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Highlights

e We pose the LLM layer-wise pruning problem as a sparse approximation problem.

e We propose Activation-aware PGD for pruning and/or quantization without requiring computationally-intensive operations such as
second-order Hessian inverses.

e The proposed method outperforms state-of-the-art LLM compression methods on several benchmarks.

e We provide theoretical guarantees for the proposed method.
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Experiments
e Pruning ¢ Quantization & Pruning
Table: Perplexity on WikiText2 of pruned Llama-2-7B model by different methods Table: Perplexity on WikiText2 of pruned and INT4 quantized Llama-3.1-8B model by different methods.
under different pruning ratios. PRUNING RATIO: 25% 50% 75%
o0% 60% 70% 80% 90% AWQ+WANDA 693 9.71 3¢2
MAGNITUDE 14.89 4e3 - NAN - WANDA+AWQ 6.81 946 2e2
SPARSEGPT 6.51 9.58 - le2 - AWP 6.81 9.32 1le2
WANDA 6.48 10.09 70.04 4e3 led
AWP 6.42 9.44 22.10 83.28 8e2 Table: Perplexity on WikiText2 of pruned and INT4 quantized Llama-3.2-1B model by different methods.

PRUNING RATIO: 25% 50% 75%

AWQ+WANDA  11.63 23.95 2e3
WANDA+AWQ  11.30 21.90 1e3

Table: Perplexity on WikiText2 of pruned Llama-2-13B model by different methods
under different pruning ratios.

0% 604 104 80% 907 AWP 11.20 18.41 3c2
MAGNITUDE 6.37 11.23 - He4 -
SPARSEGPT 5.63 7.80 - le2 - Our Related Work: Activation-aware low-rank compression (LatentLLM, CVPR-W'25)
WANDA 5.09 7.97 43.06 led  2Zed Naive SVD of W would minimize || W — BA||%..
AWP 5.54 7.49 16.57 75.68 1le3 Activation-aware SVD aims to minimize:
¢ Quantization WX — BAXH% _ HWCl/Q _ BACU% H%
Table: Perplexity on WikiText2 of quantized Llama-3.1-8B model by different methods. rar?krgr
INT4 INT3 INT?2 Our global optimal solution:

The optimal rank r approximation of WCL/2 can be obtained by SVD of wcCl/2 = USVT and
keep its top-r components UTSTVZ.

We can set BAC!/2 = UTSTVZ and obtain BA = UTSTV?C_l/Q

So setting B = U, and A = STVZC_l/Q would be a global optimal solution.

GPTQ 9.95 12.54 2e3
AWQ 664 814 3ed
AWP 655 8.06 1¢6
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