Internship Openings

12 / 37 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • OR0115: Internship - Whole-body dexterous manipulation

    • MERL is looking for a highly motivated individual to work on whole-body dexterous manipulation. The research will develop robot motor skills for whole-body, dexterous manipulation using optimization and/or learning algorithms. The ideal candidate should have experience in either one or multiple of the following topics: Optimization Algorithms for contact systems, Reinforcement Learning, control through contacts, and Behavioral cloning. Senior PhD students in robotics and engineering with a focus on contact-rich manipulation are encouraged to apply. Prior experience working with physical robotic systems (and vision and tactile sensors) is required as results need to be implemented on a physical hardware. Good coding skills in Python ML libraries like PyTorch etc. and/or relevant Optimization packages is required. A successful internship will result in submission of results to a peer-reviewed robotics journal in collaboration with MERL researchers. The expected duration of internship is 4-5 months with start date in May/June 2025. This internship is preferred to be onsite at MERL.

      Required Specific Experience

      • Prior experience working with physical hardware system is required.
      • Prior publication experience in robotics venues like ICRA,RSS, CoRL.

    • Research Areas: Robotics, Optimization, Artificial Intelligence, Machine Learning
    • Host: Devesh Jha
    • Apply Now
  • OR0143: Internship - Data Center Power Management and Operations Optimization

    • Mitsubishi Electric Research Laboratories (MERL) in Cambridge, MA, is looking for a motivated Ph.D. student to join our internship program and conduct research in data center power management and operations optimization. The ideal candidate should be a senior or junior Ph.D. student in Electrical Engineering or a related field, with research experience in areas such as microgrids, power system, mathematical optimization, or data analysis. Knowledge of data centers is a plus. Strong programming skills in MATLAB, Python, or C/C++ are required. The internship duration is 3-4 months, with a flexible start date.

      Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

      MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL’s employees to perform their job duties may result in discipline up to and including discharge.

      Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.

    • Research Areas: Data Analytics, Control, Electric Systems, Optimization
    • Host: Hongbo Sun
    • Apply Now
  • CA0117: Internship - Feedforward-Feedback Co-Design

    • MERL is seeking a graduate student to develop a scalable optimization-based framework for feedforward-feedback co-design for nonlinear dynamical systems subject to path constraints. The framework will 1) support modeling and operational uncertainties, and 2) guarantee static and dynamic feasibility in closed-loop. The solution approach will leverage the state-of-the-art in sequential convex programming, contraction analysis, and first-order methods for semidefinite programming. The methods will be evaluated on high-dimensional motion planning problems in robotics. The results of the internship are expected to be published in top-tier conferences and/or journal in robotics, control systems, and optimization.

      The internship is expected to start in Spring or Summer 2025 with an expected duration of 3-6 months depending on the agreed scope and intermediate progress.

      Required Specific Experience

      • Current/Past enrollment in a Ph.D. program in Mechanical, Aerospace, Electrical Engineering, Computer Science, or Applied Mathematics.
      • 2+ years of research in at least some of: first-order algorithms for SDPs, contraction analysis, nonconvex trajectory optimization.
      • Strong programming skills in Python and/or C/C++.

    • Research Areas: Control, Optimization, Robotics, Dynamical Systems
    • Host: Purnanand Elango
    • Apply Now
  • CA0111: Internship - Nonconvex Trajectory Optimization

    • MERL is seeking a graduate student to develop an optimization-based framework for nonconvex trajectory generation with emphasis on continuous-time modeling/constraint satisfaction, convergence guarantees, and real-time performance. The framework will support hybrid dynamical systems, spatio-temporal logical specifications, multi-body systems, and contact-rich motion. The methods will be evaluated on real-world robotics applications based on locomotion, manipulation, and motion planning. The results of the internship are expected to be published in top-tier conferences and/or journal in robotics, control systems, and optimization.

      The internship is expected to start in Spring or Summer 2025 with an expected duration of 3-6 months depending on the agreed scope and intermediate progress.

