
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

SurfR: Surface Reconstruction with Multi-scale Attention
Ranade, Siddhant; Pais, Goncalo; Whitaker, Ross; Nascimento, Jacinto; Miraldo, Pedro;

Ramalingam, Srikumar

TR2025-039 March 26, 2025

Abstract
We propose a fast and accurate surface reconstruction algorithm for unorganized point clouds
using an implicit representation. Recent learning methods are either single- object represen-
tations with small neural models that allow for high surface details but require per-object
training or generalized representations that require larger models and generalize to newer
shapes but lack details, and inference is slow. We propose a new implicit representation
for general 3D shapes that is faster than all the baselines at their optimum resolution, with
only a marginal loss in performance compared to the state-of-the-art. We achieve the best
accuracy-speed trade-off using three key contributions. Many implicit methods extract fea-
tures from the point cloud to classify whether a query point is inside or outside the object.
First, to speed up the reconstruction, we show that this feature extraction does not need
to use the query point at an early stage (lazy query). Second, we use a parallel multi-scale
grid representation to develop robust features for different noise levels and input resolutions.
Finally, we show that attention across scales can provide improved re- construction results.
The code will be made available.

International Conference on 3D Vision (3DV) 2025

c© 2025 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

SurfR: Surface Reconstruction with Multi-scale Attention

Siddhant Ranade*

University of Utah
Gonçalo Dias Pais*

Instituto Superior Técnico
Ross Tyler Whitaker
University of Utah

Jacinto C. Nascimento
Instituto Superior Técnico

Pedro Miraldo
MERL

Srikumar Ramalingam
Google Research

Abstract

We propose a fast and accurate surface reconstruction
algorithm for unorganized point clouds using an implicit
representation. Recent learning methods are either single-
object representations with small neural models that allow
for high surface details but require per-object training or
generalized representations that require larger models and
generalize to newer shapes but lack details, and inference
is slow. We propose a new implicit representation for gen-
eral 3D shapes that is faster than all the baselines at their
optimum resolution, with only a marginal loss in perfor-
mance compared to the state-of-the-art. We achieve the
best accuracy-speed trade-off using three key contributions.
Many implicit methods extract features from the point cloud
to classify whether a query point is inside or outside the
object. First, to speed up the reconstruction, we show that
this feature extraction does not need to use the query point
at an early stage (lazy query). Second, we use a parallel
multi-scale grid representation to develop robust features
for different noise levels and input resolutions. Finally, we
show that attention across scales can provide improved re-
construction results. The code will be made available.

1. Introduction
Surface reconstruction from noisy point clouds (e.g., from
structure-from-motion pipelines or 3D sensors) has been
one of the essential tasks in the computer vision and graph-
ics community [3, 22, 25, 26], with numerous applica-
tions in autonomous vehicles, medical imaging, and AR/VR
technologies. The challenges arise from noisy/incomplete
data, the choice of representation, complex geometry, and
computational bottlenecks. While 3D point-based represen-
tations are lightweight, they lack surface information, and
voxels, on the other hand, leave a huge memory footprint.
We propose SurfR, a data-driven and efficient implicit sur-
face reconstruction method that produces high-fidelity mod-

*Equal contribution.

10−1 100 101 102

Inference Time (s)
1

2

3

4

5

6

Ch
am

fe
r
D
is
ta
nc

e
(a
vg

)

SurfR
 256

SurfR
 128

SurfR
 64 P2S

AtlasNet

CON
32

IF-Nets
128

POCO
256

NKSR
256

Figure 1. SurfR result and error/time trade-off: At the top, we
show a sparse input point cloud and its reconstruction using the
proposed method SurfR. At the bottom, we show our method and
the baselines error vs. time trade-off comparison, with different
resolutions (number below).

els, striking the right balance between speed and accuracy
(see Fig. 1). Note that applications that require real-time
processing or have low compute budgets will benefit im-
mensely from this speedup, including those in robotics, aug-
mented/virtual reality, and embedded systems, for exam-
ple, in interactive mesh editing, such as [45, 53], where re-
meshing is frequently re-run, or interactive SLAM [33, 42],
where the user accompanied by a robot interacts with the
environment to get accurate object representations for scene
understanding [16, 34]. SurfR proposes a framework that is
towards real-time without compromising surface details and
without over-smoothing.

A robust surface reconstruction method should be capa-
ble of handling noisy/partial point clouds sampled from a

variety of shapes. Neural implicit functions show promising
results on various 3D tasks, including surface reconstruc-
tion. Many of these methods can be divided as per-object or
general shape reconstruction. More object-specific meth-
ods [13, 46], inspired by [32] and [37], take advantage of
the object’s shape priors to encode the objects explicitly.
However, these methods are not generalizable to unseen
shapes. On the other hand, general shape reconstruction
methods [8, 18, 35, 37, 46, 52] rely on general encoders
to reconstruct the 3D implicit surface. These methods are
more generalizable but suffer from a loss in reconstruction
quality. The general idea is to use a neural network to pre-
dict a distance value given a query point based on a feature
representation. One can achieve this by first extracting a
global feature (e.g., using a PointNet [39]) and then regress-
ing the distance function for the query point [35]. How-
ever, using a single global feature for the entire point cloud
fails to capture the local geometry, and recent methods ex-
tract multiple features from local patches [2, 8, 11]. The
proposed algorithm also uses multiple resolution features
to better model the local and global information to achieve
high-fidelity implicit representation. Our contributions are:
• Lazy query processing in feature extraction to achieve

significant computational efficiency.
• Parallel multi-scale feature extraction to achieve robust-

ness to noise and different input resolutions.
• Attention using a transformer encoder layer [48] to fuse

features across scales, significantly improving reconstruc-
tion results.

• Best accuracy-speed trade-off. SurfR is competitive with
state-of-the-art reconstruction fidelity and is faster than
baselines at their optimal resolution.

