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First, to speed up the reconstruction, we show that this feature extraction does not need
to use the query point at an early stage (lazy query). Second, we use a parallel multi-scale
grid representation to develop robust features for different noise levels and input resolutions.
Finally, we show that attention across scales can provide improved re- construction results.
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Abstract

We propose a fast and accurate surface reconstruction
algorithm for unorganized point clouds using an implicit
representation. Recent learning methods are either single-
object representations with small neural models that allow
for high surface details but require per-object training or
generalized representations that require larger models and
generalize to newer shapes but lack details, and inference
is slow. We propose a new implicit representation for gen-
eral 3D shapes that is faster than all the baselines at their
optimum resolution, with only a marginal loss in perfor-
mance compared to the state-of-the-art. We achieve the
best accuracy-speed trade-off using three key contributions.
Many implicit methods extract features from the point cloud
to classify whether a query point is inside or outside the
object. First, to speed up the reconstruction, we show that
this feature extraction does not need to use the query point
at an early stage (lazy query). Second, we use a parallel
multi-scale grid representation to develop robust features
for different noise levels and input resolutions. Finally, we
show that attention across scales can provide improved re-
construction results. The code will be made available.

1. Introduction
Surface reconstruction from noisy point clouds (e.g., from
structure-from-motion pipelines or 3D sensors) has been
one of the essential tasks in the computer vision and graph-
ics community [3, 22, 25, 26], with numerous applica-
tions in autonomous vehicles, medical imaging, and AR/VR
technologies. The challenges arise from noisy/incomplete
data, the choice of representation, complex geometry, and
computational bottlenecks. While 3D point-based represen-
tations are lightweight, they lack surface information, and
voxels, on the other hand, leave a huge memory footprint.
We propose SurfR, a data-driven and efficient implicit sur-
face reconstruction method that produces high-fidelity mod-

*Equal contribution.
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Figure 1. SurfR result and error/time trade-off: At the top, we
show a sparse input point cloud and its reconstruction using the
proposed method SurfR. At the bottom, we show our method and
the baselines error vs. time trade-off comparison, with different
resolutions (number below).

els, striking the right balance between speed and accuracy
(see Fig. 1). Note that applications that require real-time
processing or have low compute budgets will benefit im-
mensely from this speedup, including those in robotics, aug-
mented/virtual reality, and embedded systems, for exam-
ple, in interactive mesh editing, such as [45, 53], where re-
meshing is frequently re-run, or interactive SLAM [33, 42],
where the user accompanied by a robot interacts with the
environment to get accurate object representations for scene
understanding [16, 34]. SurfR proposes a framework that is
towards real-time without compromising surface details and
without over-smoothing.

A robust surface reconstruction method should be capa-
ble of handling noisy/partial point clouds sampled from a



variety of shapes. Neural implicit functions show promising
results on various 3D tasks, including surface reconstruc-
tion. Many of these methods can be divided as per-object or
general shape reconstruction. More object-specific meth-
ods [13, 46], inspired by [32] and [37], take advantage of
the object’s shape priors to encode the objects explicitly.
However, these methods are not generalizable to unseen
shapes. On the other hand, general shape reconstruction
methods [8, 18, 35, 37, 46, 52] rely on general encoders
to reconstruct the 3D implicit surface. These methods are
more generalizable but suffer from a loss in reconstruction
quality. The general idea is to use a neural network to pre-
dict a distance value given a query point based on a feature
representation. One can achieve this by first extracting a
global feature (e.g., using a PointNet [39]) and then regress-
ing the distance function for the query point [35]. How-
ever, using a single global feature for the entire point cloud
fails to capture the local geometry, and recent methods ex-
tract multiple features from local patches [2, 8, 11]. The
proposed algorithm also uses multiple resolution features
to better model the local and global information to achieve
high-fidelity implicit representation. Our contributions are:
• Lazy query processing in feature extraction to achieve

significant computational efficiency.
• Parallel multi-scale feature extraction to achieve robust-

ness to noise and different input resolutions.
• Attention using a transformer encoder layer [48] to fuse

features across scales, significantly improving reconstruc-
tion results.

