Learning Partial Equivariances From Data

David W. Romero¹

¹Work done at Mitsubishi Electric Research Laboratories

Suhas Lohit Vrije Universiteit Amsterdam Mitsubishi Electric Research Laboratories

Group convolutions restrict their convolutional kernels such that the convolution preserves the symmetries observed in data \rightarrow Equivariance.

Group Convolutional Neural Networks (G-CNNs) are very data efficient, as the network does not need to learn these symmetries by itself.

GCNNs are ubiquitous in data-scarse ML \rightarrow Often SOTA in medical imaging, etc.

GCNNs, Symmetries and Partial (Soft) Symmetries

Nevertheless, several phenomena and tasks are better described with partial symmetries.

таний царых соя

For natural images, full rotation equivariance is **overly** restrictive!

Nevertheless, several phenomena and tasks are better described with partial symmetries.

What about this classification problem?

G-CNNs cannot distinghish among group transformations of the input. A rotation equivariant CNNs **cannot** dsintinguish between these digits.

BASE GROUP	DATASET	(
SE(2) Mirroring	MNIST6-180 MNIST6-M	
E(2)	MNIST6-180 MNIST6-M	

G-CNN	
50.0 50.0	
50.0 50.0	

Question: Should we then avoid using rotation equivariant group convolutions?

For **low-level features**, also depends, but chances are equivariance will improve data efficiency.

For **high-level features**, depends on the data.

Question: Can we construct a NN which has the data-efficiency advantages of G-CNNs, but that is able to adapt its restrictions to model the data correctly? That is a NN that can learn the level of *partial* equivariance at each layer?

Partial Equivariance

Main Idea: Let each group conv. layer learn a subset of the group to which it is equivariant.

The group convolution will be (approx.) equivariant to some transformations, but **not all**.

Monte Carlo Approximations

How can we learn these subsets during training?

Monte Carlo approximation of group convolutions [Finzi et al. 2020].

$$(\psi * f)(u) = \int_{\mathcal{G}} \psi(v^{-1}u)f(v)$$

We can approximate the continuous operation by sampling points in the domain of the input and output of the convolution, and evaluating the (continuous) functions on these points.

$$(\psi \hat{*} f)(u_i) = \sum_j \psi(v_j^{-1} u_i) f$$

If points are sampled uniformly (on the Haar measure) the group, the approximation is equivariant (in expect

Note: It must be possible to evaluate the conv kernel at arbitrary positions \rightarrow continuous convolutional kernels!

- $d\mu_G(v),$
- $(v_j)\bar{\mu}_G(v_j),$

	BASE GROUP	DATASET	G-CNN
) from	SE(2) Mirroring	MNIST6-180 MNIST6-M	50.0 50.0
tation).	E(2)	MNIST6-180 MNIST6-M	50.0 50.0

Monte Carlo Approximations

How can we learn these subsets during training?

What if we don't sample uniformly from the entire group, but **only** from a part of the group?

$$(\psi * f)(u) = \int_{\mathcal{G}} \psi(v^{-1}u)f(v) d\mu_{\mathcal{G}}(v), \quad \rightarrow \quad (\psi * f)(u) = \int_{\mathcal{G}} \psi(v^{-1}u)f(v) d\mu_{\mathcal{G}}(v)$$

Then, when we use the Monte Carlo approximation:

$$(\psi \hat{*} f)(u_i) = \sum_j \psi(v_j^{-1} u_i)$$

We effectly sample from a subset of the group!

$p(u)\psi(v^{-1}u)f(v) d\mu_G(v); p(u) \neq 0 iff u \in \mathcal{S}$

 $f(v_j)\overline{\mu}_G(v_j),$

Learning Distributions on the Group

Continuous groups

We want a distribution which is uniform in some part of the group and zero otherwise.

We use the reparameterization trick to learn a distribution on the Lie algebra, which is then mapped to the group via the exponential map.

$$p(g) = \mathcal{U}(\theta \cdot [-1, 1])$$

Discrete groups

We can use the Gumbel Softmax trick to learn a Bernoulli distribution over each group element. This defines a distribution on the discrete group.

$$p(e,g_1,\ldots,g_n) = \Gamma$$

- 1))
- $\prod_{i=1}^{n} p(g_i)$

Partial G-CNNs adjust their level of equivariance based on the data. They restrict equivariance if full equivariance is harmful But, they learn to stay fully equivariant if full equivariance is advantageous.

BASE			CLASSIFICATION ACCURACY (%)		
GROUP	P ELEMS EQUIV.	ROTMNIST	CIFAR10	CIFAR100	
T(2)	1	-	97.23	83.11	47.99
	4	×	99.10 99.13	83.73 86.15	52.35 53.91
SE(2)	8	×	99.17 99.23	86.08 88.59	55.55 57.26
	16	×	<u>99.24</u> 99.18	86.59 89.11	51.55 57.31
E(2)	8	×	98.14 97.78	85.55 89.00	54.29 55.22
	16	×	98.35 98.58	88.95 <u>90.12</u>	57.78 <u>61.46</u>

Table 2. Test accuracy on vision benchmark datasets.

BASE GROUP	DATASET	G-CNN	PARTIAL G-CNN
SE(2)	MNIST6-180	50.0	100.0
Mirroring	MNIST6-M	50.0	100.0
E(2)	MNIST6-180	50.0	100.0
	MNIST6-M	50.0	100.0

Figure 4. Learned equivariances on MNIST6-180. Partial G-CNNs learn to become equivariant to rotations on the semi-circle in order to solve the task. Regular G-CNNs, on the other hand, are unable to solve this task as it required setting group transformations apart.

Learned subsets

We can look at the subsets learned by Partial G-CNNs

It is better to disrupt equivariance in the middle of the network!

-				
PARTIAL	CLASSIFICATION ACCURACY (%)			
EQUIV.	ROTMNIST	CIFAR10	CIFAR100	
-	97.23	83.11	47.99	
×	99.10	83.73	52.35	
1	99.13	86.15	53.91	
×	99.17	86.08	55.55	
1	99.23	88.59	57.26	
×	99.24	86.59	51.55	
~	99.18	89.11	57.31	
×	98.14	85.55	54.29	
1	97.78	89.00	55.22	
×	98.35	88.95	57.78	
1	98.58	<u>90.12</u>	<u>61.46</u>	

Table 2. Test accuracy on vision benchmark datasets.

Table 5: Accuracy on vision benchmark datasets with (partial) group equivariant 13-layer CNNs [29].

ARTIAL	AUGERINO	CLASSIFICATION ACCURACY (%)			
EQUIV. AUGERINO	ROTMNIST	CIFAR10	CIFAR100		
-	-	96.90	91.21	67.14	
~	×	98.70	85.51	62.06	
×	1	98.94	87.78	65.79	
~	-	98.72	92.48	66.72	
	×	98.43	89.73	65.97	
×	1	98.94	91.66	68.99	
1	-	98.78	92.28	69.83	
~	×	98.54	90.55	67.70	
×	1	99.28	89.96	69.66	
1	-	98.77	91.99	70.80	

Partial Group Equivariant Neural Networks Conclusion

We presented a simple method with which the layer-wise partial equivariances can be learned.

It boils down to learning a probability distribution on the group, from which group elements are sampled during the group convolution.

We observe that Partial G-CNNs beat G-CNNs when equivariances are misspecified, and match them when these are correctly defined.

Thank you for your attention! Questions?

David W. Romero, Suhas Lohit