2. Related Work

Surface reconstruction spans several decades of research in
geometry processing, addressing a challenging and long-
standing problem. We can study these methods across dif-
ferent dimensions: generalizable (single model for multiple
objects), feature extraction (single point feature or multi-
scale features), method architecture (query feature regres-
sion or learned kernels), etc.

Generability: Learning-based approaches for surface re-
construction take advantage of rich data priors to better
handle noise, incomplete data, and inconsistent normals,
which can be separated into object-specific and generaliz-
able methods. Object-specific methods [4, 9, 10, 13, 14,
21, 27, 29–32, 35, 37, 41, 43, 44, 46, 47, 49] focus on
a single object/scene to create an implicit surface repre-
sentation from the input point cloud that is decoded when
necessary. These methods can lead to high-quality recon-
structions, though they are limited in generalizing newer
shapes and geometry. In contrast, generalizable methods

such as [2, 7, 8, 11, 18, 35, 37, 50–52] can generalize to a
wide range of shapes, with a penalty in the reconstruction
quality. These typically differ in how the query representa-
tion is built. The proposed method follows the latter.

Feature Extraction: In general, all learning methods have
a similar structure. A feature representation is built from
the input point cloud and then decoded to get its implicit
surface. In the object-centric methods, this feature rep-
resentation is associated with an explicit per-object geo-
metric structure [13, 37, 46] known a priori since the ob-
ject’s geometry is known. The generalizable methods build
that representation based on the query object and then de-
code it to obtain the surface representation. Some meth-
ods rely only on a single point feature [2, 11, 35, 50]
while others use multiple scale features [18, 51, 52]. Multi-
scale features have been shown to provide benefits in deal-
ing with noise and different input resolutions for different
tasks [7, 8, 18, 35]. In IF-Nets [7, 8], a 3D convolutional
network (with pooling) processes a discretized point cloud
to create feature grids at multiple scales, with the early
stages capturing shape detail and the later stages the global
structure. NKSR [18] uses a sparse UNet to obtain per-
resolution features. In contrast, SurfR uses a PointNet for
each scale to compute cell features in parallel, considering
only points within the cell without discretization. Cell em-
bedding is sensitive to local detail at larger scales, giving
us a multi-scale 3D representation. The cross-scale atten-
tion balances feature extraction between scales. The contri-
butions are this way of extracting multi-scale features and
fusing them with attention. Also, avoiding 3D convolutions
and discretization makes SurfR faster and more accurate.

Architecture: These neural models can be constructed in
two ways: estimate the implicit representation from anchors
following the estimated kernels or regression from an ex-
plicit feature representation. Kernel methods like [18, 51,
52] create a grid kernel from the input point cloud that pre-
dicts the implicit representation. The output representation
of the input points is the sum of all neighbor grid voxels
output weighted by the learned kernel. In [52], NKS pro-
poses a single-scale kernel to predict the grid occupancy
while considering noise. In [18], NKSR extends NKS for
multi-resolution kernels conditioned by UNet features.

On the other hand, the regression methods [2, 7, 8, 11,
35, 50] create an intermediate feature representation and
then decode it to obtain the surface representation. Using
a sparse convolutional backbone, POCO [2] encodes the in-
put points in feature vectors. Given an arbitrary query point,
its feature is computed from the nearest input points’ fea-
tures. POCO proposes to use an attention module to weigh
the contribution of each neighbor feature to the query point.
ALTO [50] extends POCO’s approach and builds successive
triplanes [1, 5] to query with attention to the points’ loca-
tion for better feature extraction. In contrast, the proposed

(i) (ii) (iii) (iv) (v) (vi) (vii)

Legend:
Input points
Query points
Trainable Layers
Fixed Layers

M
u

lt
i−

S
ca

le
 F

ea
tu

re
 E

x
tr

a
ct

io
n

C
ro

ss
−

sc
a

le
 A

tt
en

ti
o

n

C
o

n
ca

te
n

a
ti

o
n

 +
 S

D
F

 H
ea

d

S
a
m

p
le

r
S

a
m

p
le

r
S

a
m

p
le

r

F q
s1

L̂q

M̂q

D̂q

F q
s0

F c
s0

F c
s1

F c
sS

F q
sS

Fa
s1

Fa
s0

Fa
sS

P

Q

Figure 2. Overview The input consists of point cloud P and query
points Q. For each scale s ∈ {s0, s1, . . . , sS}, an encoder net-
work is used to extract per-cell features Fc

s . These features are
sampled at the query points to get query point features Fq

s with our
novel query-feature sampling technique. A self-attention mecha-
nism is applied to these features to obtain a new set of per-query
features Fa

s , which are subsequently concatenated and regressed
by the SDF head to sign logits L̂q and magnitudes M̂q , which are
used to compute the final signed distance D̂q .

method also encodes the input points in feature vectors but
uses a PointNet [39] for each resolution and utilizes an at-
tention layer per resolution. The feature of the query point
is constructed from the different resolutions weighted by
the inverse distance of the query point to the input points.
This scheme allows cross-scale information sharing without
over-smoothing and at the cost of details.

3. Surface Reconstruction with Multi-scale At-
tention

Given a set of unorganized points P , the goal of SurfR is to
reconstruct the original object surface using implicit surface
reconstruction with an SDF. Then, we define the surface S
as the zero level-set of its SDF dS(x), i.e., S = {x, dS(x) =
0}, where x is a point in 3D. We are essentially learning the
implicit function using a neural network in order to produce
SDF estimates. Similar to other implicit neural methods,
we estimate the SDF on a regular grid of desired resolution,
and a suitable isosurfacing algorithm is necessary to recover
the underlying surface [28]. The overview of the method is
shown in Fig. 2.

