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Video Question Answering

Question:
Why did the book drop?

© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 3



‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better AAAI-22

Video Question Answering

Question:
Why did the book drop?

\‘ %
[
Because the baby kicked it! ]

NEXTQA: Next Phase of Question-Answering to Explaining Temporal Actions, Xiao et al., CVPR, 2021

Video from the NExT-QA dataset
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Video Question Answering

Question:
Why did the book drop?

Candidate answers

A1: open the cup
A2: baby kicked it

) / A3: the girl in pink slipped
\. ® A4: safety

. AS5: lady pushed it too hard

Video from the NExT-QA dataset

NEXTQA: Next Phase of Question-Answering to Explaining Temporal Actions, Xiao et al., CVPR, 2021
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Visual Scene Graphs for Question Answering
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Scene Graphs for Video Reasoning
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Standard Video Question Answering Pipeline
Question
el || |3
8 : S
S e |2 Inf
=L [ g | 2| nferen
1l Ak erence Answer
£ [ £ Engine
g 11%
| Vesk =
Ll ]
—— U* ‘ ——o
; L _ Y,
Input Frames ’ Graphs per frame Graph pooling
Dynamic Graph Representation Learning for Video Dialog via Multi-Modal Shuffled Transformers, Geng et al., AAAI, 2021
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Key Questions
« Isn’t constructing a scene graph for every video frame redundant? Usually
several of the objects in the scene (and their relationships) will not change from

frame to frame?
« Won't the learning and inference be computationally challenging for long video
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Rey Insights

* Video frames are 2D views of a 3D space in which various events happen spatio-
temporally. Can we use this 3D knowledge to build a scene graph?
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Rey Insights

* Video frames are 2D views of a 3D space in which various events happen spatio-
temporally. Can we use this 3D knowledge to build a scene graph?

« Advantages:
— A 3D scene graph could remove redundant object nodes

— Objects are disentangled from their views and thus could help with occlusion
reasoning (e.g., objects are visible in some views but not in all)

— A smaller graph implies less memory footprint and faster training/inference
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Proposed Architecture: (2.5+1)D Scene Graph Reasoning

Question Embedding Candidate
Answers

U
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[ Node Features Spatio-temporal positions e —

person person \ e /
Input video frames 2.5D transformation Static and Dynamic Graphs Hierarchical (2.5+1)D Candidate answer
Transformer alignment
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Proposed Architecture: (2.5+1)D Scene Graph Reasoning

Question Embedding Candidate
Answers

U
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person person
Input video frames 2.5D transformation Static and Dynamic Graphs Hiorarchical (2.5+1)D Candidate answer
Transformer alignment

(2+1)D — (2.5+1)D Scene Graphs
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Proposed Architecture: (2.5+1)D Scene Graph Reasoning

Question Embedding Candidate
Answers

U
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E o cone ~—
person person \ . /
Input video frames 2.5D transformation  Static and Dynamic Graphs  Hierarchical (2.5+1)D Candidate answer
Transformer alignment

Fusion Engine
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Proposed Architecture: (2.5+1)D Scene Graph Reasoning

Question Embedding Candidate
Answers

U
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Answer
E> Selection

person

== —
person person \ o )
Input video frames 2.5D transformation  Static and Dynamic Graphs  Hierarchical (2.5+1)D Candidate answer
Transformer alignment

Inference Engine
/Losses
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2D — 2.5D Scene Graphs Construction
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Input video frames
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2D Scene Graphs

* For every video frame,
— We use a Fast-RCNN object detector to find
» the bounding boxes of objects .
* their object classes
» and their feature vectors

Each box (and its attributes) forms a
node in the graph

But, what are the edges for the graph?
They will come later.
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(2.5+1)D Spatio-Temporal Scene Graphs

« How to remove the redundancy in the graph nodes from all video frames?

— The video is a view of happenings in a 3D space
— Ground each repeated 2D graph node to a single 3D graph node in a 3D space

« Challenges: object point
— How to construct the 3D scene graph? feature point WP, )ﬁ@
— Usually needs ’

’
Pi k-1,

» a static scene,
» the camera parameters, ", Pik+1
« multiple overlapping views, etc.