• Best accuracy-speed trade-off. SurfR is competitive with
state-of-the-art reconstruction fidelity and is faster than
baselines at their optimal resolution.

2. Related Work

Surface reconstruction spans several decades of research in
geometry processing, addressing a challenging and long-
standing problem. We can study these methods across dif-
ferent dimensions: generalizable (single model for multiple
objects), feature extraction (single point feature or multi-
scale features), method architecture (query feature regres-
sion or learned kernels), etc.

Generability: Learning-based approaches for surface re-
construction take advantage of rich data priors to better
handle noise, incomplete data, and inconsistent normals,
which can be separated into object-specific and generaliz-
able methods. Object-specific methods [4, 9, 10, 13, 14,
21, 27, 29–32, 35, 37, 41, 43, 44, 46, 47, 49] focus on
a single object/scene to create an implicit surface repre-
sentation from the input point cloud that is decoded when
necessary. These methods can lead to high-quality recon-
structions, though they are limited in generalizing newer
shapes and geometry. In contrast, generalizable methods

such as [2, 7, 8, 11, 18, 35, 37, 50–52] can generalize to a
wide range of shapes, with a penalty in the reconstruction
quality. These typically differ in how the query representa-
tion is built. The proposed method follows the latter.

Feature Extraction: In general, all learning methods have
a similar structure. A feature representation is built from
the input point cloud and then decoded to get its implicit
surface. In the object-centric methods, this feature rep-
resentation is associated with an explicit per-object geo-
metric structure [13, 37, 46] known a priori since the ob-
ject’s geometry is known. The generalizable methods build
that representation based on the query object and then de-
code it to obtain the surface representation. Some meth-
ods rely only on a single point feature [2, 11, 35, 50]
while others use multiple scale features [18, 51, 52]. Multi-
scale features have been shown to provide benefits in deal-
ing with noise and different input resolutions for different
tasks [7, 8, 18, 35]. In IF-Nets [7, 8], a 3D convolutional
network (with pooling) processes a discretized point cloud
to create feature grids at multiple scales, with the early
stages capturing shape detail and the later stages the global
structure. NKSR [18] uses a sparse UNet to obtain per-
resolution features. In contrast, SurfR uses a PointNet for
each scale to compute cell features in parallel, considering
only points within the cell without discretization. Cell em-
bedding is sensitive to local detail at larger scales, giving
us a multi-scale 3D representation. The cross-scale atten-
tion balances feature extraction between scales. The contri-
butions are this way of extracting multi-scale features and
fusing them with attention. Also, avoiding 3D convolutions
and discretization makes SurfR faster and more accurate.

Architecture: These neural models can be constructed in
two ways: estimate the implicit representation from anchors
following the estimated kernels or regression from an ex-
plicit feature representation. Kernel methods like [18, 51,
52] create a grid kernel from the input point cloud that pre-
dicts the implicit representation. The output representation
of the input points is the sum of all neighbor grid voxels
output weighted by the learned kernel. In [52], NKS pro-
poses a single-scale kernel to predict the grid occupancy
while considering noise. In [18], NKSR extends NKS for
multi-resolution kernels conditioned by UNet features.

On the other hand, the regression methods [2, 7, 8, 11,
35, 50] create an intermediate feature representation and
then decode it to obtain the surface representation. Using
a sparse convolutional backbone, POCO [2] encodes the in-
put points in feature vectors. Given an arbitrary query point,
its feature is computed from the nearest input points’ fea-
tures. POCO proposes to use an attention module to weigh
the contribution of each neighbor feature to the query point.
ALTO [50] extends POCO’s approach and builds successive
triplanes [1, 5] to query with attention to the points’ loca-
tion for better feature extraction. In contrast, the proposed
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Figure 2. Overview The input consists of point cloud P and query
points Q. For each scale s ∈ {s0, s1, . . . , sS}, an encoder net-
work is used to extract per-cell features Fc

s . These features are
sampled at the query points to get query point features Fq

s with our
novel query-feature sampling technique. A self-attention mecha-
nism is applied to these features to obtain a new set of per-query
features Fa

s , which are subsequently concatenated and regressed
by the SDF head to sign logits L̂q and magnitudes M̂q , which are
used to compute the final signed distance D̂q .

