TR2024-179
Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding
-
- "Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding", IEEE Conference on Decision and Control (CDC), December 2024.BibTeX TR2024-179 PDF
- @inproceedings{Yin2024dec,
- author = {Yin, Ji and Tsiotras, Panagiotis and Berntorp, Karl}},
- title = {Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding},
- booktitle = {IEEE Conference on Decision and Control (CDC)},
- year = 2024,
- month = dec,
- url = {https://www.merl.com/publications/TR2024-179}
- }
,
- "Chance-Constrained Information-Theoretic Stochastic Model Predictive Control with Safety Shielding", IEEE Conference on Decision and Control (CDC), December 2024.
-
Research Areas:
Abstract:
We introduce a nonlinear stochastic model pre- dictive control path integral (MPPI) method that considers chance constraints on system states. The proposed belief-space stochastic MPPI (BSS-MPPI) applies Monte-Carlo sampling to evaluate state distributions resulting from underlying systematic disturbances, and utilizes a Control Barrier Function (CBF) inspired heuristic in belief space to fulfill the specified chance constraints. Compared to several previous stochastic predictive control methods, our approach applies to general nonlinear dynamics without requiring the computationally expensive system linearization step. Moreover, the BSS-MPPI controller can solve optimization problems without limiting the form of the objective function and chance constraints and is parallelizable. Results on a realistic race-car simulation study show significant reductions in constraint violation compared to some of the prior MPPI approaches, while being comparable in computation times.
Related News & Events
-
NEWS MERL researchers present 7 papers at CDC 2024 Date: December 16, 2024 - December 19, 2024
Where: Milan, Italy
MERL Contacts: Ankush Chakrabarty; Vedang M. Deshpande; Stefano Di Cairano; James Queeney; Abraham P. Vinod; Avishai Weiss; Gordon Wichern
Research Areas: Artificial Intelligence, Control, Dynamical Systems, Machine Learning, Multi-Physical Modeling, Optimization, RoboticsBrief- MERL researchers presented 7 papers at the recently concluded Conference on Decision and Control (CDC) 2024 in Milan, Italy. The papers covered a wide range of topics including safety shielding for stochastic model predictive control, reinforcement learning using expert observations, physics-constrained meta learning for positioning, variational-Bayes Kalman filtering, Bayesian measurement masks for GNSS positioning, divert-feasible lunar landing, and centering and stochastic control using constrained zonotopes.
As a sponsor of the conference, MERL maintained a booth for open discussions with researchers and students, and hosted a special session to discuss highlights of MERL research and work philosophy.
In addition, Ankush Chakrabarty (Principal Research Scientist, Multiphysical Systems Team) was an invited speaker in the pre-conference Workshop on "Learning Dynamics From Data" where he gave a talk on few-shot meta-learning for black-box identification using data from similar systems.
- MERL researchers presented 7 papers at the recently concluded Conference on Decision and Control (CDC) 2024 in Milan, Italy. The papers covered a wide range of topics including safety shielding for stochastic model predictive control, reinforcement learning using expert observations, physics-constrained meta learning for positioning, variational-Bayes Kalman filtering, Bayesian measurement masks for GNSS positioning, divert-feasible lunar landing, and centering and stochastic control using constrained zonotopes.