

Introduction

- Given a pretrained decoder or a generative model trained on clean data, can we recover clean time series purely at test time, even when the noise model is unknown and can vary?
- We propose a robust framework for recovering time series under "unknown noise".
- We also show that the recovered time series can be directly used on pretrained classifiers, trained on clean data, without a large drop in accuracy.
- We demonstrate improved performance over existing methods for multiple datasets from diverse domains.

Experiments & Results

We sample from a set of corruption functions generated randomly at test time, including Gaussian noise, time shift and scale, calibration error, etc.

We test our method on two activity recognition datasets: (1) PAMAP2 which uses IMUs and heart rate and (2) HDM05 which uses motion.

PAMAP2							
Method	Time Scale/Shift			Random			
	WAE	VAE	AE	WAE	VAE	AE	
LSO	7.59 ± 0.29	8.17 ± 0.07	8.55±0.16	7.76 ± 0.15	8.16 ± 0.05	$8.68 {\pm} 0.08$	
	(20.61 ± 0.03)	$(21.67 {\pm} 0.003)$	(20.66 ± 0.001)	(20.64 ± 0.001)	(21.71 ± 0.002)	(20.66 ± 0.001)	
DAE	50.51±0.92	9.62 ± 0.05	62.05 ± 0.58	38.90 ± 0.58	9.60 ± 0.06	44.04 ± 0.20	
	(25.31 ± 0.03)	$(21.44{\pm}0.001)$	(27.55 ± 0.06)	(24.72 ± 0.05)	(21.44 ± 0.002)	(25.37 ± 0.04)	
DAE+AT	50.57 ± 0.60	$9.58 {\pm} 0.06$	62.34 ± 0.73	38.75±0.63	9.55 ± 0.05	43.60 ± 0.67	
	(25.34 ± 0.06)	(21.43 ± 0.01)	(27.38 ± 0.18)	(24.69 ± 0.05)	(21.45 ± 0.001)	(25.27 ± 0.05)	
ROBUSTTS §	35.72±0.51	34.92 ± 0.17	51.58 ± 0.25	57.98±0.32	44.12 ± 0.12	52.03±0.24	
	(20.84 ± 0.04)	(23.08 ± 0.06)	(21.73 ± 0.02)	(24.51 ± 0.45)	(23.28 ± 0.003)	(25.00 ± 0.03)	
ROBUSTTS	63.07±0.81	45.55 ± 0.45	58.54 ± 0.31	58.22±0.19	44.32 ± 0.15	52.62 ± 0.23	
	(26.49 ± 0.18)	(23.28 ± 0.02)	(26.93 ± 0.06)	(24.94 ± 0.03)	(23.27 ± 0.01)	(25.02 ± 0.01)	