method also encodes the input points in feature vectors but
uses a PointNet [39] for each resolution and utilizes an at-
tention layer per resolution. The feature of the query point
is constructed from the different resolutions weighted by
the inverse distance of the query point to the input points.
This scheme allows cross-scale information sharing without
over-smoothing and at the cost of details.

3. Surface Reconstruction with Multi-scale At-
tention

Given a set of unorganized points P , the goal of SurfR is to
reconstruct the original object surface using implicit surface
reconstruction with an SDF. Then, we define the surface S
as the zero level-set of its SDF dS(x), i.e., S = {x, dS(x) =
0}, where x is a point in 3D. We are essentially learning the
implicit function using a neural network in order to produce
SDF estimates. Similar to other implicit neural methods,
we estimate the SDF on a regular grid of desired resolution,
and a suitable isosurfacing algorithm is necessary to recover
the underlying surface [28]. The overview of the method is
shown in Fig. 2.

3.1. Overview and Notation

Overview: We highlight the five main components of SurfR
in this section. First, we extract features at multiple scales
from the input point cloud. The basic idea is to partition
the space into cells and then extract features from the points
lying in each of these cells. Second, we lazily bring the
query points and use the proposed query feature sampler
to extract query features. Third, a cross-scale attention is
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Figure 3. Parallel Multi-scale feature extraction The input
points P in (i) are transformed to cell coordinates Ps, at each scale
s (ii), and each individual cell is processed in parallel as shown in
the inset. Then, the points are encoded by PointNet els to get the
per-point features F l

s (iii). Further they are encoded by the cell en-
coder ecs and pooled cell-wise to get the per-cell features Fc

s (iv).

applied to these features using a transformer layer. Next,
we concatenate the features across scales and use the SDF
head to regress the signed distance. Finally, we use the loss
functions on the sign and magnitude, and an L1 penalty on
weights for regularization. In the subsections that follow,
we discuss the individual components of the algorithm in
detail.

Input and groundtruth: The proposed method takes as
input the point cloud P = {pi : i ∈ {0, . . . , P − 1}} and
the query points Q = {qj : j ∈ {0, . . . , Q − 1}}, where
pi,qj ∈ R3, shown in Fig. 2 (i) and (ii). For training, we use
the ground-truth signed distances (i.e. to the mesh) Dq =
{dqj : j ∈ {0, . . . , Q − 1}} corresponding to each query
point. All input and query points are normalized to lie inside
the unit cube [−1, 1]3.

Features: We extract features at different stages of the algo-
rithm, and we briefly introduce the notation here. For each
scale s ∈ {s0, s1, . . . , sS}, we extract per-cell features Fc

s ,
where the superscript c denotes the cell and the subscript s
denotes the scale. The query features are denoted by Fq

s .
The features generated through cross-scale attention are de-
noted by Fa

s . The scale s is usually used as the subscript in
different entities that follow.

Encoders: The local and cell encoders at scale s are de-
noted by els and ecs, and the attention across scales by ea.

3.2. Parallel Multi-scale Feature Extraction

Figure 3 presents the proposed approach to multi-scale fea-
ture extraction from a given point cloud. At each scale, the
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Figure 4. Query Feature Sampling The input to this stage con-
sists of Ps, F l

s, Fc
s from the multi-scale feature extraction, and

the query points Q. The query points ii are transformed to cell
coordinates Qs (ii - top). The output per-query feature Fq

s (vi) is a
concatenation of the query points in cell coordinates (ii - bottom),
mean relative nearest neighbor position (iii), mean nearest neigh-
bor feature (iv), and feature of the cell containing the query point
(v).