      Required Specific Experience

      • Current/Past enrollment in a Ph.D. program in Mechanical, Aerospace, Electrical Engineering, Computer Science, or Applied Mathematics.
      • 2+ years of research in at least some of: sequential convex programming, augmented Lagrangian, operator-splitting first-order optimization algorithms, contact-rich motion, multi-body systems, signal temporal logic specifications, direct shooting and collocation methods.
      • Experience in design and simulation tools for robotics such as ROS, Mujoco, Gazebo, Isaac Lab.
      • Strong programming skills in Python and/or C/C++.

    • Research Areas: Control, Optimization, Robotics, Dynamical Systems
    • Host: Purnanand Elango
    • Apply Now
  • CA0129: Internship - LLM-guided Active SLAM for Mobile Robots

    • MERL is seeking interns passionate about robotics to contribute to the development of an Active Simultaneous Localization and Mapping (Active SLAM) framework guided by Large Language Models (LLM). The core objective is to achieve autonomous behavior for mobile robots. The methods will be implemented and evaluated in high performance simulators and (time-permitting) in actual robotic platforms, such as legged and wheeled robots. The expectation at the end of the internship is a publication at a top-tier robotic or computer vision conference and/or journal.

      The internship has a flexible start date (Spring/Summer 2025), with a duration of 3-6 months depending on agreed scope and intermediate progress.

      Required Specific Experience

      • Current/Past Enrollment in a PhD Program in Computer Engineering, Computer Science, Electrical Engineering, Mechanical Engineering, or related field
      • Experience with employing and fine-tuning LLM and/or Visual Language Models (VLM) for high-level context-aware planning and navigation
      • 2+ years experience with 3D computer vision (e.g., point cloud, voxels, camera pose estimation) and mapping, filter-based methods (e.g., EKF), and in at least some of: motion planning algorithms, factor graphs, control, and optimization
      • Excellent programming skills in Python and/or C/C++, with prior knowledge in ROS2 and high-fidelity simulators such as Gazebo, Isaac Lab, and/or Mujoco

      Additional Desired Experience

      • Prior experience with implementation and/or development of SLAM algorithms on robotic hardware, including acquisition, processing, and fusion of multimodal sensor data such as proprioceptive and exteroceptive sensors

    • Research Areas: Artificial Intelligence, Computer Vision, Control, Machine Learning, Optimization, Robotics
    • Host: Alexander Schperberg
    • Apply Now
  • ST0141: Internship - Uncertainty Quantification in Computational Physics

    • The Computational Sensing team at MERL is seeking a highly motivated PhD student for an internship focused on uncertainty quantification (UQ) in computational modeling of physical systems. The goal of this project is to advance the methodology and practice of UQ, with a focus on reduced-order stochastic modeling and optimal sensor placement for Bayesian inverse problems. The research will draw upon foundational ideas and techniques in applied mathematics and statistics for applications in wave propagation, fluid dynamics, and more generally high-dimensional systems. The ideal candidate will be a PhD student in engineering, applied mathematics, computer science, or related fields with a solid background and publication record in any of the following areas: stochastic modeling, dimensionality reduction, Bayesian inference, optimal experimental design, and tensor methods. Programming skills in Python or MATLAB are required. Publication of the results obtained during the internship is expected. The duration is anticipated to be at least 3 months with a flexible start date.

    • Research Areas: Computational Sensing, Dynamical Systems, Applied Physics, Machine Learning, Optimization
    • Host: Wael Ali
    • Apply Now
  • ST0126: Internship - Particle-Efficient Interacting Particle Systems for Inverse Problems

    • The Computational Sensing Team at MERL is seeking an intern to work with MERL researchers on algorithms based on interacting particle systems for solving inverse problems. The focus of the project is particle-efficiency and applicability to non-log-concave posterior distributions (which may result from nonlinear forward operators). The project includes algorithm design, (finite-particle) convergence analysis, and/or empirical evaluation for challenging inverse problems such as full waveform inversion. The ideal candidate would be a PhD student with a solid background in applied probability, nonconvex optimization, or Bayesian sampling. Programming skills in Python or MATLAB are required. The duration is anticipated to be at least 3 months with a flexible start date.

    • Research Areas: Computational Sensing, Optimization
    • Host: Yanting Ma
    • Apply Now
  • EA0069: Internship - PWM inverter switching loss reduction

    • MERL is looking for a self-motivated intern to work on PWM inverter simulation and design. The ideal candidate would be a Ph.D. candidate in electrical engineering with solid research background in power electronics, control, and optimization. Experience in switching loss reduction modulation is desired. The intern is expected to collaborate with MERL researchers to carry out simulations, optimize design, analyze results, and prepare manuscripts for scientific publications. The total duration is 3 months.