3.1. Overview and Notation

Overview: We highlight the five main components of SurfR
in this section. First, we extract features at multiple scales
from the input point cloud. The basic idea is to partition
the space into cells and then extract features from the points
lying in each of these cells. Second, we lazily bring the
query points and use the proposed query feature sampler
to extract query features. Third, a cross-scale attention is

(i) (ii) (iii) (iv)

Legend:
Input points

Trainable Layers

Cell center

Per−cell features

Per−point features

P
o

o
l

P
o

o
l

P
o

o
l

P
o

in
tN

et
P

o
in

tN
et

P
o

in
tN

et

F l
s1

P × 3

P × 3

P × 3 P × F1

P × F1

(s1)
3 × F2

(s0)
3 × F2

F l
s0

max

P × 3 P × F1

Ps0

Ps1

PsS F l
sS

els

Ts0

Ts1

TsS

(sS)
3 × F2

ecs

P F c
s1

F c
s0

F c
sS

Figure 3. Parallel Multi-scale feature extraction The input
points P in (i) are transformed to cell coordinates Ps, at each scale
s (ii), and each individual cell is processed in parallel as shown in
the inset. Then, the points are encoded by PointNet els to get the
per-point features F l

s (iii). Further they are encoded by the cell en-
coder ecs and pooled cell-wise to get the per-cell features Fc

s (iv).

applied to these features using a transformer layer. Next,
we concatenate the features across scales and use the SDF
head to regress the signed distance. Finally, we use the loss
functions on the sign and magnitude, and an L1 penalty on
weights for regularization. In the subsections that follow,
we discuss the individual components of the algorithm in
detail.

Input and groundtruth: The proposed method takes as
input the point cloud P = {pi : i ∈ {0, . . . , P − 1}} and
the query points Q = {qj : j ∈ {0, . . . , Q − 1}}, where
pi,qj ∈ R3, shown in Fig. 2 (i) and (ii). For training, we use
the ground-truth signed distances (i.e. to the mesh) Dq =
{dqj : j ∈ {0, . . . , Q − 1}} corresponding to each query
point. All input and query points are normalized to lie inside
the unit cube [−1, 1]3.

Features: We extract features at different stages of the algo-
rithm, and we briefly introduce the notation here. For each
scale s ∈ {s0, s1, . . . , sS}, we extract per-cell features Fc

s ,
where the superscript c denotes the cell and the subscript s
denotes the scale. The query features are denoted by Fq

s .
The features generated through cross-scale attention are de-
noted by Fa

s . The scale s is usually used as the subscript in
different entities that follow.

Encoders: The local and cell encoders at scale s are de-
noted by els and ecs, and the attention across scales by ea.

3.2. Parallel Multi-scale Feature Extraction

Figure 3 presents the proposed approach to multi-scale fea-
ture extraction from a given point cloud. At each scale, the

(i) (ii) (iii) (iv) (v) (vi)

C
o
n
ca

t

Legend:

Fixed Layers

Input points

Per−point features

Cell Centers

Query points

Per−cell features

Per−query features

Interp
NN

Interp
NN

Sample

P × 3Q× 3 P × F1 P × F2

Q× 3 Q× 3 Q× F1 Q× F2

F q
s

Q× 3

Q
Ts

Qs Ps F c
sF l

s

Figure 4. Query Feature Sampling The input to this stage con-
sists of Ps, F l

s, Fc
s from the multi-scale feature extraction, and

the query points Q. The query points ii are transformed to cell
coordinates Qs (ii - top). The output per-query feature Fq

s (vi) is a
concatenation of the query points in cell coordinates (ii - bottom),
mean relative nearest neighbor position (iii), mean nearest neigh-
bor feature (iv), and feature of the cell containing the query point
(v).

input point set is spatially partitioned into grid cells, and
points within each cell are processed independently of other
cells, as shown in the inset. At a larger scale, we partition
the space into a larger number of cells and vice versa. Be-
fore extracting features from the points falling in each of
these cells, we transform the points to the local coordinate
frame of the cells. As shown in Fig. 3 (ii), the points x at
scale s are first transformed to cell coordinates using T s(x),
which corresponds to a translation of the origin to the cell
center and scaling. Then, a per-point feature (Fig. 3 (iii))
is extracted using a PointNet els. Finally, a single feature is
computed using the cell encoder ecs followed by cell-wise
max pooling. The result is shown in Fig. 3 (iv). Next, we
detail these steps.
Transformation to cell coordinates Ts(x): Transforming
the points to cell coordinates allows the local encoder to
independently estimate features across cells. At scale s, the
unit cube is divided into a total of s3 cells. Ts(x) denotes
the cell-coordinate of point x at scale s.
Per-point features: Let Ps = {Ts(pi) : i ∈ {0, . . . , P −
1}} denote the set of points in local coordinates at scale s.
For each point pi ∈ Ps, the local encoder els is used to
extract per-point features as follows:

f l,is = els(Ts(pi)), (1)

which is used by the query feature sampler in computing the
mean nearest neighbor feature in Sec. 3.3. We denote the set
of all per-point features at scale s as F l

s = {f l,is : pi ∈ P}.
Per-cell features: The per-point features f l,is are further en-
coded by the cell encoder ecs and pooled over cells to get the
per-cell features using

f cs = max
i∈ck

ecs(f
l,i
s), (2)

where max leads to a channel-wise maximum overall point
in cell ck. These per-cell features account for the local ge-
ometry of the cell, which is crucial for estimating the SDF.
Cells that do not contain any points have the all-zero fea-
ture, shown in white in Fig. 3 (iv). The set of all per-cell
features (also at scale s) are denoted as Fc

s = {f cs : c ∈
{0, . . . , s− 1}3}.

3.3. Query Feature Sampling

Both local and global shape information are critical in esti-
mating the SDF at a given point. Methods that use a single
global feature descriptor, e.g. [14, 35], do not perform as
well as methods that take the local shape into account. One
way to incorporate the local shape is to use patches around
query points as input. However, this is expensive. The pro-
posed architecture addresses this issue by first extracting
shape features independently of the query points and then
samples these features at the query points. At each scale,
the set of per-point features F l

s, (as shown in Eq. 1), and
per-cell features Fc

s (see Eq. 2) are combined to obtain fea-
tures Fq

s for each query point, as shown in Fig. 4 (Page 4).
The feature fq,js corresponding to a query point qj lying in
cell s is defined as the concatenation of:
• Query point position: Ts(qj).
• Cell feature: f cs .
• Mean nearest neighbor feature Given Nj ⊆ {i : pi ∈
Pc
s}, the set of K nearest neighbors of qj , the mean near-

est neighbor feature is given by:

fNj
s =

∑
i∈Nj

wj,i
s f l,is , (3)

where the weights wj,i
s = sim(i,j)∑

l∈Nj
sim(l,j)

,
∑

i w
j,i
s = 1

(InterpNN), and sim(i, j) = 1
∥qj−pi∥2 , similar to [40].