— Unavailable for arbitrary internet videos that we use

© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 18
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(2.5+1)D Spatio-Temporal Scene Graphs

« How to remove the redundancy in the graph nodes from all video frames?
— The video is a view of happenings in a 3D space
— Ground each repeated 2D graph node to a single 3D graph node in a 3D space

. Challenges: object point
— How to construct the 3D scene graph? feature point WP, )ﬁ@
— Usually needs 2

/
Pik—1,

* a static scene
 the camera parameters i Pik+1
« multiple overlapping views, etc.
— Unavailable for arbitrary internet videos that we use
Do we need an accurate reconstruction for reasoning?

© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 19



‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

2D — 2.5D Scene Graphs

* For every video frame,

— We use MiDAS Monocular — 3D pseudo-depth mapping algorithm

— to produce a 2.5D approximate depth map and ground FRCNN bounding
boxes in it

— For each box, we use its 2.5D centroid as its 3D location attribute

3p0

AAAI-22

200

Input image

Depth map

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, Ranftl et al., PAMI, 2020
© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 20
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(2.5+1)D Spatio-Temporal Scene Graphs

« To construct the 3D scene, we need to register the objects into a common 3D
coordinate frame.

— We split the FRCNN bounding boxes into two object classes
- Static: that usually do not move in the scene (e.g., table, bed, window, etc.)
 Dynamic: that may move in the scene (e.g., people, cup, car, etc.)

— We use only the static object classes for registration to create the 3D scene.

— We use the first video frame as the key frame and propose to progressively
map all other frames to the coordinate frame defined by the first frame

— For frames that do not have overlaps with the first frame (such as shot
changes), we use the respective first frame of the shot as its coordinate frame

© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 21
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Static Sub-Graphs
« We merge two static nodes into a single 2.5D static scene graph node, if they:
. t lly cl d 4 h
are temporally C O_Se’ an C(vg, vy ) 1= (cvt :cvt,) AloU(bbox,,, bbox, ,) > v
* have the same object classes, and
« bounding boxes overlap by more than y, and | match(v;) = arg min |Pve — Po,,
- 3D object centroids are closest v €V gUeee UV,
_ such that C(v¢,vy) =1 D
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Dynamic Sub-Graphs

« For dynamic objects in the scene, we do not merge their scene graph nodes:
— Since their informative cues may change from frame-to-frame
— and their spatio-temporal dynamics are important for reasoning.

P BF
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Dynamic Sub-Graphs

« For dynamic objects in the scene, we do not merge their scene graph nodes:
— Since their informative cues may change from frame-to-frame
— and their spatio-temporal dynamics are important for reasoning.

— We augment the frame-level FRCNN features of the dynamic objects with
motion features (I3D) capturing spatio-temporal dynamics within these
boxes.
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(2.5+1)D Spatio-Temporal Scene Graphs

RGB first frame Depth tirst frame

Dynamic Graph
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2.5D rendered scene using the depth map
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Hierarchical (2.5+1)D Transtormer

Question Embedding Candidate
Answers

U

)

Answer
E> Selection

[ Node Features Spatiotemporal positions e —

(2.5+1)D scene graph
berson person \ /

Input video frames 2.5D transformation  Static and Dynamic Graphs  Hierarchical (2.5+1)D Candidate answer
Transformer alignment

Fusion Engine
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Hierarchical (2.5+1)D Transtormer

« Key idea:

To augment a standard Transformer architecture with an attention model that
captures the spatio-temporal proximity of the (2.5+1)D scene graph nodes.

AAAI-22

Output
Probabilities

Multi-head (2.5+1)D Kernel Attention

i=1 VT i=1

Multi-head Transformer Attention

Add & Norm
Feed
Forward

k
P Wil i
|k| softmax (%) V. : “ softmax K(V',V'|os,04) Vi

Add & Norm

2
(0 Ot

2
= o =1
K(’Ul,’U2|O'S,0't) = exp(— ||pv1 Do, H _ || V1 1)2”1)

Positional
Encoding

Multi-head (2.5+1)D Spatio-Temporal Kernel

Vaswani et al., NeurlPS, 2017

We use (2.5+1)D locations of queries and keys
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Spatio-Temporal Kernel Attention
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Spatio-Temporal Kernel Attention
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AAAI-22

Y-axis

Spatio-Temporal Kernel Attention
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AAAI-22

Y-axis

Spatio-Temporal Kernel Attention

k(v1,v2|06,0¢) = exp(—
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[P 22 | I (P 2 |
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Y-axis

Spatio-Temporal Kernel Attention

=

F}ep:= || softmax K(V',V’|o,,04) V%
=1

k(v1, V2|06, 0¢) = exp(

2
_poy =PuoI” [ltor = el

& ot

4

)

XIS
e

A static object

Thus, the attention is activated when two graph nodes
are spatio-temporally near in 3D, e.g., when some

interaction happens.

