
© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL)
Cambridge, Massachusetts, USA

http://www.merl.com

Variational Quantum Compressed Sensing for Joint User and Channel 
State Acquisition in Grant-Free Device Access Systems

Bryan Liu
Toshiaki Koike-Akino

Ye Wang
Kieran Parsons

May 16, 2022

http://www.merl.com/


© MERL

• Quantum Machine Learning
• System Model
• Compressed Sensing 
• Proposed Variational Quantum Compressed Sensing

• Embedding
• Denoising
• State Preparation
• Variational Quantum Circuit

• Numerical Results
• Conclusion

Agenda

5/16/22 2



© MERL

Quantum Machine Learning
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Quantum 
Processors

Classical 
Computers

An Example of a Quantum Circuit:

𝑞!

𝑞"

𝑅#(𝜙!)

𝐻𝐻

𝑅#(𝜙")

𝐻

𝑅#(𝜙$)

• Software toolkits:
• Pennylane
• Qiskit

• Hardware supply:
• IBM
• Xanadu
• Microsoft Azure Quantum

In a quantum machine learning system, these rotation gates 
parameters, 𝜙!, 𝜙" and 𝜙$ can be trainable to achieve tasks such as 
classification and regression.

Measurements

Updated Parameters
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• Literatures on Quantum Machine Learning and Wireless Communications

• Quantum Approximate Optimization Algorithm (QAOA) and channel decoding (approximate ML):
• T. Matsumine, T. Koike-Akino, and Y. Wang, “Channel decoding with quantum approximate optimization 

algorithm,” arXiv: 1903.02537, 2019.

• QAOA detection:
• J. Cui, Y. Xiong, S. X. Ng, and L. Hanzo, “Quantum approximate optimization algorithm based maximum likelihood 

detection,” arXiv: 2107.05020, 2021.

• Belief-propagation with quantum messages:
• Rengaswamy, N., Seshadreesan, K.P., Guha, S. et al. Belief propagation with quantum messages for quantum-

enhanced classical communications. NPJ Quantum Inf 7, 97 (2021).

• Quantum machine learning for communication networks
• S. J. Nawaz, S. K. Sharma, S. Wyne, M. N. Patwary and M. Asaduzzaman, "Quantum Machine Learning for 6G 

Communication Networks: State-of-the-Art and Vision for the Future," in IEEE Access, vol. 7, pp. 46317-46350, 
2019.

Quantum Machine Learning
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A massive machine-type communication system with a grant-free access scheme is 
assumed:

• where 𝒚 ∈ ℂ(, 𝑨 ∈ ℂ(×*, 𝒙 = 𝒂𝒉, 𝒉 ∈ ℂ* and 𝒛 ∈ ℂ(. 𝒂 is the activity vector of each 
user that has 𝑎+ ∈ 0,1 and 𝑃 𝑎+ = 1 = 𝜌, 0 ≤ 𝜌 ≤ 1 for 𝑛 ∈ 1,… ,𝑁 . For a massive 
machine-type communication system, we assume that 𝑀 < 𝑁. 
• ℎ, ∼ 𝒩(0, 𝜌-.). 𝒛 ∼ 𝒞𝒩(𝟎, 𝜎𝟐𝑰). corr(𝑎,, 𝑎0)= 𝛾|,-0| follows an autoregressive model, 

where corr(A) indicates the correlation coefficient between two variables.

System Model
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𝒚 = 𝑨𝒙 + 𝒛,

Unknown sequence
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• Iterative shrinkage-thresholding algorithm (ISTA) [1]
– Two-step iterative algorithm which follows the updates of:

(Linear Estimation): 𝒍! = 𝒒! + 𝑨"(𝒚 − 𝑨𝒒!)
(Non-linear Estimation): 𝒒!#$ = 𝜂!(𝒍!)