HDM05

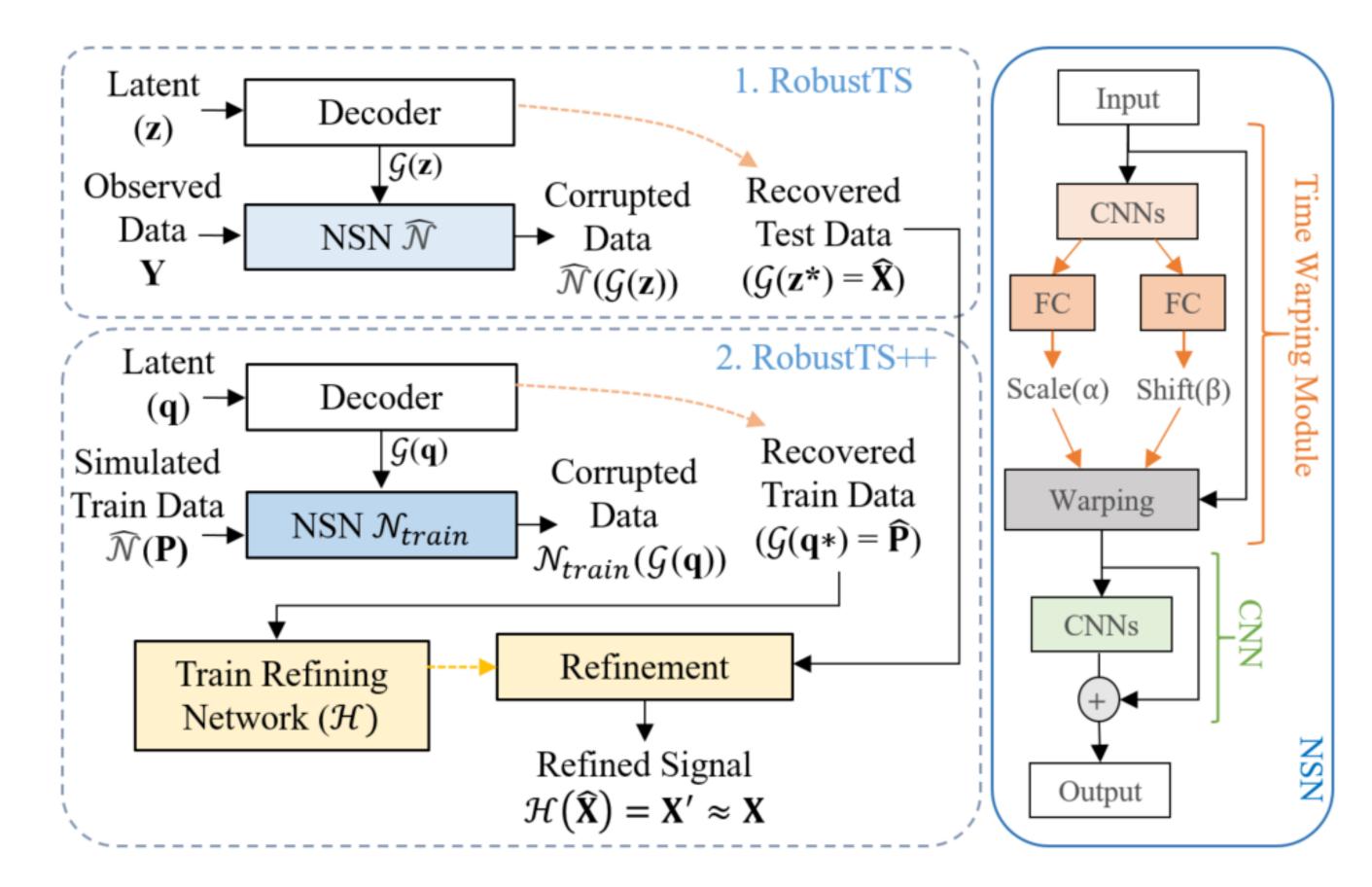
Den	oise-then-class	Robust classification		
Method	Corruption		Method	Corruption
	Scale/Shift	Random	witchiod	Random
LSO	0.99 (13.39)	0.93 (15.49)	Mixup [1]	3.01
DAE* [25]	55.53 (28.68)	26.97 (26.67)	Augmentation	18.14
ROBUSTTS §	10.48 (20.41)	34.09 (25.88)	Aug.+Mixup	13.23
RobustTS	54.09 (29.53)	38.88 (25.95)	Adv.+PGD [4]	4.23
ROBUSTTS++	61.52 (29.67)	41.43 (26.32)	ChoiceNet [28]	2.14