L v

© MERL
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AAAI-22

Spatio-Temporal Kernel Attention

k

Fjop := || softmaxK(V',V'|os,04) V%
=1

2
[Pvy = Poa ™ [1toy = Lo, |

o2

k(v1,v2|06,0¢) = exp(—

S

Ot

)

'\ \
\

] /|

The attention scores defined by the kernel matrix K
(with kernel function k) are combined with the
respective node features v to produce a new weighted
node feature for every fused graph node. V' denotes a
matrix of v.

XIS

A static object

L v
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Spatio-Temporal Kernel Attention

k : " > e
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Y-axis

Spatio-Temporal Kernel Attention

2
[Pvy = Poa ™ [1toy = Lo, |

Ii(’Ul, UQ|JS7 Jt) — eXp<_

)

o o
\ T\
\Z \ \
yo© , —_—
| e A static object %I |
The spatio-temporal granularity of interaction is
defined by the kernel bandwidth parameters.
%
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Hierarchical Kernel Attention and Fusion
(ob o) ‘ (02,02) * Apply kernel attention
P 2 P at different granularity,
% 2 > e\ each capturing
g ’ : e = interaction at different
7 i [ ) X
() & N ®) O scales.
O O @)
® < o © - Then, fuse the
- Y —r — (of0d) interaction features
I i YRR via an MLP.
p,
. ‘ 27
; © e
FH = Z MLP ‘|=k|1 (softmax KV, V|0 ,og)ViF) O |
: tq t, 3 ty ts I
time
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Hierarchical (2.5+1)D Transtormer

Feed Forward

Add & Norm

(2.5+1)D

Transformer Multi-head Multi-head
Encoder Attention Kernel Attention
05 0y

Y Pv  Puw

(2.5+1)D scene
graph

®. 909 9 9

= !
Node Features spatio-temporal positions
(2.5+1)D scene graph

© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 37



‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

AAAI-22
Hierarchical (2.5+1)D Transtormer
1
Standard _ _ _
Transformer i Hierarchical
(2.5+1)D
I ; Transformer
(2.5+1)D i
Transformer Multi-head Multi-head
Encoder Attention Kernel Attention
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graph
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Node Features spatio-temporal positions
(2.5+1)D scene graph
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Interence Engine

Question Embedding Candidate
Answers

U

)

Answer
E> Selection

|

—
person person \ )
|nput Video frameS 25D tranSformation Stat|c and Dynamic Graphs HierarChical (25+1 )D Candidate answer
Transformer alignment

Inference Engine
/Losses
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Inference Engine / Losses

* The provided question and the candidate answers are encoded using a multi-
head standard Transformer followed by average pooling Answer

. . . Representatlon
 The model is trained using:

— Softmax cross-entropy loss, and @

— Contrastive loss between the embeddings of { pecoder }

correct answer and all candidates in a batch @J »
The question embeddings are used to condition B { ohesie 1
the (2.5+1)D fused graph features to generate an Encacer Ensegen
answer representation, that is cosine-aligned with ] \ >/

candidate answers, selecting the best match.

e
graph Embedding
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Experiments and Results
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Experiments: Datasets

 We used two datasets:

— NEXT-QA: Xiao et al., CVPR, 2020
« Arecent video QA dataset that goes beyond traditional VQA tasks
* incorporates a significant number of why and how questions
 consists of 3,870 training, 570 validation, and 1,000 test videos.
* the task is to select one of the five candidate answers.