• Mean relative nearest neighbor position a weighted av-
erage of the relative positions of the K nearest neighbors
in cell coordinates, i.e.,

p̄Nj
s = s

∑
i∈Nj

wj,i
s (pi − qj). (4)

The final concatenated feature of qj in cell c is given by

fq,js =
[
Ts(qj), f

c
s , f

Nj
s , p̄Nj

s

]
. (5)

The set of all per-query features at scale s is denoted as
Fq

s = {fq,js : j ∈ {0, . . . , Q− 1}}.

3.4. Cross-Scale Attention

The per-query features from different scales contain com-
plementary information. Therefore, we adopt a weighted
sum across all scales to emphasize the more significant fea-
tures from different scales and improve feature extraction.

For that purpose, a cross-scale attention mechanism is in-
cluded after the query feature sampling. For each query
point, we apply a transformer [48] encoder layer to fuse
the features across levels, here denoted as ea. Given the
query features fq,js , . . . , fq,jsS as inputs (shown in Eq. 5), the
attention mechanism outputs a new set of features Fa

s =
{fa,js0 , . . . , fa,jsS } as follows:

fas,j = ea(fq,js , {fq,js0 , . . . , fq,jsS }). (6)

These features are shown in Fig. 2 (v).
As will be shown in Sec. 4.3, we find that this simple

self-attention mechanism across scales improves the perfor-
mance of the method. In particular, it helps reduce the ar-
tifacts of the cell boundaries and produces smoother results
overall.

3.5. Signed Distance Regression

The set of features Fa
s , in Eq. 6, corresponding to query

points qj are concatenated across scales and regressed by
the SDF head eh to sign logits and magnitudes of the signed
distance, denoted by l̂qj and m̂q

j , respectively (see Fig. 2(vi)),
as

(l̂qj , m̂
q
j) = eh([fa,js0 , . . . , fa,jsS]).

The final estimate of the SDF is computed as d̂qj = sgn(l̂qj) ·
m̂q

j , shown in Fig. 2(vii).

3.6. Loss Functions

The loss function minimizes the error on the magnitude and
sign of the SDF and uses L1 penalty on the weights for reg-
ularisation (similar to [11]):

L = λmagLmag + λsgnLsgn + λregLreg (7)

The term Lmag denotes the error on the estimated magni-
tude with respect to the ground-truth as given by Lmag =∑

j

∣∣tanh(m̂q
j)− tanh(abs(dqj))

∣∣. The sign term Lsgn is the
binary cross-entropy on the sign logits. The term Lreg is an
L1 regularizer on the weights of eh. The coefficients λmag ,
λsgn, and λreg denote the tunable hyperparameters.

3.7. Surface Reconstruction

Given a new point cloud as input, we estimate the SDF at
points on a regular grid and then use marching cubes to ex-
tract the (iso-surface). Estimating the SDF at all the points
on a regular grid is prohibitively expensive for any reason-
able voxel grid resolution, and instead, one can argue that
a truncated SDF is sufficient for surface extraction. As in
[11], we evaluate the SDF close to the input points (leaving
other samples empty), and propagate the sign by repeatedly
applying a box filter of size ϵ3 voxels at the empty vox-
els until convergence, updating the sign only if the filter re-
sponse is greater (in magnitude) than a user-defined thresh-
old tupdate = 13. Since ϵ directly affects reconstruction time,
we use the same value, ϵ = 5.

4. Experiments

4.1. Datasets

The training and validation data consist of 4950 and 100
examples from the ABC dataset [24], a collection of CAD
models. The test set comprises 100 additional examples
from the ABC dataset (unseen in training), the FAMOUS
dataset (a collection of 22 meshes popular in the geometry
processing literature, such as the Utah teapot, the Stanford
bunny, and the Dragon), and the Thingi10K dataset [54],
with varying levels of noise and sparsity (for Thingi10K and
FAMOUS). For a fair comparison, we highlight that the test
data was not seen during training or validation for any of the
tested methods in Sec. 4.4. We also show qualitative results
on two scans of complex real-world objects.

All meshes are first transformed to the unit cube, fol-
lowing which the input point cloud is sampled using
BlenSor [15], which simulates scanning of a given surface
mesh with a time-of-flight sensor, including realistic noise
characteristics and sensor artifacts. For each shape, 2000
query points are used, 1000 samples on the surface and off-
set along the surface normal by a distance uniformly sam-
pled from [-0.02, 0.02], and 1000 sampled uniformly at ran-
dom in the unit cube. While training, 6000 input points and
1000 query points were used per shape. During training,
random rotations are applied to all shapes.

4.2. Implementation Details

Network Architectures: The local encoder els is imple-
mented as a 2-layer MLP followed by a spatial trans-
former [20]. We pick the per-point feature size to be
F1 = 64. The cell encoder ecs is a 3-layer MLP, with the
per-cell feature size F2 = 128. The query feature dimen-
sion (at each scale) is thus F = 3+3+F1+F2 = 198 (see
Fig. 4). We use scales s ∈ {1, 4, 16}, S = 3. Together, els
and ecs (Eqs. 1 and 2) resemble a PointNet [39]. The cross-
scale attention ea (Eq. 6) is composed of one head trans-
former encoder layer with a 512 fully connected layer. The
SDF head eh has an input dimension of S × F = 594 and
is a 5-layer MLP with an abs(·) non-linearity for the mag-
nitude. All MLPs use BatchNorm [19] followed by ReLU
non-linearity for hidden layers.

