERL is looking for a highly motivated and qualified PhD student in the areas of machine learning and robotics, to participate in research on advanced algorithms for learning control of robots and other mechanisms. Solid background and hands-on experience with various machine learning algorithms, including deep learning, is expected, as well as good understanding of computer vision methods, in particular algorithms for keypoint detection and tracking. Exposure to deep reinforcement learning and/or learning from demonstration is highly desirable. Familiarity with the use of machine learning algorithms for system identification of mechanical systems would be a plus, along with background in other areas of automatic control. Familiarity with visual servocontrol is highly desirable. Solid experimental skills and hands-on experience in coding in Python, PyTorch, and OpenCV are required for the position. Some experience with ROS2 and familiarity with classical mechanics and computational physics engines would be helpful, but is not required. Hands-on familiarity with industrial robots will be a definite plus. The position will provide opportunities for exploring fundamental problems in incremental learning in humans and machines, leading to publishable results. The duration of the internship is 3 to 5 months. Preference will be given to candidates who can start no later than the beginning of January 2025.
Required Specific Experience
- Python, PyTorch, OpenCV
- Keypoint tracking in images
Desired Specific Experience
- Visual servocontrol of robots
- Learning diffusion policies
- MuJoCo or other physics engines
- System identification
- Clustering algorithms
- ROS2
The pay range for this internship position will be6-8K per month.
- Research Areas: Robotics, Machine Learning, Artificial Intelligence
- Host: Daniel Nikovski
- Apply Now
-
CA0178: Internship - Planning and Control of Multi-robot systems
MERL is seeking a highly motivated intern to collaborate in the development decision making, planning and control for teams of ground robot in task such as coverage control, monitoring and pursuit-evasion. The ideal candidate is a PhD student with strong experience in planning and control of multi-agent systems, with background in advanced model-based (e.g., MPC) and learning-based (e.g., RL) methods. The results of the internship are expected to be published in top-tier conferences and/or journals. The internship will take place during Fall/Winter 2025 (exact dates are flexible) with an expected duration of 3-6 months.
Please use your cover letter to explain how you meet the following requirements, preferably with links to papers, code repositories, etc., indicating your proficiency.
Required Experience
- Current enrollment in a PhD program in Mechanical, Electrical, Aerospace Engineering, Computer Science or related programs, with a focus on Robotics and/or Control Systems
- Experience in as many as possible of:
- Formal methods and set based methods (temporal logics, reachability, invariance)
- Model predictive control (design, analysis, solvers)
- Reinforcement learning for planning
- Cooperative planning and control for multi-agent systems
- Programming in Python or Matlab or Julia
Additional Useful Experience
- Knowledge of one or more physics simulators for robotics (e.g., MuJoco)
- Experience with coverage control and pursuit-evasion problems
- Programming in C/C++ or Simulink code generation
The pay range for this internship position will be6-8K per month.
- Research Areas: Control, Dynamical Systems, Robotics
- Host: Stefano Di Cairano
- Apply Now
-
CV0221: Internship - Robust Estimation for Computer Vision
MERL seeks a motivated graduate student to conduct research in robust estimation for computer vision. Depending on the candidate’s background and interests, the internship may involve topics such as — but not limited to — camera pose estimation, 3D registration, camera calibration, pose-graph optimization, or transformation averaging.
The ideal applicant is a PhD student with strong expertise in 3D computer vision, RANSAC, or graduated non-convexity algorithms, along with solid programming skills in C/C++ and/or Python. Candidates should have at least one publication in a leading computer vision, machine learning, or robotics venue (e.g., CVPR, ECCV, ICCV, NeurIPS, ICRA, or IROS).
The intern will work closely with MERL researchers to develop and implement new algorithms for visual SLAM (V-SLAM), perform experiments, and document results. The goal is to produce work suitable for submission to a top-tier conference. The start date and duration of the internship are flexible.
Required Specific Experience
- Demonstrated experience in 3D computer vision, RANSAC, or graduated non-convexity algorithms for vision applications.
The pay range for this internship position will be 6-8K per month.
- Research Areas: Artificial Intelligence, Computer Vision, Robotics, Optimization
- Host: Pedro Miraldo
- Apply Now
-
CV0220: Internship - Visual Simultaneous Localization and Mapping (V-SLAM)
MERL seeks a self-motivated graduate student to conduct research on Visual Simultaneous Localization and Mapping (V-SLAM). Depending on the candidate’s expertise and interests, the internship may focus on topics such as — but not limited to — camera pose estimation, feature detection and matching, visual-LiDAR data fusion, pose-graph optimization, loop closure detection, and image-based camera relocalization.
The ideal candidate is a PhD student with a strong foundation in 3D computer vision and proficient programming skills in C/C++ and/or Python. Applicants should have at least one publication in a premier computer vision, machine learning, or robotics conference, such as CVPR, ECCV, ICCV, NeurIPS, ICRA, or IROS.
The intern will collaborate with MERL researchers to develop and implement novel algorithms for V-SLAM, perform experiments, and document research outcomes. The work is expected to lead to a submission to a top-tier conference. The start date and internship duration are flexible.
Required Specific Experience
- Experience with 3D Computer Vision and Simultaneous Localization & Mapping (SLAM).
The pay range for this internship position will be 6-8K per month.
- Research Areas: Artificial Intelligence, Computer Vision, Robotics
- Host: Pedro Miraldo
- Apply Now
-
CV0223: Internship - Physical Reasoning with Digital Twins
MERL is looking for a self-motivated intern to research on problems related to complex physical reasoning using digital twins and large vision-and-language models (VLMs). An ideal intern would be a Ph.D. student with a strong background in computer vision, machine learning, and robotics, with broad experience in using state-of-the-art physics engines. The candidate must have a strong background in 3D computer vision and machine learning (specifically in robotics and reinforcement learning), operational knowledge in using VLMs and generative AI, and experience in solving physical reasoning problems. Prior experience training VLMs would be a strong plus. The intern is expected to collaborate with researchers from multiple teams at MERL to develop algorithms and prepare manuscripts for scientific publications.
Required Specific Experience
- Experience with state-of-the-art physics simulators (both differentiable and non-differentiable)
- Experience in neuro-physical reasoning approaches
- Experience in state-of-the-art large vision-and-language models and generative AI models
- Enrolled in a PhD program
- Strong track record of publications in top-tier computer vision and machine learning venues (such as CVPR, NeurIPS, etc.).
The pay range for this internship position will be 6-8K per month.
- Research Areas: Artificial Intelligence, Computer Vision, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Robotics
- Host: Anoop Cherian
- Apply Now