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Goal: Compare accuracy of a of Deep Neural Networks with the accuracy of a single large Deep
Neural Network with same number of parameters.

Introduction

» Boosting Is a method for finding a highly accurate hypothesis by linearly combining many ~“weak" hypotheses, each of which may be . 116 paper
only moderately accurate. for more

* Boosting can be applied to any classifier and AdaBoost has been proven to reduce the training error as more weak classifiers are added information:
to the ensemble.

* Boosting was studied extensively with decision trees, and a large ensemble of decision trees has better performance than a single
decision tree on the test set ("win”).

* Missing In current literature: Analysis on whether an ensemble of MLPs or CNNs is a “win” in terms of decreasing the testing error
below what Is achievable with a single network with the same number of total parameters as in an ensemble.

Key Takeaway: Better off training a single large network than a of small networks.
AdaBoost Datasets and Boosting algorithms
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Key Takeaways
Decision Trees Neural Networks
° Slngle Iarge Decision Trees overfit while the boosted ensemble  With same number of parameters’ Sing|e CNN is better
does better on all three datasets than
* With the same number of leaves, IS better than a single

large tree



