TR2024-168
Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage
-
- "Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage", Red Teaming GenAI Workshop at Neural Information Processing Systems (NeurIPS), December 2024.BibTeX TR2024-168 PDF
- @inproceedings{Rashid2024dec,
- author = {Rashid, Md Rafi Ur and Liu, Jing and Koike-Akino, Toshiaki and Mehnaz, Shagufta and Wang, Ye}},
- title = {Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage},
- booktitle = {Red Teaming GenAI Workshop at Neural Information Processing Systems (NeurIPS)},
- year = 2024,
- month = dec,
- publisher = {OpenReview},
- url = {https://www.merl.com/publications/TR2024-168}
- }
,
- "Forget to Flourish: Leveraging Machine-Unlearning on Pretrained Language Models for Privacy Leakage", Red Teaming GenAI Workshop at Neural Information Processing Systems (NeurIPS), December 2024.
-
MERL Contacts:
-
Research Areas:
Abstract:
Fine-tuning large language models on private data for downstream applications poses significant privacy risks in potentially exposing sensitive information. Several popular community platforms now offer convenient distribution of a large variety of pre-trained models, allowing anyone to publish without rigorous verification. This scenario creates a privacy threat, as pre-trained models can be intentionally crafted to compromise the privacy of fine-tuning datasets. In this study, we introduce a novel poisoning technique that uses model-unlearning as an attack tool. This approach manipulates a pre-trained language model to increase the leakage of private data during the fine-tuning process. Our method enhances both membership inference and data extraction attacks while preserving model utility. Experimental results across different models, datasets, and fine-tuning setups demonstrate that our attacks significantly surpass baseline performance. This work serves as a cautionary note for users who download pre-trained models from unverified sources, highlighting the potential risks involved.