input point set is spatially partitioned into grid cells, and
points within each cell are processed independently of other
cells, as shown in the inset. At a larger scale, we partition
the space into a larger number of cells and vice versa. Be-
fore extracting features from the points falling in each of
these cells, we transform the points to the local coordinate
frame of the cells. As shown in Fig. 3 (ii), the points x at
scale s are first transformed to cell coordinates using T s(x),
which corresponds to a translation of the origin to the cell
center and scaling. Then, a per-point feature (Fig. 3 (iii))
is extracted using a PointNet els. Finally, a single feature is
computed using the cell encoder ecs followed by cell-wise
max pooling. The result is shown in Fig. 3 (iv). Next, we
detail these steps.
Transformation to cell coordinates Ts(x): Transforming
the points to cell coordinates allows the local encoder to
independently estimate features across cells. At scale s, the
unit cube is divided into a total of s3 cells. Ts(x) denotes
the cell-coordinate of point x at scale s.
Per-point features: Let Ps = {Ts(pi) : i ∈ {0, . . . , P −
1}} denote the set of points in local coordinates at scale s.
For each point pi ∈ Ps, the local encoder els is used to
extract per-point features as follows:

f l,is = els(Ts(pi)), (1)

which is used by the query feature sampler in computing the
mean nearest neighbor feature in Sec. 3.3. We denote the set
of all per-point features at scale s as F l

s = {f l,is : pi ∈ P}.
Per-cell features: The per-point features f l,is are further en-
coded by the cell encoder ecs and pooled over cells to get the
per-cell features using

f cs = max
i∈ck

ecs(f
l,i
s ), (2)

where max leads to a channel-wise maximum overall point
in cell ck. These per-cell features account for the local ge-
ometry of the cell, which is crucial for estimating the SDF.
Cells that do not contain any points have the all-zero fea-
ture, shown in white in Fig. 3 (iv). The set of all per-cell
features (also at scale s) are denoted as Fc

s = {f cs : c ∈
{0, . . . , s− 1}3}.

3.3. Query Feature Sampling

Both local and global shape information are critical in esti-
mating the SDF at a given point. Methods that use a single
global feature descriptor, e.g. [14, 35], do not perform as
well as methods that take the local shape into account. One
way to incorporate the local shape is to use patches around
query points as input. However, this is expensive. The pro-
posed architecture addresses this issue by first extracting
shape features independently of the query points and then
samples these features at the query points. At each scale,
the set of per-point features F l

s, (as shown in Eq. 1), and
per-cell features Fc

s (see Eq. 2) are combined to obtain fea-
tures Fq

s for each query point, as shown in Fig. 4 (Page 4).
The feature fq,js corresponding to a query point qj lying in
cell s is defined as the concatenation of:
• Query point position: Ts(qj).
• Cell feature: f cs .
• Mean nearest neighbor feature Given Nj ⊆ {i : pi ∈
Pc
s}, the set of K nearest neighbors of qj , the mean near-

est neighbor feature is given by:

fNj
s =

∑
i∈Nj

wj,i
s f l,is , (3)

where the weights wj,i
s = sim(i,j)∑

l∈Nj
sim(l,j)

,
∑

i w
j,i
s = 1

(InterpNN), and sim(i, j) = 1
∥qj−pi∥2 , similar to [40].

• Mean relative nearest neighbor position a weighted av-
erage of the relative positions of the K nearest neighbors
in cell coordinates, i.e.,

p̄Nj
s = s

∑
i∈Nj

wj,i
s (pi − qj). (4)

The final concatenated feature of qj in cell c is given by

fq,js =
[
Ts(qj), f

c
s , f

Nj
s , p̄Nj

s

]
. (5)

The set of all per-query features at scale s is denoted as
Fq

s = {fq,js : j ∈ {0, . . . , Q− 1}}.

3.4. Cross-Scale Attention

The per-query features from different scales contain com-
plementary information. Therefore, we adopt a weighted
sum across all scales to emphasize the more significant fea-
tures from different scales and improve feature extraction.