ISTA has a low computational complexity but correspondingly, the convergence speed of ISTA 
might be slow, especially in extreme underdetermined problems

Iterative Compressed Sensing Algorithm
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• Approximate message passing (AMP) algorithm [2] employs an “Onsager” term to manipulate 
and maintain the residual errors of the linear estimation to be Gaussian distributed. However, 
AMP replies on the assumption that the entries in the measurement matrix are samples from a 
Gaussian distribution. Starting from +𝒙% = 𝟎 and +𝒗% = 𝒚, the AMP algorithm has a two-step 
update of:

+𝒙!#$ = 𝜂! 𝑨"+𝒗! + +𝒙!

+𝒗!#$ = 𝒚 − 𝑨+𝒙!#$ +
𝑁
𝑀 ⟨𝜂′(𝑨"+𝒗! + +𝒙!)⟩

References:
1. I. Daubechies, M. Defrise, and C. De Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint," Commun. Pure Appl. Math: J. Issued by the Courant Institute of Math Sciences., 
vol. 57, no. 11, pp. 1413-1457, Nov. 2004.
2. D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing," Proc. Natl. Acad. Sci., vol. 106, no. 45, pp. 18914-18919, Nov 2009.
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Orthogonal Approximate Message Passing
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• Starting from 𝒒% = 𝟎 , conventional orthogonal approximate message passing algorithm [3] contain two-step 
iteration, linear estimation (LE) and non-linear estimation (NLE): 

(Linear Estimation): 𝒍& = 𝒒& + 𝑫&(𝒚 − 𝑨𝒒&)
(Non-linear Estimation): 𝒒&'! = 𝜂&(𝒍&)

• 𝑫& has three types of form
• Matched filtering: (

&) *!*
𝐴+

• Pseudo-inverse: (
&) *! **! "#*

𝐴+ 𝐴𝐴+ ,!

• Linear minimum mean-squared error: (

&) -$
%*! -$

%**!'.%/ "#*
𝐴+ 𝐴𝐴+ ,!, where 𝜖" is the mean-squared error of 

the non-linear estimation 𝜂&(𝒍&)

• 𝜂& 𝑙0& = 1$%

1$%,2234(1$%)
(𝜂&7789 𝑙0& − 2234(1$%)

1$%
𝑙0&), where 𝜂&7789 𝑙0& =

&"#

&"#'($
%:)
$

!'#"&&
&"#'($

%

($
% 4;<(,#%

&"#

($
% &"#'($

% | >:)
$ %)

.

• mmse(𝜏&") represents the variance of the estimation error between the MMSE denoiser’s output and 𝒙, i.e., 
𝐸{ 𝜂&7789 𝑙0& − 𝒙 "}. 𝑐" is the channel variance.

References:
3. J. Ma and L. Ping, \Orthogonal AMP," IEEE Access, vol. 5, pp. 2020{2033, Jan. 2017.
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• Motivation: we employ a variational quantum circuit to replace the non-linear function in 
a conventional compressed sensing algorithm so that the user activity’s correlation can be 
explored.

Variational Quantum Compressed Sensing – Block Diagram 

5/16/22 8

• Embedding: adjust the input data range 
before processing by a variational 
quantum circuit (VQC).

• VQC: the main quantum circuit that 
explores the characteristics of user 
activities and find a proper scaling 
factor for denoising

• Denoising: scale the linear estimate for 
sparsity recovery

• State Preparation: compute the 
previous iteration’s empirical 
estimation error serves as an input to 
the VQC
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• Embedding
𝑟&! = 𝜋 ⋅ tanh 𝑙&!

'

The range of the linear estimate is embedded to 0, 𝜋 , which refers to a one-to-one mapping from 
the linear estimate to the rotation gate’s angle in a VQC.

• Denoising

>𝑥&! =
𝑠$,&!

1 + 𝑠',&!
𝑙&!

Introducing 2 scaling factors to form a function that follows the analogous form of a minimum mean 
square error denoiser. 𝑠$,&! and 𝑠',&! are found by 2 VQCs.

