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Partial Group Equivariant Neural Networks
GCNNs, Symmetries and Partial (Soft) Symmetries

Group convolutions restrict their convolutional kernels such that the convolution
preserves the symmetries observed in data —Equivariance.

input feature fields stabilized view

Group Convolutional Neural Networks (G-CNNs) are very data efficient, as the
network does not need to learn these symmetries by itself.

GCNNs are ubiquitous in data-scarse ML — Often SOTA in medical imaging, etc



Partial Group Equivariant Neural Networks
GCNNs, Symmetries and Partial (Soft) Symmetries

Nevertheless, several phenomena and tasks are bet
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For natural images, full rotation equivariance is overly restrictive!
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Partial Group Equivariant Neural Networks
GCNNs, Symmetries and Partial (Soft) Symmetries

Nevertheless, several phenomena and tasks are bet

What about this classification problem?
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G-CNNs cannot distinghish among group transformations of the input.
A rotation equivariant CNNs cannot dsintinguish between these digits.

BASE GROUP DATASET G-CNN
SE(2) MNIST6-180 50.0
Mirroring MNIST6-M 50.0
E(2) MNIST6-180 50.0
MNIST6-M 50.0

er described with partial symmetries.
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Partial Group Equivariant Neural Networks
GCNNs, Symmetries and Partial (Soft) Symmetries

Question: Should we then avoid using rotation equivariant group convolutions?
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For high-level features, depends on the data.

For low-level features, also depends, but
chances are equivariance will improve data

efficiency.
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Partial Group Equivariant Neural Networks
GCNNs, Symmetries and Partial (Soft) Symmetries

Question: Can we construct a NN which has the data-e

r

ciency advantages of G-CNNs,

but that is able to adapt its restrictions to model the data correctly?

That is a NN that can learn the level of partial equivariance at each layer?
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Partial Group Equivariant Neural Networks

Changes for the Betler



Partial Group Equivariant Neural Networks
Partial Equivariance

Main Idea: Let each group conv. layer learn a subset of the group to which it is equivariant.

120° 1507 180°

The group convolution will be (approx.) equivariant to some transformations, but not all.
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Partial Group Equivariant Neural Networks
Monte Carlo Approximations

How can we learn these subsets during training?
Monte Carlo approximation of group convolutions [Finzi et al. 2020].

(¥ * £)(u) = [; Y(v ') £(v) dug (v),

We can approximate the continuous operation by sampling points in the domain of the input
and output of the convolution, and evaluating the (continuous) functions on these points.

(V3 f)(ui) = 225 vy ui) f (v3)g (v7).

BASE GROUP DATASET G-CNN

If points are sampled uniformly (on the Haar measure) from SE() | MNISTG 180 | 500
. . " - . - . nroring Y= 2L,

the group, the approximation is equivariant (in expectation). b2 | MNSTEIR0 |00

Note: It must be possible to evaluate the conv kernel at arbitrary positions — continuous convolutional kernels! #'W ELECTRIC ewe \/U be



Partial Group Equivariant Neural Networks

Monte Carlo Approximations

How can we learn these subsets during training?

What if we don't sample uniformly from the entire group, but only from a part of the group?

(¥ * f)(u) =/g: Y u) f(v) dug(v), — (W*f)(u)= ];j p(w)y (v 'u) f(v) dug(v); p(u) 0 iff ue S

Then, when we use the Monte Carlo approximation:

(V3 F)(ui) = 3 (07 u) £ (07 i (v;),

We effectly sample from a subset of the group! &
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Partial Group Equivariant Neural Networks
Learning Distributions on the Group

Continuous groups

We want a distribution which is uniform in some part of the group and zero otherwise.

We use the reparameterization trick -

then ma

0 learn a distribution on the Lie algebra, which is

oped to the group via the ex

P

Discrete groups

honential map.

(9)=U(6-[-1,1))

We can use the Gumbel Softmax trick to learn a Bernoulli distribution over each group
element. This defines a distribution on the discrete group.

p(eg1,-..,9n) = [Ti2y P(9i)
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Partial Group Equivariant Neural Networks

Results

Partial G-CNNs adjust their level of equivariance based on the data.

They restrict equivariance if full equivariance is harmful

But, they learn to stay fully equivariant if full equivariance is advantageous.

Table 2. Test accuracy on vision benchmark datasets.

BAsE NO. PAaRTIAL CLASSIFICATION ACCURACY (%)
Grour  ELEMs  EQuiv. oo e T CIFARIO  CIFARI00

T(2) 1 - 07.23 8311 47.99

4 X 99,10 83.73 52.35

4 99,13 86.15 531.91

SE(2) " X 099,17 H6.08 55.55

v 99,23 88.59 57.26

16 X 99.24 86.59 51.55

v 90 18 89.11 57.31

3 X 98.14 85.55 54.29

16 X 08.35 HE.05 57.78

v 98.58 9,12 61.46

Table 1. Test accuracy on MNIST6-180 and MNIST6-M.

Base GrOUP | DATASET G-CNN | PArRTIAL G-CNN
SE(2) MNISTG-180 50.0 104,10
Mirroring MNIST6H-M 50.0 1040.100
E(2) MNIST6-180 50.0 104,100
MNISTH-M 50).0 1040.100
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Figure 4. Learned equivariances on MNIST6-180. Partial G-CNNs
learn to become equivariant to rotations on the semi-circle in order
to solve the task. Regular G-CNNs, on the other hand, are unable

to solve this task as it required setting group transformations apart.
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Partial Group Equivariant Neural Networks

| earned subsets

We can look at the subsets learned by Partial G-CNNs
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It is better to disrupt equivariance in the middle of the network!

4
Layer

Table 2. Test accuracy on vision benchmark datasets.

BASE M0, PARTIAL CLASSIFICATION ACCURACY (%)
Grour  Erems — BQUIV. “p IMNIST CIFARI0O CIFARI00

T(2) 1 - 97.23 8311 47.90

. X 99.10 83.73 52.35

4 90,13 qh.15 s301

':']EI:'.E]I g X ey 17 Bh08 35,55

o Oy 23 ER.50 ST.2h

» x 99,24 36.59 51.55

s 99,18 $9.11 5731

. X 98.14 85.55 54.29

B(2) s 97.7 $9.00 35.22

e X 98.35 38.95 57.78

& UK. 58 O, 12 hl.46

Table 5: Accuracy on vision benchmark datasets with (partial) group equivariant 13-layer CNNs [29].

GBAEE ENCI. PE.RT_ML AUGRRING CLASSIFICATION ACCURACY (%)
gkl i el RoOTMNIST CIFARID CIFARIDO

T(2) 1 - 96.90 91.21 67.14

X X 98.70 85.51 62.06

2 v 98.94 87.78 65.79

v - 0R.72 92,48 66.72

n X 98.43 89.73 65.97

SE(2) o s 98.94 91.66 68.99

v - 08.78 92.28 69.83

X X 98.54 90.55 67.70

B v 99.28 89.96 69.66

v - 0R.77 91.99 70.80
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Partial Group Equivariant Neural Networks
Conclusion

We presented a simple method with which the layer-wise partial equivariances can be learned.

It boils down to learning a probability distribution on the group, from which group
elements are sampled during the group convolution.

We observe that Partial G-CNNs beat G-CNNs when equivariances are misspecified, and
match them when these are correctly defined.
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Thank you for your attention!

Questions?

David W. Romero, Suhas Lohit
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