Training Details: The loss weights are λmag = 5.0,
λsgn = 2.0, λreg = 10−6, and the batch size is 16. We
use the Adam [23] optimizer with an initial learning rate of
7.5 ∗ 10−4, which decays exponentially after every epoch,
halving every 100 epochs, and train for a total of 750
epochs.

Software/Hardware: Our code is written in PyTorch [36]
with the PyTorch-Geometric [12] extension library. We take
utmost care to ensure our experiments are reproducible; We
use one NVidia Titan Xp GPU for training, taking about 20

Chamfer Distance L2 (↓)

Noise Base + multi-scale + multi-scale
+ attention

no 2.6 2.3 2.2
med 3.0 2.7 2.4
max 3.6 3.7 3.2
Avg. 3.1 2.8 2.6

Table 1. Ablations: Cham-
fer distance for: Base: sin-
gle LOD of value 1, Base
+ multi-scale: multi-scales,
with values {1, 4, 16}, with-
out attention, Base + multi-
scale + attn.: multi-scales
{1, 4, 16} with cross-scale
attention.

Table 2. Comparisons on the Different Multi-scales and
Weighting Schemes: Chamfer distance on different scales with
cross-scale attention (lower is better). We also evaluate the dif-
ferent weighting schemes for grid cell aggregation. EW samples
equal weights and LW is a learnt weight parameter.

Noise
InterpNN LW EW

{1, 4} {1, 4, 16} {1, 5, 25} {1, 3, 9, 27} {1, 4, 16} {1, 4, 16}

no 3.3 2.2 2.6 3.3 2.5 2.5
med 2.8 2.4 2.7 3.2 2.6 2.8
max 3.6 3.2 3.5 3.9 3.4 3.6
Avg. 3.3 2.6 2.9 3.5 2.8 3.0

minutes per epoch.

4.3. Ablation Study

Using a surface reconstruction of voxel grid of dimension
256, we evaluate our design choices related to multi-scale
feature extraction compared to using a single scale of 1,
and query feature components by comparing their perfor-
mance. We report the chamfer distance on the ABC dataset
in Tab. 1. This analysis validates the design of the query
feature. Due to resource constraints, these ablations were
performed with a batch size of 4, training for 100 epochs.

In addition to the choices related to multi-scale grid fea-
ture extraction and cross-scale attention, we study the ef-
fect of using different scales and weighting schemes for
query feature sampling. Table 2 shows the results. We tried
with equal EW and learned weights LW and InterpNN (see
Sec. 3.3) which achieves the best results. The final method
uses scales {1, 4, 16}, which obtained the best average per-
formance in all ablations. The multi-scale features allow for
a better global understanding of the object, while the cross-
scale attention parallel module fuses the global and local
features, producing more detail.

4.4. Results

Baselines: We compare the proposed approach with the
data-driven methods P2S [11], IF-Net [8], CON [37],
SAP [38], POCO [2], and NKSR [18]. We follow the same
training protocol as POCO and P2S. We note that previous
methods obtained the best results at different grid resolu-
tions. While CON uses a voxel grid of size 32, IF-Net uses

128, P2S 256, SAP 256, POCO 256, and NKSR 256. CON
and IF-Net are trained on ≈ 40000 models across 13 cate-
gories from ShapeNet [6], while P2S, POCO, NKSR, and
SurfR are trained on ≈ 5000 shapes from the ABC dataset.
All the baselines except NKSR only require the input point
cloud to obtain the surface representation. Since NKSR also
requires normals as input, we use the evaluation point cloud
to estimate the normals with 16 nearest neighbors as a fair
comparison to the other baselines. Our evaluation scheme
does not use additional refinement steps such as POCO and
NKSR as detailed in Sec. 3.7.

Quantitative results: We report the chamfer distance (mul-
tiplied by 100) and normal consistency [30] on the test
datasets (see Sec. 4.1) in Tab. 3 at Page 8. The chamfer dis-
tance measures the geometric quality of the reconstructed
surface, penalizing missing and extra geometry, whereas
normal consistency penalizes surface roughness and over-
smoothing. For a fair comparison, we consider SurfR with
three different surface reconstruction resolutions: 64, 128,
and 256. The results show that SurfR is competitive with the
current state-of-the-art at a speed-up. Considering all meth-
ods with the same resolution, SurfR is 33 times faster than
P2S and 7.3 times faster than POCO (both at 256 resolu-
tion), as shown in Tab. 4 and Fig. 1. The results of no-noise,
med-noise, or dense reconstruction are very competitive
with those of P2S and POCO; for example, in Thingi10k,
SurfR achieves about the same reconstruction results as P2S
and POCO. The main difference is in the max-noise case,
where the proposed method obtains slightly worse results
than both P2S and POCO and where CON, IF-Net, and
NKSR fail as well since they are constrained to 3D convo-
lutions and the kernel for NKSR. IF-Net creates holes in the
generated meshes, explaining the lower normal consistency.
CON produces smoothed meshes at optimal 32 resolution,
losing fine detail and resulting in a high chamfer distance,
though its overly smoothed surfaces achieve a high normal
consistency. NKSR produces many holes that, as a conse-
quence, obtain low normal consistency and high chamfer
distance. Additionally, SurfR is faster and more accurate
than IF-Net, CON, and NKSR while running at the same
or higher resolution (CON 32, IF-Net 128, NKSR 256).
SurfR, P2S, and POCO perform better at filtering noise and
preserving fine detail, corroborated by the low chamfer dis-
tance and high normal consistency.

Qualitative results: We visualize some meshes recon-
structed at a resolution of 256 in Fig. 5 with different noise
levels for the input point cloud. Finally, we show recon-
structions of two real-world objects in Fig. 6. Qualitatively,
SurfR’s results are better than most baselines, preserving
more detail and completing sparsely sampled surfaces bet-
ter. The reconstructed surfaces are rougher than POCO’s,
but the object details are still captured. The other methods
over-smooth the surface, losing detail and producing holes.