For that purpose, a cross-scale attention mechanism is in-
cluded after the query feature sampling. For each query
point, we apply a transformer [48] encoder layer to fuse
the features across levels, here denoted as ea. Given the
query features fq,js , . . . , fq,jsS as inputs (shown in Eq. 5), the
attention mechanism outputs a new set of features Fa

s =
{fa,js0 , . . . , fa,jsS } as follows:

fas,j = ea(fq,js , {fq,js0 , . . . , fq,jsS }). (6)

These features are shown in Fig. 2 (v).
As will be shown in Sec. 4.3, we find that this simple

self-attention mechanism across scales improves the perfor-
mance of the method. In particular, it helps reduce the ar-
tifacts of the cell boundaries and produces smoother results
overall.

3.5. Signed Distance Regression

The set of features Fa
s , in Eq. 6, corresponding to query

points qj are concatenated across scales and regressed by
the SDF head eh to sign logits and magnitudes of the signed
distance, denoted by l̂qj and m̂q

j , respectively (see Fig. 2(vi)),
as

(l̂qj , m̂
q
j) = eh([fa,js0 , . . . , fa,jsS ]).

The final estimate of the SDF is computed as d̂qj = sgn(l̂qj ) ·
m̂q

j , shown in Fig. 2(vii).

3.6. Loss Functions

The loss function minimizes the error on the magnitude and
sign of the SDF and uses L1 penalty on the weights for reg-
ularisation (similar to [11]):

L = λmagLmag + λsgnLsgn + λregLreg (7)

The term Lmag denotes the error on the estimated magni-
tude with respect to the ground-truth as given by Lmag =∑

j

∣∣tanh(m̂q
j)− tanh(abs(dqj))

∣∣. The sign term Lsgn is the
binary cross-entropy on the sign logits. The term Lreg is an
L1 regularizer on the weights of eh. The coefficients λmag ,
λsgn, and λreg denote the tunable hyperparameters.

3.7. Surface Reconstruction

Given a new point cloud as input, we estimate the SDF at
points on a regular grid and then use marching cubes to ex-
tract the (iso-surface). Estimating the SDF at all the points
on a regular grid is prohibitively expensive for any reason-
able voxel grid resolution, and instead, one can argue that
a truncated SDF is sufficient for surface extraction. As in
[11], we evaluate the SDF close to the input points (leaving
other samples empty), and propagate the sign by repeatedly
applying a box filter of size ϵ3 voxels at the empty vox-
els until convergence, updating the sign only if the filter re-
sponse is greater (in magnitude) than a user-defined thresh-
old tupdate = 13. Since ϵ directly affects reconstruction time,
we use the same value, ϵ = 5.

4. Experiments

4.1. Datasets

The training and validation data consist of 4950 and 100
examples from the ABC dataset [24], a collection of CAD
models. The test set comprises 100 additional examples
from the ABC dataset (unseen in training), the FAMOUS
dataset (a collection of 22 meshes popular in the geometry
processing literature, such as the Utah teapot, the Stanford
bunny, and the Dragon), and the Thingi10K dataset [54],
with varying levels of noise and sparsity (for Thingi10K and
FAMOUS). For a fair comparison, we highlight that the test
data was not seen during training or validation for any of the
tested methods in Sec. 4.4. We also show qualitative results
on two scans of complex real-world objects.

All meshes are first transformed to the unit cube, fol-
lowing which the input point cloud is sampled using
BlenSor [15], which simulates scanning of a given surface
mesh with a time-of-flight sensor, including realistic noise
characteristics and sensor artifacts. For each shape, 2000
query points are used, 1000 samples on the surface and off-
set along the surface normal by a distance uniformly sam-
pled from [-0.02, 0.02], and 1000 sampled uniformly at ran-
dom in the unit cube. While training, 6000 input points and
1000 query points were used per shape. During training,
random rotations are applied to all shapes.

