TR2025-039
SurfR: Surface Reconstruction with Multi-scale Attention
-
- "SurfR: Surface Reconstruction with Multi-scale Attention", International Conference on 3D Vision (3DV), March 2025.BibTeX TR2025-039 PDF
- @inproceedings{Ranade2025mar,
- author = {Ranade, Siddhant and Pais, Goncalo and Whitaker, Ross and Nascimento, Jacinto and Miraldo, Pedro and Ramalingam, Srikumar},
- title = {{SurfR: Surface Reconstruction with Multi-scale Attention}},
- booktitle = {International Conference on 3D Vision (3DV)},
- year = 2025,
- month = mar,
- url = {https://www.merl.com/publications/TR2025-039}
- }
,
- "SurfR: Surface Reconstruction with Multi-scale Attention", International Conference on 3D Vision (3DV), March 2025.
-
MERL Contact:
-
Research Areas:
Abstract:
We propose a fast and accurate surface reconstruction algorithm for unorganized point clouds using an implicit representation. Recent learning methods are either single- object representations with small neural models that allow for high surface details but require per-object training or generalized representations that require larger models and generalize to newer shapes but lack details, and inference is slow. We propose a new implicit representation for general 3D shapes that is faster than all the baselines at their optimum resolution, with only a marginal loss in performance compared to the state-of-the-art. We achieve the best accuracy-speed trade-off using three key contributions. Many implicit methods extract features from the point cloud to classify whether a query point is inside or outside the object. First, to speed up the reconstruction, we show that this feature extraction does not need to use the query point at an early stage (lazy query). Second, we use a parallel multi-scale grid representation to develop robust features for different noise levels and input resolutions. Finally, we show that attention across scales can provide improved re- construction results. The code will be made available.