A
B

C
no

-n
oi

se
Fa

m
ou

s
m

id
-n

oi
se

T
hi

ng
i1

0K
sp

ar
se

Point Cloud POCO NKSR SurfR Ground Truth

Figure 5. Qualitative Baseline Comparison: the results of the proposed method are qualitatively on par with the baselines, or even better,
particularly on the Famous and Thingi10K datasets, with different noise/density levels. SurfR preserves more detail even in sparsely
sampled surfaces.

Point Cloud POCO NKSR SurfR

Figure 6. Reconstruction of Real-world Objects: SurfR generalizes well, even in noise and variable sampling density. The proposed
method shows it can handle real-world objects taken from SfM methods.

Table 3. Quantitative Baseline Comparison: Chamfer distance between the reconstructed and ground truth meshes (lower is better) and
normal consistency measuring the accuracy of the shape normals (higher is better).

Chamfer Distance L2 (↓) Normal consistency (↑)

Noise &
Sparsity

CON
[37]

P2S
[17]

SAP
[38]

IF
[8]

POCO
[2]

NKSR
[18]

SurfR CON
[37]

IF
[8]

POCO
[2]

NKSR
[18]

SurfR

64 128 256 64 128 256

ABC dataset [24] (unseen in training)
no-noise 2.6 1.8 7.6 2.8 1.7 3.0 2.3 2.1 2.1 0.89 0.62 0.89 0.29 0.87 0.89 0.89
med-noise 7.7 2.1 8.1 3.8 2.1 3.3 2.5 2.4 2.4 0.8 0.61 0.84 0.33 0.81 0,82 0.80
max-noise 14.0 2.8 7.2 5.9 2.7 4.1 3.3 3.2 3.1 0.74 0.57 0.75 0.4 0.78 0.75 0.71

Famous dataset (a collection of 22 popular meshes)
no-noise 2.4 1.4 9.0 2.2 1.4 2.7 1.8 1.5 1.4 0.84 0.63 0.78 0.18 0.82 0.86 0.86
med-noise 3.3 1.5 8.8 2.3 1.7 2.7 1.9 1.7 1.6 0.83 0.63 0.73 0.17 0.81 0.83 0.81
max-noise 12.8 2.5 7.0 5.2 2.9 3.9 3.3 3.1 3.0 0.7 0.56 0.55 0.26 0.72 0.70 0.68
sparse 3.2 1.9 10.4 2.6 2.0 3.2 2.4 2.1 2.1 0.81 0.63 0.67 0.18 0.77 0.79 0.77
dense 3.7 1.3 7.8 2.4 1.5 2.3 1.8 1.6 1.5 0.84 0.64 0.76 0.19 0.82 0.84 0.83

Thingi10k dataset [54]
no-noise 1.9 1.4 8.4 2.1 1.4 2.7 1.8 1.5 1.4 0.92 0.65 0.92 0.22 0.89 0.92 0.91
med-noise 3.1 1.5 8.2 2.4 1.5 2.7 1.9 1.6 1.5 0.9 0.65 0.9 0.21 0.88 0.89 0.87
max-noise 12.8 2.6 6.9 5.5 2.7 3.9 3.3 3.1 2.8 0.76 0.58 0.71 0.3 0.79 0.76 0.73
sparse 3.1 2.1 10.1 2.8 2.1 3.3 2.7 2.2 2.4 0.88 0.64 0.81 0.21 0.82 0.84 0.82
dense 3.5 1.4 7.1 2.4 1.4 2.3 1.8 1.5 1.4 0.91 0.65 0.91 0.2 0.89 0.91 0.89
Avg. 5.7 1.9 8.2 3.2 1.9 3.1 2.4 2.1 2.1 0.83 0.84 0.62 0.79 0.24 0.83 0.81

Table 4. Inference Time Comparison in Seconds: For the test,
we compute the average 3D reconstruction time per mesh.

CON
[37]

P2S
[17]

IF
[8]

POCO
[2]

NKSR
[18]

SurfR

64 128 256

2.31 232 9.2 51 0.5 0.2 1.8 7

(a) Bump-like artifacts (b) Roughness

Figure 7. Limitations: (a) shows Bump-like surfaces show due to
the sign propagation during evaluation, and (b) Surface roughness
in noisy input point cloud.

5. Limitations

To obtain faster evaluation speeds, the strategy used in this
work can sometimes result in the network assigning the
same sign to points on both sides of the surface, leaving it up
to the sign propagation step to decide the surface boundary,

which results in bump-like artifacts. Figure 7 (a) illustrates
this limitation of the proposed method. Moreover, from the
sparse nature of the architecture, rougher surfaces tend to
appear when noise levels increase, as shown in Fig. 7 (a).
Due to the convolutional layers, other methods can smooth
the surface, but at the cost of losing detail.

6. Discussion

We present SurfR, a new method for accurate and efficient
implicit surface reconstruction from point clouds. The key
to efficiency is to show a novel lazy/deferred query fea-
ture sampling technique that allows us to extract features
without relying on the query points. Other novel contribu-
tions include techniques for using parallel multi-scale fea-
tures and attention across features to improve surface recon-
struction results significantly. The proposed method strikes
the right balance between accuracy and speed. We demon-
strate that this approach is faster than the current state-of-
the-art at their optimal resolutions while achieving com-
pelling results, preserving details, and handling sparse data.
Acknowledgements: G. Dias Pais was supported by FCT
grant PD/BD/150630/2020. Pedro Miraldo is exclusively
supported by MERL.