4.2. Implementation Details

Network Architectures: The local encoder els is imple-
mented as a 2-layer MLP followed by a spatial trans-
former [20]. We pick the per-point feature size to be
F1 = 64. The cell encoder ecs is a 3-layer MLP, with the
per-cell feature size F2 = 128. The query feature dimen-
sion (at each scale) is thus F = 3+3+F1+F2 = 198 (see
Fig. 4). We use scales s ∈ {1, 4, 16}, S = 3. Together, els
and ecs (Eqs. 1 and 2) resemble a PointNet [39]. The cross-
scale attention ea (Eq. 6) is composed of one head trans-
former encoder layer with a 512 fully connected layer. The
SDF head eh has an input dimension of S × F = 594 and
is a 5-layer MLP with an abs(·) non-linearity for the mag-
nitude. All MLPs use BatchNorm [19] followed by ReLU
non-linearity for hidden layers.

Training Details: The loss weights are λmag = 5.0,
λsgn = 2.0, λreg = 10−6, and the batch size is 16. We
use the Adam [23] optimizer with an initial learning rate of
7.5 ∗ 10−4, which decays exponentially after every epoch,
halving every 100 epochs, and train for a total of 750
epochs.

Software/Hardware: Our code is written in PyTorch [36]
with the PyTorch-Geometric [12] extension library. We take
utmost care to ensure our experiments are reproducible; We
use one NVidia Titan Xp GPU for training, taking about 20



Chamfer Distance L2 (↓)

Noise Base + multi-scale + multi-scale
+ attention

no 2.6 2.3 2.2
med 3.0 2.7 2.4
max 3.6 3.7 3.2
Avg. 3.1 2.8 2.6

Table 1. Ablations: Cham-
fer distance for: Base: sin-
gle LOD of value 1, Base
+ multi-scale: multi-scales,
with values {1, 4, 16}, with-
out attention, Base + multi-
scale + attn.: multi-scales
{1, 4, 16} with cross-scale
attention.

Table 2. Comparisons on the Different Multi-scales and
Weighting Schemes: Chamfer distance on different scales with
cross-scale attention (lower is better). We also evaluate the dif-
ferent weighting schemes for grid cell aggregation. EW samples
equal weights and LW is a learnt weight parameter.

Noise
InterpNN LW EW

{1, 4} {1, 4, 16} {1, 5, 25} {1, 3, 9, 27} {1, 4, 16} {1, 4, 16}

no 3.3 2.2 2.6 3.3 2.5 2.5
med 2.8 2.4 2.7 3.2 2.6 2.8
max 3.6 3.2 3.5 3.9 3.4 3.6
Avg. 3.3 2.6 2.9 3.5 2.8 3.0

minutes per epoch.

4.3. Ablation Study

Using a surface reconstruction of voxel grid of dimension
256, we evaluate our design choices related to multi-scale
feature extraction compared to using a single scale of 1,
and query feature components by comparing their perfor-
mance. We report the chamfer distance on the ABC dataset
in Tab. 1. This analysis validates the design of the query
feature. Due to resource constraints, these ablations were
performed with a batch size of 4, training for 100 epochs.

In addition to the choices related to multi-scale grid fea-
ture extraction and cross-scale attention, we study the ef-
fect of using different scales and weighting schemes for
query feature sampling. Table 2 shows the results. We tried
with equal EW and learned weights LW and InterpNN (see
Sec. 3.3) which achieves the best results. The final method
uses scales {1, 4, 16}, which obtained the best average per-
formance in all ablations. The multi-scale features allow for
a better global understanding of the object, while the cross-
scale attention parallel module fuses the global and local
features, producing more detail.

4.4. Results

Baselines: We compare the proposed approach with the
data-driven methods P2S [11], IF-Net [8], CON [37],
SAP [38], POCO [2], and NKSR [18]. We follow the same
training protocol as POCO and P2S. We note that previous
methods obtained the best results at different grid resolu-
tions. While CON uses a voxel grid of size 32, IF-Net uses

128, P2S 256, SAP 256, POCO 256, and NKSR 256. CON
and IF-Net are trained on ≈ 40000 models across 13 cate-
gories from ShapeNet [6], while P2S, POCO, NKSR, and
SurfR are trained on ≈ 5000 shapes from the ABC dataset.
All the baselines except NKSR only require the input point
cloud to obtain the surface representation. Since NKSR also
requires normals as input, we use the evaluation point cloud
to estimate the normals with 16 nearest neighbors as a fair
comparison to the other baselines. Our evaluation scheme
does not use additional refinement steps such as POCO and
NKSR as detailed in Sec. 3.7.

