Internship Openings

12 / 29 Intern positions were found.

Mitsubishi Electric Research Labs, Inc. "MERL" provides equal employment opportunities (EEO) to all employees and applicants for employment without regard to race, color, religion, sex, national origin, age, disability or genetics. In addition to federal law requirements, MERL complies with applicable state and local laws governing nondiscrimination in employment in every location in which the company has facilities. This policy applies to all terms and conditions of employment, including recruiting, hiring, placement, promotion, termination, layoff, recall, transfer, leaves of absence, compensation and training.

MERL expressly prohibits any form of workplace harassment based on race, color, religion, gender, sexual orientation, gender identity or expression, national origin, age, genetic information, disability, or veteran status. Improper interference with the ability of MERL's employees to perform their job duties may result in discipline up to and including discharge.

Qualified applicants for MERL internships are individuals who have or can obtain full authorization to work in the U.S. and do not require export licenses to receive information about the projects they will be exposed to at MERL. The U.S. government prohibits the release of information without an export license to citizens of several countries, including, without limitation, Cuba, Iran, North Korea and Syria (Country Groups E:1 and E:2 of Part 740, Supplement 1, of the U.S. Export Administration Regulations).

Rising to the challenges of COVID-19

MERL believes that having an internship be located in MERL's office allows for particularly good interaction between you and those that you will be working with at MERL. In addition, some intern projects, e.g., ones that require specialized laboratory equipment, can only be pursued in our office. Going forward, we expect that all internships will be in-person at MERL. If health and safety concerns do not permit this, we will reevaluate our plans and some internships might have to become remote.

It is a requirement at MERL that everyone working in MERL's space must be fully vaccinated. In order for you to have your internship at MERL, you will have to prove that you are fully vaccinated when you arrive at MERL, i.e., by showing your vaccination card.


  • MD1746: PWM inverter circuit design

    • MERL is looking for a self-motivated intern to work on PWM inverter drive circuit design and fabrication. The ideal candidate would be a Ph.D. candidate in electrical engineering with solid research background in power electronics. Experience in PWM inverter design, switching loss estimation, and EMI is desired. The intern is expected to collaborate with MERL researchers to design, simulate, and fabricate circuits, carry out experiments, analyze experimental data, and prepare manuscripts for scientific publications. The total duration is 3 months.

    • Research Areas: Control, Electric Systems, Signal Processing
    • Host: Dehong Liu
    • Apply Now
  • MD1757: ML based Digital Pre-distortion (DPD) for PA

    • MERL is looking for a talented intern to work on the next generation Digital-predistortion algorithms for power amplifier linearization such as 5G. The development of a DPD system involves aspects of signal processing and statistical algorithm design, RF components and instrumentation, digital hardware and software. It is therefore both a challenging and intellectually rewarding experience. This will involve MATLAB coding, interfacing to test equipment such as power sources, signal generators and analyzers and construction and calibration of RF component assemblies. The ideal candidate should have knowledge and experience in adaptive signal processing, machine learning, and radio communication. Good practical laboratory skills are needed. RF semiconductor devices and circuit knowledge is a plus. Duration is 3 to 6 months.

    • Research Areas: Electronic and Photonic Devices, Machine Learning, Signal Processing
    • Host: Rui Ma
    • Apply Now
  • MD1696: Advanced RF Technologies

    • Mitsubishi Electric Research Laboratories (Cambridge, MA) is seeking a highly motivated, qualified individual to join our 3 month internship program of research on advanced RF technologies. The ideal candidate should be a senior Ph.D. student with good experience in microwave power amplifier/RF active circuit design and experiment, RF front end systems. Familiarity with ADS and Matlab is required. Knowledge of radio system architecture and FPGA (signal processing) would be an asset.

    • Research Areas: Communications, Electronic and Photonic Devices, Signal Processing
    • Host: Rui Ma
    • Apply Now
  • ST1763: Technologies for Multimodal Tracking and Imaging

    • MERL is seeking a motivated intern to assist in developing hardware and algorithms for multimodal imaging applications. The project involves integration of radar, camera, and depth sensors in a variety of sensing scenarios. The ideal candidate should have experience with FMCW radar and/or depth sensing, and be fluent in Python and scripting methods. Familiarity with optical tracking of humans and experience with hardware prototyping is desired. Good knowledge of computational imaging and/or radar imaging methods is a plus.

    • Research Areas: Computational Sensing, Signal Processing
    • Host: Petros Boufounos
    • Apply Now
  • ST1750: THz (Terahertz) Sensing

    • The Signal Processing (SP) group at MERL is seeking a highly motivated intern to conduct fundamental research in THz (Terahertz) sensing. Expertise in statistical inference, unsupervised anomaly detection, and deep learning (spatial-temporal representation learning) is required. Previous hands-on experience in THz data analysis is a plus. Familiarity with python and deep learning libraries is a must. The intern will collaborate with a small group of MERL researchers to develop novel algorithms, design experiments with collaborators, and prepare results for patents and publication. The expected duration of the internship is 3 months with a flexible start date.

