Internship Openings

6 / 36 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Working at MERL requires full authorization to work in the U.S and access to technology, software and other information that is subject to governmental access control restrictions, due to export controls. Employment is conditioned on continued full authorization to work in the U.S and the availability of government authorization for the release of these items, which might include without limitation, obtaining an export license or other documentation. MERL may delay commencement of employment, rescind an offer of employment, terminate employment, and/or modify job responsibilities, compensation, benefits, and/or access to MERL facilities and information systems, as MERL deems appropriate, to ensure practical compliance with applicable employment law and government access control restrictions.


  • CA2131: Collaborative Legged Robots

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on control and planning algorithms for legged robots for support activities of and collaboration with humans. The ideal candidate is expected to be working towards a PhD with strong emphasis in robotics control and planning and to have interest and background in as many as possible of: motion planning algorithms, control for legged robot locomotions, legged robots, perception and sensing with multiple sensors, SLAM, vision-based control. Good programming skills in Python or C/C++ are required. The expected start of of the internship is flexible, with duration of 3--6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA1940: Autonomous vehicle planning and contro in uncertain environments

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control for autonomous vehicles in uncertain surrounding environments. The research domain includes algorithms for path planning and control in environments that are uncertain and perceived by sensing and predicted according to models and data. The ideal candidate is expected to be working towards a PhD with strong emphasis in vehicle guidance and control, and to have interest and background in as many as possible of: vehicle dynamics modeling and control, sensor uncertainty modeling, data-driven prediction, predictive control for uncertain systems, motion planning. Good programming skills in MATLAB, Python are required, knowledge of C/C++, rapid prototyping systems, automatic code generation, vehicle simulation packages (CarSim, CarMaker) or ROS are a plus. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Dynamical Systems, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • CA2132: Optimization Algorithms for Motion Planning and Predictive Control

    • MERL is looking for a highly motivated and qualified individual to work on tailored computational algorithms for optimization-based motion planning and predictive control applications in autonomous systems (vehicles, mobile robots). The ideal candidate should have experience in either one or multiple of the following topics: convex and non-convex optimization, stochastic predictive control (e.g., scenario trees), interaction-aware motion planning, machine learning, learning-based model predictive control, mathematical programs with complementarity constraints (MPCCs), optimal control, and real-time optimization. PhD students in engineering or mathematics, especially with a focus on research related to any of the above topics are encouraged to apply. Publication of relevant results in conference proceedings or journals is expected. Capability of implementing the designs and algorithms in MATLAB/Python is required; coding parts of the algorithms in C/C++ is a plus. The expected duration of the internship is 3 months, and the start date is flexible.

    • Research Areas: Control, Dynamical Systems, Machine Learning, Optimization, Robotics
    • Host: Stefano Di Cairano
    • Apply Now
  • ST2083: Deep Learning for Radar Perception

    • The Computation Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in radar perception. Expertise in deep learning-based object detection, multiple object tracking, data association, and representation learning (detection points, heatmaps, and raw radar waveforms) is required. Previous hands-on experience on open indoor/outdoor radar datasets is a plus. Familiarity with the concept of FMCW, MIMO, and range-Doppler-angle spectrum is an asset. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with MERL in-house testbed, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Computer Vision, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST2025: Background Oriented Schlieren Tomography

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to develop algorithms that can perform background oriented Schlieren (BOS) tomography. The project goal is to utilize both analytical and learning-based architectures to enable the reconstruction of 3D air flows in an indoor setting from BOS measurements. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, large-scale optimization, learning-based modeling for imaging, Schlieren tomography, physics informed neural networks. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible.

    • Research Areas: Computational Sensing, Dynamical Systems, Machine Learning, Optimization
    • Host: Hassan Mansour
    • Apply Now
  • ST2082: Integrated Sensing and Communication (ISAC)

    • The Computational Sensing team at MERL is seeking a highly motivated intern to conduct fundamental research in integrated sensing and communication (ISAC) with a focus on signal processing, model-based learning, and optimization. Expertise in joint waveform/sequence optimization, integrated ISAC precoder/combiner design, model-based learning for ISAC, and downlink/uplink/active sensing under timing and frequency offsets is highly desired. Familiarity with IEEE 802.11 (ac/ax/ad/ay) standards is a plus but not required. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments using MERL in-house testbed, and prepare results for publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Communications, Computational Sensing, Dynamical Systems, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now