Quantitative results: We report the chamfer distance (mul-
tiplied by 100) and normal consistency [30] on the test
datasets (see Sec. 4.1) in Tab. 3 at Page 8. The chamfer dis-
tance measures the geometric quality of the reconstructed
surface, penalizing missing and extra geometry, whereas
normal consistency penalizes surface roughness and over-
smoothing. For a fair comparison, we consider SurfR with
three different surface reconstruction resolutions: 64, 128,
and 256. The results show that SurfR is competitive with the
current state-of-the-art at a speed-up. Considering all meth-
ods with the same resolution, SurfR is 33 times faster than
P2S and 7.3 times faster than POCO (both at 256 resolu-
tion), as shown in Tab. 4 and Fig. 1. The results of no-noise,
med-noise, or dense reconstruction are very competitive
with those of P2S and POCO; for example, in Thingi10k,
SurfR achieves about the same reconstruction results as P2S
and POCO. The main difference is in the max-noise case,
where the proposed method obtains slightly worse results
than both P2S and POCO and where CON, IF-Net, and
NKSR fail as well since they are constrained to 3D convo-
lutions and the kernel for NKSR. IF-Net creates holes in the
generated meshes, explaining the lower normal consistency.
CON produces smoothed meshes at optimal 32 resolution,
losing fine detail and resulting in a high chamfer distance,
though its overly smoothed surfaces achieve a high normal
consistency. NKSR produces many holes that, as a conse-
quence, obtain low normal consistency and high chamfer
distance. Additionally, SurfR is faster and more accurate
than IF-Net, CON, and NKSR while running at the same
or higher resolution (CON 32, IF-Net 128, NKSR 256).
SurfR, P2S, and POCO perform better at filtering noise and
preserving fine detail, corroborated by the low chamfer dis-
tance and high normal consistency.

Qualitative results: We visualize some meshes recon-
structed at a resolution of 256 in Fig. 5 with different noise
levels for the input point cloud. Finally, we show recon-
structions of two real-world objects in Fig. 6. Qualitatively,
SurfR’s results are better than most baselines, preserving
more detail and completing sparsely sampled surfaces bet-
ter. The reconstructed surfaces are rougher than POCO’s,
but the object details are still captured. The other methods
over-smooth the surface, losing detail and producing holes.
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Figure 5. Qualitative Baseline Comparison: the results of the proposed method are qualitatively on par with the baselines, or even better,
particularly on the Famous and Thingi10K datasets, with different noise/density levels. SurfR preserves more detail even in sparsely
sampled surfaces.

Point Cloud POCO NKSR SurfR

Figure 6. Reconstruction of Real-world Objects: SurfR generalizes well, even in noise and variable sampling density. The proposed
method shows it can handle real-world objects taken from SfM methods.



Table 3. Quantitative Baseline Comparison: Chamfer distance between the reconstructed and ground truth meshes (lower is better) and
normal consistency measuring the accuracy of the shape normals (higher is better).

Chamfer Distance L2 (↓) Normal consistency (↑)

Noise &
Sparsity

CON
[37]

P2S
[17]

SAP
[38]

IF
[8]

POCO
[2]

NKSR
[18]

SurfR CON
[37]

IF
[8]

POCO
[2]

NKSR
[18]

SurfR

64 128 256 64 128 256

ABC dataset [24] (unseen in training)
no-noise 2.6 1.8 7.6 2.8 1.7 3.0 2.3 2.1 2.1 0.89 0.62 0.89 0.29 0.87 0.89 0.89
med-noise 7.7 2.1 8.1 3.8 2.1 3.3 2.5 2.4 2.4 0.8 0.61 0.84 0.33 0.81 0,82 0.80
max-noise 14.0 2.8 7.2 5.9 2.7 4.1 3.3 3.2 3.1 0.74 0.57 0.75 0.4 0.78 0.75 0.71