    • Research Areas: Artificial Intelligence, Computational Sensing, Machine Learning, Optimization, Signal Processing
    • Host: Perry Wang
    • Apply Now
  • ST1762: Computational Sensing Technologies

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to assist in the development of computational methods for a variety of sensing applications. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: imaging inverse problems, deep learning for inverse problems, large-scale optimization, blind inverse scattering, radar/lidar/THz imaging, joint communications and sensing, multimodal sensor fusion, object or human tracking, sensing of dynamical systems, or wave-based inversion. Experience with experimentally measured data is desirable. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible.

    • Research Areas: Computational Sensing, Signal Processing
    • Host: Petros Boufounos
    • Apply Now
  • ST1791: Single Pixel Imaging

    • The Computational Sensing team at MERL is seeking motivated and qualified individuals to design sensing mechanisms and develop algorithms that perform high quality image and video reconstruction from a single pixel detector. The project goal is to improve the performance and develop robust methods that can reduce the number of snapshots required for image formation. Ideal candidates should be Ph.D. students and have solid background and publication record in any of the following, or related areas: compressed sensing, imaging inverse problems, large-scale optimization, plug-and-play priors, learning-based modeling for imaging, learning theory for computational imaging. Publication of the results produced during our internships is expected. The duration of the internships is anticipated to be 3-6 months. Start date is flexible.

    • Research Areas: Computational Sensing, Machine Learning, Optimization, Signal Processing
    • Host: Hassan Mansour
    • Apply Now
  • CI1752: Machine Learning for Electric Design Automation

    • MERL is seeking a highly motivated and qualified intern to join the Signal Processing group for an internship program. The ideal candidate will be expected to carry out research on machine learning for automated design synthesis to improve hardware efficiency of various digital signal processing algorithms. The candidate is expected to have solid knowledge of deep learning, reinforcement learning, symbolic learning, decision making, and graph neural networks. Hands-on experience of high-level synthesis, FPGA prototyping, verilog, and general digital signal processing is a plus.

    • Research Areas: Artificial Intelligence, Electric Systems, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • CI1468: Quantum Machine Learning

    • MERL is seeking an intern to work on research for quantum machine learning (QML). The ideal candidate is an experienced PhD student or post-graduate researcher having an excellent background in quantum computing, deep learning, and signal processing. Proficient programming skills with PyTorch, Qiskit, and PennyLane will be additional assets to this position.

    • Research Areas: Artificial Intelligence, Machine Learning, Signal Processing
    • Host: Toshi Koike-Akino
    • Apply Now
  • CI1733: ML for GNSS-based Applications

    • MERL is seeking a highly motivated, qualified intern to work on machine learning for Global Navigation Satellite System (GNSS) applications. The ideal candidate is working towards a PhD and is expected to develop innovative machine learning technologies to increase accuracy and integrity of GNSS-based positioning systems. Candidates should have strong knowledge about as many as possible of GNSS signal processing for multipath mitigation, handling RINEX data, neural network and learning techniques, such as feature extraction, deep machine learning, reinforcement learning, domain adaptation, and distributed learning. Proficient programming skills with PyTorch, Matlab, and C++, and strong mathematical analysis will be additional assets to this position. Candidates in their junior or senior years of a Ph.D. program are encouraged to apply.

    • Research Areas: Communications, Dynamical Systems, Machine Learning, Signal Processing
    • Host: K.J. Kim
    • Apply Now
  • CA1726: Distributed Estimation for Autonomous Systems

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in developing estimation methods with applications to multi-vehicle positioning. The ideal candidate is a PhD candidate with strong emphasis in estimation and control, and as interest and background in several of: bayesian inference, machine learning, maximum-likelihood estimation, optimization, distributed systems, and vehicle modeling and control. Good programming skills in MATLAB, Python, or C/C++ are required. The expected start of of the internship is in 2022 and flexible for a duration of 3-6 months.

    • Research Areas: Control, Optimization, Signal Processing
    • Host: Karl Berntorp
    • Apply Now
  • CA1706: Perception-aware vehicle control

    • MERL is seeking a highly motivated and qualified intern to collaborate with the Control for Autonomy team in research on planning and control algorithms accounting for perception of the uncertain surrounding environment. The ideal candidate is expected to be working towards a PhD with strong emphasis in control or planning algorithms, and to have interest and background in as many as possible of: predictive control algorithms for linear and nonlinear systems, stochastic constrained control, e.g., chance constraints, stochastic optimization, statistical estimation, perception system modeling, and vehicle modeling and control. Good programming skills in MATLAB, Python or C/C++ are required. The expected start of of the internship is in the late Spring/Early Summer 2022, for a duration of 3-6 months.

    • Research Areas: Control, Optimization, Signal Processing
    • Host: Stefano Di Cairano
    • Apply Now