References
[1] Yuval Bahat, Yuxuan Zhang, Hendrik Sommerhoff, Andreas

Kolb, and Felix Heide. Neural volume super-resolution.
arXiv preprint arXiv:2212.04666, 2022. 2

[2] Alexandre Boulch and Renaud Marlet. Poco: Point convo-
lution for surface reconstruction. In IEEE/CVF Conf. Com-
puter Vision and Pattern Recognition (CVPR), pages 6302–
6314, 2022. 2, 6, 8

[3] J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R.
Fright, B. C. McCallum, and T. R. Evans. Reconstruction
and representation of 3d objects with radial basis functions.
In ACM SIGGRAPH, pages 67–76, 2001. 1

[4] Rohan Chabra, Jan E. Lenssen, Eddy Ilg, Tanner Schmidt,
Julian Straub, Steven Lovegrove, and Richard Newcombe.
Deep local shapes: Learning local sdf priors for detailed 3d
reconstruction. In European Conf. Computer Vision (ECCV),
pages 608–625, 2020. 2

[5] Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 16123–16133, 2022. 2

[6] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat
Hanrahan, Qixing Huang, Zimo Li, Silvio Savarese, Mano-
lis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and
Fisher Yu. Shapenet: An information-rich 3d model reposi-
tory. Technical Report arXiv:1512.03012 [cs.GR], Stanford
University — Princeton University — Toyota Technological
Institute at Chicago, 2015. 6

[7] Julian Chibane and Gerard Pons-Moll. Implicit feature net-
works for texture completion from partial 3d data. In Eu-
ropean Conference on Computer Vision (ECCV) Workshops,
pages 717–725, 2020. 2

[8] Julian Chibane, Thiemo Alldieck, and Gerard Pons-Moll.
Implicit functions in feature space for 3d shape reconstruc-
tion and completion. In IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), pages 6970–6981, 2020.
2, 6, 8

[9] Angela Dai and Matthias Niessner. Scan2mesh: From un-
structured range scans to 3d meshes. In IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR), pages
5569–5578, 2019. 2

[10] Angela Dai, Christian Diller, and Matthias Niessner. Sg-nn:
Sparse generative neural networks for self-supervised scene
completion of rgb-d scans. In IEEE/CVF Conf. Computer Vi-
sion and Pattern Recognition (CVPR), pages 846–855, 2020.
2

[11] Philipp Erler, Paul Guerrero, Stefan Ohrhallinger, Niloy J.
Mitra, and Michael Wimmer. Points2surf: Learning implicit
surfaces from point clouds. In European Conf. Computer
Vision (ECCV), pages 108–124, 2020. 2, 5, 6

[12] Matthias Fey and Jan E. Lenssen. Fast graph representa-
tion learning with PyTorch Geometric. In ICLR Workshop on
Representation Learning on Graphs and Manifolds, 2019. 5

[13] Arihant Gaur, G Dias Pais, and Pedro Miraldo. Oriented-grid

encoder for 3d implicit representations. Int’l Conf. 3D Vision
(3DV), 2024. 2

[14] Thibault Groueix, Matthew Fisher, Vladimir G. Kim,
Bryan C. Russell, and Mathieu Aubry. A papier-mache ap-
proach to learning 3d surface generation. In IEEE Conf.
Computer Vision and Pattern Recognition (CVPR), pages
216–224, 2018. 2, 4

[15] Michael Gschwandtner, Roland Kwitt, Andreas Uhl, and
Wolfgang Pree. Blensor: Blender sensor simulation toolbox.
In International Symposium on Visual Computing (ISVC),
pages 199–208, 2011. 5

[16] David Hall, Feras Dayoub, John Skinner, Haoyang Zhang,
Dimity Miller, Peter Corke, Gustavo Carneiro, Anelia An-
gelova, and Niko Sünderhauf. Probabilistic object detection:
Definition and evaluation. In IEEE Winter Conf. on Applica-
tions of Computer Vision (WACV), pages 1031–1040, 2020.
1

[17] Rana Hanocka, Gal Metzer, Raja Giryes, and Daniel Cohen-
Or. Point2mesh: A self-prior for deformable meshes. ACM
Transactions on Graphics (TOG), 39(4), 2020. 8

[18] Jiahui Huang, Zan Gojcic, Matan Atzmon, Or Litany, Sanja
Fidler, and Francis Williams. Neural kernel surface recon-
struction. In IEEE/CVF Conf. Computer Vision and Pattern
Recognition (CVPR), pages 4369–4379, 2023. 2, 6, 8

[19] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In Int’l Conf. Machine learning (ICML), page
448–456, 2015. 5

[20] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In Ad-
vances in Neural Information Processing Systems (NIPS),
2015. 5

[21] Chiyu Jiang, Avneesh Sud, Ameesh Makadia, Jingwei
Huang, Matthias Niessner, and Thomas Funkhouser. Local
implicit grid representations for 3d scenes. In IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 6000–6009, 2020. 2

[22] Michael Kazhdan and Hugues Hoppe. Screened poisson sur-
face reconstruction. ACM Transactions on Graphics (TOG),
32(3):1–13, 2013. 1

[23] Diederik P. Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In Int’l Conf. Learning Representa-
tions (ICLR), 2015. 5

[24] Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis
Williams, Alexey Artemov, Evgeny Burnaev, Marc Alexa,
Denis Zorin, and Daniele Panozzo. Abc: A big cad model
dataset for geometric deep learning. In IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR), pages
9593–9603, 2019. 5, 8

[25] Ravikrishna Kolluri, Jonathan Richard Shewchuk, and
James F. O’Brien. Spectral surface reconstruction from noisy
point clouds. In Eurographics, pages 11–21, 2004. 1

[26] Patrick Labatut, Jean-Philippe Pons, and Renaud Keriven.
Robust and efficient surface reconstruction from range data.
Computer Graphics Forum, 28(8):2275–2290, 2009. 1

[27] Yiyi Liao, Simon Donné, and Andreas Geiger. Deep march-
ing cubes: learning explicit surface representations. In

IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), pages 2916–2925, 2018. 2

[28] William E Lorensen and Harvey E Cline. Marching cubes:
A high resolution 3d surface construction algorithm. ACM
SIGGRAPH, 21(4):163–169, 1987. 3

[29] Julien N. P. Martel, David B. Lindell, Connor Z. Lin, Eric R.
Chan, Marco Monteiro, and Gordon Wetzstein. Acorn:
Adaptive coordinate networks for neural scene representa-
tion. ACM SIGGRAPH, 40(4), 2021. 2

[30] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In IEEE/CVF
Conf. Computer Vision and Pattern Recognition (CVPR),
pages 4460–4470, 2019. 6

[31] M. Meshry, D. B. Goldman, S. Khamis, H. Hoppe, R.
Pandey, N. Snavely, and R. Martin-Brualla. Neural reren-
dering in the wild. In IEEE/CVF Conf. Computer Vision and
Pattern Recognition (CVPR), pages 6871–6880, 2019.

