

AWP: Activation-Aware Weight Pruning and Quantization with Projected Gradient Descent

Jing Liu, Toshiaki Koike-Akino, Ye Wang, Hassan Mansour, Mathew Brand Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA 02139, USA

Highlights

- We pose the LLM layer-wise pruning problem as a sparse approximation problem.
- \bullet We propose Activation-aware PGD for pruning and/or quantization without requiring computationally-intensive operations such as second-order Hessian inverses.
- The proposed method outperforms state-of-the-art LLM compression methods on several benchmarks.
- We provide theoretical guarantees for the proposed method.

Background and Motivation

$$\min_{\mathbf{W}_{\mathsf{sparse}} \in \mathcal{C}_{\mathsf{sparse}}} \left[\mathcal{L}(\mathbf{W}_{\mathsf{sparse}}) := \|\mathbf{W} - \mathbf{W}_{\mathsf{sparse}}\|_{\mathrm{F}}^{2} \right], \quad (1)$$

Magnitude Pruning

Activation-aware Pruning

$$\mathcal{L}'(\mathbf{W}_{\text{sparse}}) := \|\mathbf{W}\mathbf{X} - \mathbf{W}_{\text{sparse}}\mathbf{X}\|_{F}^{2}$$
 (2)

Wanda (ICLR'24):

Weight Importance

Importance Pruned Weights

Method

$$\mathcal{L}'(\mathbf{W}_{\text{sparse}}) := \|\mathbf{W}\mathbf{X} - \mathbf{W}_{\text{sparse}}\mathbf{X}\|_{F}^{2}$$
 (3)

$$= \|\mathbf{W}\mathbf{C}^{\frac{1}{2}} - \mathbf{W}_{\mathsf{sparse}}\mathbf{C}^{\frac{1}{2}}\|_{\mathrm{F}}^{2},\tag{4}$$

where $\mathbf{C} = \mathbf{X}\mathbf{X}^{\top} \in \mathbb{R}^{d_{\mathsf{in}} \times d_{\mathsf{in}}}$ is the auto-correlation of input activation, and $\mathbf{C}^{\frac{1}{2}}$ is the matrix square root of \mathbf{C} .

We further decompose (4) as

$$\mathcal{L}'(\mathbf{W}_{\text{sparse}}) = \sum_{i=1}^{d_{\text{out}}} \|\mathbf{W}[i,:]\mathbf{C}^{\frac{1}{2}} - \mathbf{W}_{\text{sparse}}[i,:]\mathbf{C}^{\frac{1}{2}}\|_{2}^{2}.$$
 (5)

when optimizing under the constraint

$$C_{\mathsf{row}} := \{ \boldsymbol{\Theta} : \forall i \in \{1, \dots, d_{\mathsf{out}}\}, \ \|\boldsymbol{\Theta}[i, :]\|_{0} \le k \},$$
(6)

Each term of (5) becomes exactly a well-studied sparse approximation problem:

$$\min_{\boldsymbol{\theta}} \left[f(\boldsymbol{\theta}) := \|\mathbf{y} - \mathbf{A}\boldsymbol{\theta}\|_2^2 \right],$$
s.t. $\|\boldsymbol{\theta}\|_0 \le k := (1 - p) \cdot d_{\text{in}},$ (7)

where $\mathbf{y} = (\mathbf{W}[i,:]\mathbf{C}^{\frac{1}{2}})^{\top}$, $\mathbf{A} = [\mathbf{C}^{\frac{1}{2}}]^{\top} = \mathbf{C}^{\frac{1}{2}}$, and $\boldsymbol{\theta}$ is the corresponding $\mathbf{W}_{\mathsf{sparse}}[i,:]^{\top}$ with k nonzeros.

Inspired by Iterative Hard Thresholding that iterates between gradient descent and hard thresholding.

Algorithm 1: Activation-Aware Projected Gradient Descent

Input: original weight $\mathbf{W} \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$, input activation covariance $\mathbf{C} = \frac{1}{n} \mathbf{X} \mathbf{X}^{\top}$, constraints \mathcal{C} , step size η Initialize: $\mathbf{\Theta}^{(0)} \in \mathcal{C}$

Repeat $\mathbf{Z}^{(t)} = \mathbf{\Theta}^{(t)} + \eta (\mathbf{W} - \mathbf{\Theta}^{(t)}) \mathbf{C};$

 $\mathbf{\Theta}^{(t+1)} = \mathsf{Proj}_{\mathcal{C}}(\mathbf{Z}^{(t)});$ **until** a stopping criterion is met **Output** compressed weight $\mathbf{\Theta}$

Theoretical guarantees established for the pruning case (see appendix).

Experiments

Pruning

Table: Perplexity on WikiText2 of pruned Llama-2-7B model by different methods under different pruning ratios.

	50%	60%	70%	80%	90%
MAGNITUDE	14.89	4e3	_	NAN	-
SparseGPT	6.51	9.58	_	1e2	-
WANDA	6.48	10.09	70.04	4e3	1e4
AWP	6.42	9.44	22.10	83.28	8e2

Table: Perplexity on WikiText2 of pruned Llama-2-13B model by different methods under different pruning ratios.

	50%	60%	70%	80%	90%
MAGNITUDE	6.37	11.23	_	5e4	_
SparseGPT	5.63	7.80	-	1e2	_
Wanda	5.59	7.97	43.06	1e3	2e4
AWP	5.54	7.49	16.57	75.68	1e3

Quantization

Table: Perplexity on WikiText2 of quantized Llama-3.1-8B model by different methods.

Quantization & Pruning

Table: Perplexity on WikiText2 of pruned and INT4 quantized Llama-3.1-8B model by different methods.

AWP	6.81	9.32	1e2
WANDA+AWQ	6.81	9.46	2e2
AWQ+Wanda	6.93	9.71	3e2
PRUNING RATIO:	25%	50%	75%

Table: Perplexity on WikiText2 of pruned and INT4 quantized Llama-3.2-1B model by different methods.

AWP	11.20	18.41	3e2
Wanda+AWQ	11.30	21.90	1e3
AWQ+Wanda	11.63	23.95	2e3
Pruning Ratio:	25%	50%	75%

Our Related Work: Activation-aware low-rank compression (LatentLLM, CVPR-W'25) Naïve SVD of \mathbf{W} would minimize $\|\mathbf{W} - \mathbf{B}\mathbf{A}\|_F^2$.

Activation-aware SVD aims to minimize:

$$\|\mathbf{W}\mathbf{X} - \mathbf{B}\mathbf{A}\mathbf{X}\|_F^2 = \|\mathbf{W}\mathbf{C}^{1/2} - \mathbf{\underline{B}\mathbf{A}\mathbf{C}^{1/2}}\|_F^2.$$

Our global optimal solution:

The optimal rank r approximation of $\mathbf{WC}^{1/2}$ can be obtained by SVD of $\mathbf{WC}^{1/2} = \mathbf{USV}^T$ and keep its top-r components $\mathbf{U}_r \mathbf{S}_r \mathbf{V}_r^T$.

We can set $\mathbf{B}\mathbf{A}\mathbf{C}^{1/2} = \mathbf{U}_r\mathbf{S}_r\mathbf{V}_r^T$ and obtain $\mathbf{B}\mathbf{A} = \mathbf{U}_r\mathbf{S}_r\mathbf{V}_r^T\mathbf{C}^{-1/2}$

So setting $\mathbf{B} = \mathbf{U}_r$ and $\mathbf{A} = \mathbf{S}_r \mathbf{V}_r^T \mathbf{C}^{-1/2}$ would be a global optimal solution.