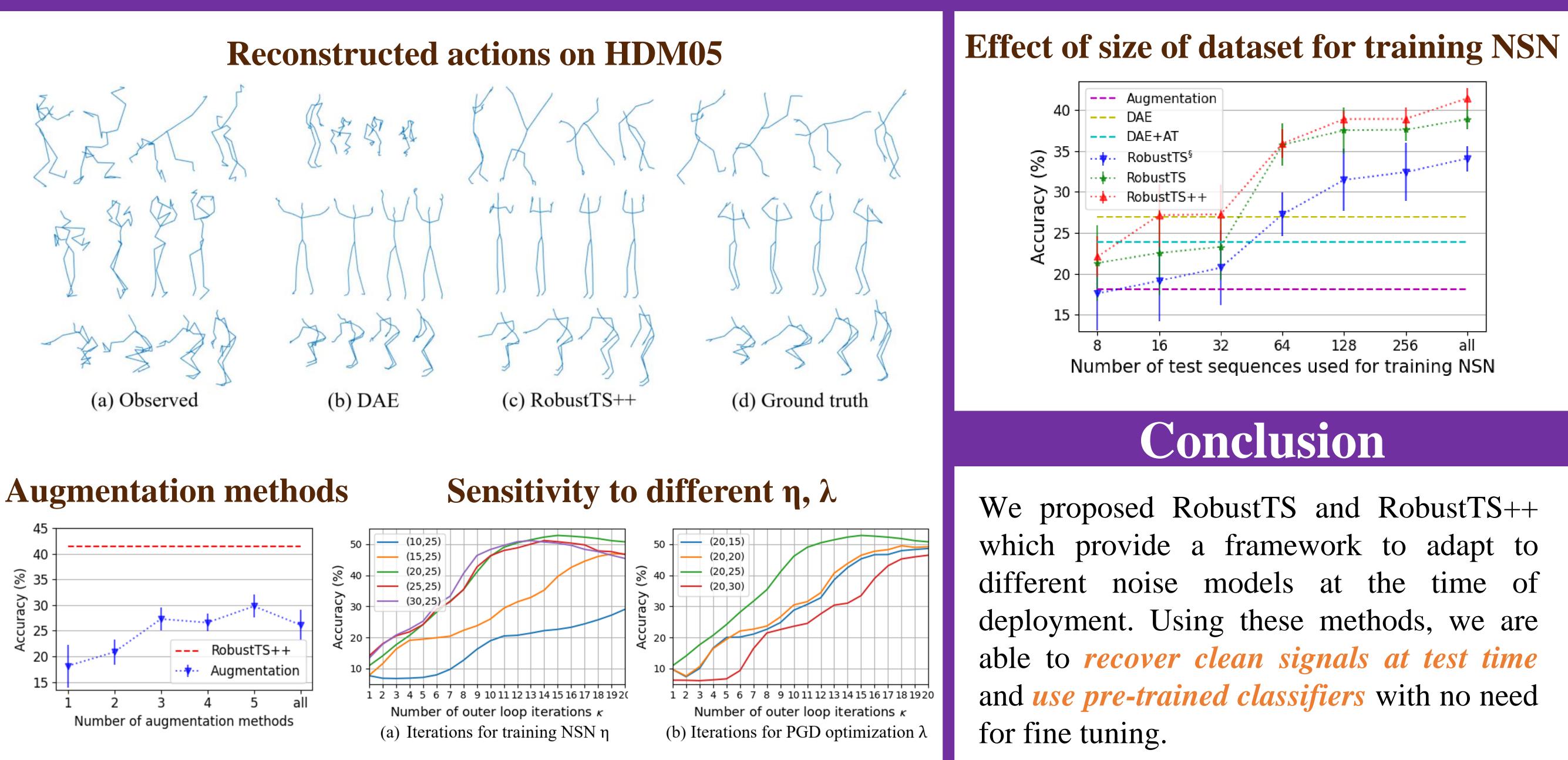
Robust Time Series Recovery and Classification Using Test-Time Noise Simulator Networks

Eun Som Jeon^a, Suhas Lohit^b, Rushil Anirudh^c, Pavan Turaga^a ^aGeometric Media Lab, Arizona State University ^bMitsubishi Electric Research Laboratories ^cLawrence Livermore National Laboratory

Proposed Frameworks: RobustTS and RobustTS++

A decoder model \mathcal{G} trained on clean data **X** is used to estimate the unknown noise by using a Noise Simulator Networks (NSN).





Our goal is to optimize the following objective:

 $\Theta^*, \{\mathbf{z}_j^*\}_{j=1}^n = \operatorname*{argmin}_{\Theta, \{\mathbf{z}_j\}_{j=1}^n}$

2) Fix $\{z_i^*\}_{i=1}^n$ and optimize for θ (parameters of NSN):

$$\Theta^{(k+1)} = \underset{\Theta}{\operatorname{argmin}} \frac{1}{n} \sum_{i=1}^{n} ||Y_j - \widehat{\mathcal{N}}(\mathcal{G}(\mathbf{z}_j^{(k+1)}), \Theta)||_2^2$$

RobustTS++: To further refine the outputs obtained from the RobustTS stage, we revisit the training set **P**. Recovered data $\widehat{\mathbf{P}}$ is created from the entire corrupted training data. We train a neural network \mathcal{H} . Finally, the refined $\mathbf{X}' = \mathcal{H}(\widehat{\mathbf{X}})$ is obtained, which is closer to **X**.

Paper ID: 2745 Visit Code GML! Available!

$$\sum_{1}^{n} \mathcal{L}(Y_j, \widehat{\mathcal{N}}(\mathcal{G}(\mathbf{z}_j), \Theta))$$

RobustTS: We solve the problem with an alternating optimization framework. 1) Fix $\widehat{\mathcal{N}}$ and optimize \mathbf{z}^* using a projected gradient descent (PGD). j=1, ..., n, $\mathbf{z}_{j}^{(k+1)} = \operatorname{argmin} \|Y_{j} - \widehat{\mathcal{N}}(\mathcal{G}(\mathbf{z}_{j}), \Theta^{(k)})\|_{2}^{2}$