[32] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In European Conf. Computer Vision (ECCV), pages
405–421, 2020. 2

[33] Samer Nashed and Joydeep Biswas. Human-in-the-loop
slam. Proceedings of the AAAI Conference on Artificial In-
telligence (AAAI), 32(1), 2018. 1

[34] Lachlan Nicholson, Michael Milford, and Niko Sünderhauf.
Quadricslam: Dual quadrics from object detections as land-
marks in object-oriented slam. IEEE Robotics and Automa-
tion Letters (RA-L), 4(1):1–8, 2018. 1

[35] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), pages 165–174, 2019. 2, 4

[36] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zem-
ing Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Mar-
tin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Py-
torch: An imperative style, high-performance deep learning
library. In Advances in Neural Information Processing Sys-
tems (NeurIPS), pages 8024–8035, 2019. 5

[37] Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc
Pollefeys, and Andreas Geiger. Convolutional occupancy
networks. In European Conf. Computer Vision (ECCV),
pages 523–540, 2020. 2, 6, 8

[38] Songyou Peng, Chiyu Max Jiang, Yiyi Liao, Michael
Niemeyer, Marc Pollefeys, and Andreas Geiger. Shape as
points: A differentiable poisson solver. In Advances in Neu-
ral Information Processing Systems (NeurIPS), 2021. 6, 8

[39] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation. In IEEE Conf. Computer Vision and Pat-
tern Recognition (CVPR), pages 77–85, 2017. 2, 3, 5

[40] Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Point-
Net++: deep hierarchical feature learning on point sets in a

metric space. In Advances in Neural Information Processing
Systems (NIPS), pages 5105–5114, 2017. 4

[41] Shunsuke Saito, , Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digiti-
zation. In IEEE/CVF Int’l Conf. Computer Vision (ICCV),
pages 2304–2314, 2019. 2

[42] Abbas Sidaoui, Mohammad Kassem Zein, Imad H. Elhajj,
and Daniel Asmar. A-slam: Human in-the-loop augmented
slam. In icra, pages 5245–5251, 2019. 1

[43] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias
Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-
voxels: Learning persistent 3d feature embeddings. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), pages 2437–2446, 2019. 2

[44] Vincent Sitzmann, Julien Martel, Alexander Bergman, David
Lindell, and Gordon Wetzstein. Implicit neural representa-
tions with periodic activation functions. Advances in Neural
Information Processing Systems (NeurIPS), 33, 2020. 2

[45] Olga Sorkine, Daniel Cohen-Or, Yaron Lipman, Marc Alexa,
Christian Rossl, and H-P Seidel. Laplacian surface editing.
In Eurographics, pages 175–184, 2004. 1

[46] Towaki Takikawa, Joey Litalien, Kangxue Yin, Karsten
Kreis, Charles Loop, Derek Nowrouzezahrai, Alec Jacobson,
Morgan McGuire, and Sanja Fidler. Neural geometric level
of detail: Real-time rendering with implicit 3d shapes. In
IEEE/CVF Conf. Computer Vision and Pattern Recognition
(CVPR), pages 11358–11367, 2021. 2

[47] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. In Advances in Neural Information Process-
ing Systems (NeurIPS), pages 7537–7547, 2020. 2

[48] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Ł ukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in Neural
Information Processing Systems (NIPS), 2017. 2, 5

[49] Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei
Liu, and Yu-Gang Jiang. Pixel2mesh: Generating 3d mesh
models from single rgb images. In European Conf. Computer
Vision (ECCV), pages 55–71, 2018. 2

[50] Zhen Wang, Shijie Zhou, Jeong Joon Park, Despoina
Paschalidou, Suya You, Gordon Wetzstein, Leonidas Guibas,
and Achuta Kadambi. Alto: Alternating latent topologies for
implicit 3d reconstruction. In IEEE/CVF Conf. Computer Vi-
sion and Pattern Recognition (CVPR), pages 259–270, 2023.
2

[51] Francis Williams, Matthew Trager, Joan Bruna, and Denis
Zorin. Neural splines: Fitting 3d surfaces with infinitely-
wide neural networks. In IEEE/CVF Conf. Computer Vision
and Pattern Recognition (CVPR), pages 9949–9958, 2021. 2

[52] Francis Williams, Zan Gojcic, Sameh Khamis, Denis Zorin,
Joan Bruna, Sanja Fidler, and Or Litany. Neural fields as
learnable kernels for 3d reconstruction. In IEEE/CVF Conf.
Computer Vision and Pattern Recognition (CVPR), pages
18500–18510, 2022. 2

[53] Yizhou Yu, Kun Zhou, Dong Xu, Xiaohan Shi, Hujun Bao,
Baining Guo, and Heung-Yeung Shum. Mesh editing with
poisson-based gradient field manipulation. In ACM SIG-
GRAPH, pages 644–651, 2004. 1

[54] Qingnan Zhou and Alec Jacobson. Thingi10k: A
dataset of 10,000 3d-printing models. arXiv preprint
arXiv:1605.04797, 2016. 5, 8

	Title Page
	page 2

	
	. Introduction
	. Related Work
	. Surface Reconstruction with Multi-scale Attention
	. Overview and Notation
	. Parallel Multi-scale Feature Extraction
	. Query Feature Sampling
	. Cross-Scale Attention
	. Signed Distance Regression
	. Loss Functions
	. Surface Reconstruction

	. Experiments
	. Datasets
	. Implementation Details
	. Ablation Study
	. Results

	. Limitations
	. Discussion