      Required Specific Experience

      • Experience with simulation tools for PWM inverter design.

    • Research Areas: Electric Systems, Signal Processing, Optimization
    • Host: Dehong Liu
    • Apply Now
  • EA0076: Internship - Machine Learning for Electric Motor Design

    • MERL is seeking a motivated and qualified intern to conduct research on machine learning based electric motor design and optimization. Ideal candidates should be Ph.D. students with a solid background and publication record in electric machine design, optimization, and machine learning. Hands-on experience with the implementation of optimization algorithms, machine learning and deep learning methods is required. Strong programming skills using Python/PyTorch are expected. Knowledge and experience with electric machine principle, design and finite-element analysis are highly desirable. Start date for this internship is flexible and the duration is about 3 months.

    • Research Areas: Artificial Intelligence, Machine Learning, Optimization
    • Host: Bingnan Wang
    • Apply Now
  • EA0065: Internship - Planning and Control of Mobile Manipulators

    • MERL is seeking a highly motivated and qualified individual to conduct research in safe/robust whole-body motion planning and control of mobile manipulators. The ideal candidate should demonstrate solid background and track record of publications in the areas of robotic dynamics, motion planning, and control. Strong C++ and Python coding skills, knowledge of robotic software such as Pinocchio/Pybullet/MuJoCo, and optimization tools such as CasADi/PyTorch are a necessity. Ph.D. students in mechanical engineering, robotics, computer science, and electrical engineering are encouraged to apply. Start date for this internship is flexible and the duration is about 3 months.

      Required Specific Experience

      • Solid background and track record of conducting innovative research in the dynamic modeling, motion planning, and control of robotic systems.
      • Experience with C++/Python, Pinocchio, Pybullet, MuJoCo, CasADi, PyTorch.

    • Research Areas: Control, Robotics, Optimization
    • Host: Yebin Wang
    • Apply Now
  • MS0102: Internship - Estimation and Calibration of Multi-physical Systems Using Experiments

    • MERL is looking for a highly motivated and qualified candidate to work on estimation and calibration of muti-physical systems governed by differential algebraic equations (DAEs). The research will involve study, development and efficient implementation of estimation/calibration approaches for large-scale nonlinear systems, e.g., vapor compression cycles, with limited experimental data. The ideal candidate will have a strong background in one or multiple of the following topics: nonlinear control and estimation, optimization, and model calibration; with expertise demonstrated via, e.g., peer-reviewed publications. Prior experience in working with experimental data, and programming in Julia/Modelica is a plus. Senior PhD students in mechanical, electrical, chemical engineering or related fields are encouraged to apply. The typical duration of internship is 3 months, and the start date is flexible.

      Required Specific Experience

      • Graduate student with 2+ years of relevant research experience

      Additional Desired Experience

      • Strong programming skills in Julia or Modelica
      • Prior experience in working with thermofluid systems
      • Prior experience in estimation/calibration of complex nonlinear systems using experimental data

    • Research Areas: Multi-Physical Modeling, Optimization, Control, Dynamical Systems, Applied Physics
    • Host: Vedang Deshpande
    • Apply Now
  • MS0098: Internship - Control and Estimation for Large-Scale Thermofluid Systems

    • MERL is seeking a motivated graduate student to research methods for state and parameter estimation and optimization of large-scale systems for process applications. Representative applications include large vapor-compression cycles and other multiphysical systems for energy conversion that couple thermodynamic, fluid, and electrical domains. The ideal candidate would have a solid background in control and estimation, numerical methods, and optimization; strong programming skills and experience with Julia/Python/Matlab are also expected. Knowledge of the fundamental physics of thermofluid flows (e.g., thermodynamics, heat transfer, and fluid mechanics), nonlinear dynamics, or equation-oriented languages (Modelica, gPROMS) is a plus. The expected duration of this internship is 3 months.

    • Research Areas: Optimization, Machine Learning, Control, Multi-Physical Modeling
    • Host: Chris Laughman
    • Apply Now