• State Preparation

B𝑣!' = 𝜋 ⋅ tanh
1
𝑁 𝒚 − 𝑨+𝒙! '

As an input of the VQC, the empirical non-linear recovery error on the received symbols is tracked by 
the system for every iteration.

Variational Quantum Compressed Sensing – Sub-Processors 
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• Variational Quantum Circuit

Variational Quantum Compressed Sensing – Quantum Circuit 
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• Each colored block contains trainable parameters that can be tuned to explore the correlation structure of 
the user activity. 

• By employing data re-uploading method in [1], there could be multiple layers contained for the VQC.
• We use a Pauli-Z gate to measure the qubits, where the measurement has an output range of [−1, 1]. We 

scale the measurement by 𝑠!,#$ = !
%
𝑚!
$ + 1 so that the final scaling factor has a range of [0, 1].

Reference:
1. Perez-Salinas, Adrian and Cervera-Lierta, Alba and Gil-Fuster, Elies and Latorre, Jose I., “Data re-uploading for a universal quantum classifier”, arXiv: 1907.02085, 2020.
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• Training
By “unfolding” the two-step iterative process of a compressed sensing algorithm, we use a 
multi-loss function to train the parameters in a variational quantum circuit:

𝒞 =
1
𝑁
C
HI.

J

𝜉J-H 𝒙 − F𝒙H
K

• System model for the following numerical results:

Variational Quantum Compressed Sensing – Loss Function 
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Parameters Values
Signal-to-noise ratio 30 dB

Condition number of 𝑨 1
User activity ratio 𝜌 0.2

User activity correlation coefficient 𝛾 0.6
Number of data re-uploading layers 3
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• Channel Estimation

Numerical Results
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MSE performances in a system that has 𝑁 = 10 devices, 
𝑀 = 6 received symbols and correlation factor 𝛾 = 0.6.

• ISTA: Iterative shrinkage-threshold algorithm
• Matched filtering is used in the linear estimation step
• Soft-thresholding function is employed in the non-

linear estimation step 
• FISTA: Fast iterative shrinkage-threshold algorithm 

• Matched filtering is used in the linear estimation step
• Soft-thresholding function is employed in the non-

linear estimation step 
• OAMP: Orthogonal approximate message passing algorithm

• Pseudo-inverse form of a linear matrix is used to 
decorrelate the elements in linear estimate

• MMSE denoiser is employed in the non-linear 
estimation step 

• VQC-CS: Variation quantum circuit based compressed 
sensing

• Pseudo-inverse form of a linear matrix is used to 
decorrelate the elements in linear estimate

• Variational quantum circuit serves as the non-linear 
estimator

• VQC-CS IBMQ-Bogota Backend: the quantum circuit is 
simulated with an approximated noisy channel from the 
IBMQ-Bogota backend.
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• User Identification

Numerical Results
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ROC charts in a system that has 𝑁 = 10 devices, 𝑀 = 6 received 
symbols and correlation factor 𝛾 = 0.6.

• For the curves with a label of “Post-proc”, we 
use a post-processing multi-layer perception 
(two hidden layers with 4𝑁 and 2𝑁 neurons 
respectively) to optimize the binary cross 
entropy loss for user activity recognition after 
the channel estimation. 

• We compare the absolute of 𝑥0& to a threshold 
𝑔, where the user is detected as active if 𝑥0& >
𝑔 and inactive otherwise.
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• We proposed a new compressed sensing algorithm based on a VQC, that can be applied to joint 
channel estimation and user identification in grant-free IoT-device access systems.

• The proposed framework is a hybrid classical-quantum computing paradigm, where the NLE 
step exploits a trainable VQC processor to properly refine the estimate of the LE step as an 
alternative denoiser. 

• As a proof-of-concept study, we showed that VQC-CS can outperform conventional compressed 
sensing techniques under a challenging system scenario where the device activity is correlated. 

• There remain many fascinating challenges for future work, including rigorous performance 
verification with real quantum processors and quantum ansatz design for large-scale 
compressed sensing problems.

Conclusion
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