Famous dataset (a collection of 22 popular meshes)
no-noise 2.4 1.4 9.0 2.2 1.4 2.7 1.8 1.5 1.4 0.84 0.63 0.78 0.18 0.82 0.86 0.86
med-noise 3.3 1.5 8.8 2.3 1.7 2.7 1.9 1.7 1.6 0.83 0.63 0.73 0.17 0.81 0.83 0.81
max-noise 12.8 2.5 7.0 5.2 2.9 3.9 3.3 3.1 3.0 0.7 0.56 0.55 0.26 0.72 0.70 0.68
sparse 3.2 1.9 10.4 2.6 2.0 3.2 2.4 2.1 2.1 0.81 0.63 0.67 0.18 0.77 0.79 0.77
dense 3.7 1.3 7.8 2.4 1.5 2.3 1.8 1.6 1.5 0.84 0.64 0.76 0.19 0.82 0.84 0.83

Thingi10k dataset [54]
no-noise 1.9 1.4 8.4 2.1 1.4 2.7 1.8 1.5 1.4 0.92 0.65 0.92 0.22 0.89 0.92 0.91
med-noise 3.1 1.5 8.2 2.4 1.5 2.7 1.9 1.6 1.5 0.9 0.65 0.9 0.21 0.88 0.89 0.87
max-noise 12.8 2.6 6.9 5.5 2.7 3.9 3.3 3.1 2.8 0.76 0.58 0.71 0.3 0.79 0.76 0.73
sparse 3.1 2.1 10.1 2.8 2.1 3.3 2.7 2.2 2.4 0.88 0.64 0.81 0.21 0.82 0.84 0.82
dense 3.5 1.4 7.1 2.4 1.4 2.3 1.8 1.5 1.4 0.91 0.65 0.91 0.2 0.89 0.91 0.89
Avg. 5.7 1.9 8.2 3.2 1.9 3.1 2.4 2.1 2.1 0.83 0.84 0.62 0.79 0.24 0.83 0.81

Table 4. Inference Time Comparison in Seconds: For the test,
we compute the average 3D reconstruction time per mesh.

CON
[37]

P2S
[17]

IF
[8]

POCO
[2]

NKSR
[18]

SurfR

64 128 256

2.31 232 9.2 51 0.5 0.2 1.8 7

(a) Bump-like artifacts (b) Roughness

Figure 7. Limitations: (a) shows Bump-like surfaces show due to
the sign propagation during evaluation, and (b) Surface roughness
in noisy input point cloud.

5. Limitations

To obtain faster evaluation speeds, the strategy used in this
work can sometimes result in the network assigning the
same sign to points on both sides of the surface, leaving it up
to the sign propagation step to decide the surface boundary,

which results in bump-like artifacts. Figure 7 (a) illustrates
this limitation of the proposed method. Moreover, from the
sparse nature of the architecture, rougher surfaces tend to
appear when noise levels increase, as shown in Fig. 7 (a).
Due to the convolutional layers, other methods can smooth
the surface, but at the cost of losing detail.

6. Discussion

We present SurfR, a new method for accurate and efficient
implicit surface reconstruction from point clouds. The key
to efficiency is to show a novel lazy/deferred query fea-
ture sampling technique that allows us to extract features
without relying on the query points. Other novel contribu-
tions include techniques for using parallel multi-scale fea-
tures and attention across features to improve surface recon-
struction results significantly. The proposed method strikes
the right balance between accuracy and speed. We demon-
strate that this approach is faster than the current state-of-
the-art at their optimal resolutions while achieving com-
pelling results, preserving details, and handling sparse data.
Acknowledgements: G. Dias Pais was supported by FCT
grant PD/BD/150630/2020. Pedro Miraldo is exclusively
supported by MERL.
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