— AVSD-QA: Alamri et al., CVPR, 2019
A variant of the Audio-Visual Scene Aware Dialog for the QA task.
 consists of 7,985, 1,863, and 1,968 for training, validation, and test.
» We use only the video features for this dataset (not dialog, text, or audio)

We follow standard training practices and report on standard evaluation metrics

© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 42




‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

AAAI-22
Quantitative Results
Method Accuracy (%)1 Method Mean Rank |
Spatio-Temporal VQA (Jang et al. 2019) 47.94 Question Only (Alamri et al. 2019a) 7.63
Co-Memory-QA (Gao et al. 2018) 48.04 Multimodal Transformers (Hori et al. 2019) 7.23
Hier. Relation n/w (Le et al. 2020) 48.20 Question + Video (Alamri et al. 2019a) 6.86
Multi-modal Attn VQA (Fan et al. 2019) 48.72 MTN (Le et al. 2019) 6.85
graph-alignment VQA (Jiang and Han 2020) 49.74 ST Scene Graphs (Geng et al. 2021) 5.91
(2.5+1)D-Transformer (ours) 53.40 (2.5+1)D-Transformer (ours) 5.84
NEXT-QA AVSD-QA
Method Why (W) How (H) Avg.(W+H) Prev&Next (P&N) Present (P) Avg. (P&N+P) Count (C) Location (L) Other (O) Avg.(C+L+0) Overall
STVQA, ICV’19 45.37 43.05 44.76 47.52 51.73 49.26 43.50 65.42 53.77 55.86 4794
CoMem, CVPR’18  46.15 42.61 45.22 48.16 50.38 49.07 41.81 67.12 51.80 55.34 48.04
HCRN, CVPR’20 46.99 42.90 4591 48.16 50.83 49.26 40.68 65.42 49.84 53.67 48.20
HME, CVPR’19 46.52 45.24 46.18 47.52 49.17 48.20 45.20 73.56 51.15 58.30 48.72
HGA, AAAT20 46.99 4422 46.26 49.53 52.49 50.74 44.07 72.54 55.41 59.33 49.74
Ours 52.39 48.36 51.33 50.91 54.28 52.30 46.02 77.08 58.31 62.58 53.4
% improvement +5.4 +3.12 +5.07 +1.38 +1.79 +1.56 +0.82 +3.52 +2.91 +3.25 +3.66
Performances on individual question classes in the NExT-QA dataset
© MERL (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com 43
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Ablative Results

NExT-QA AVSD-QA

Method Acc (%)t mean rank|
No dynamic graph 52.49 5.97
No static graph 53.00 6.03
No I3D 52.65 6.09
No hier. kernel 52.90 5.97
No ans. augment 49.98 9.92
No question condition 50.39 5.96
Full Model 53.40 5.84
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Ablative Results

NExT-QA AVSD-QA

Method Acc (%)t mean rank| # Ablation Accuracy (%)71
No dynamic glrlaph 52.49 5.97 1 Txr + I3D + FRCNN + QC 47.90

No static grap 53.00 6.03 2 (1) + Ans. Aug. 49.80

No I3D 52.65 6.09

No hier. kernel e e 3 Txr+V(2+1)D Txr + Ans. Aug. + QC 52.40

No ans. augment 49.98 5.92 4 Txr + V(2.5+1)D Txr + Ans. Aug. + QC 53.40

No question condition 50.39 5.96 5 (4) using all nodes (no pruning) 53.50
Full Model 53.40 5.84
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Ablative Results
NExXT-QA AVSD-QA
Method Acc (%)T mean rank| 4 Ablation Accuracy (%)1
No dynamic graph 52.49 2.97 1 Txr+I3D + FRCNN + QC 47.90
No static graph 53.00 6.03 2 (1) + Ans. Aug. 49.80
No I3D 52.65 6.09 3 Txr+V(2+1)D Txr + Ans. Aug. + QC 52.40
No hier. kernel 52.90 5.97 4 Txr+V(2.5+1)D Txr + Ans. Aug. + QC 53.40
No ans. apgment . 49.98 9.92 S (4) using all nodes (no pruning) 53.50
No question condition 50.39 5.96
Full Model 53.40 5.84
Hier. levels bandwidths o Accuracy
1-level 0.01 52.13
2-levels {0.01,0.1} 52.58
3-levels {0.01,0.1,1.0} 52.97
4-levels {0.01,0.1,1.0,10.0} 53.20
5-levels {0.01,0.1, 1.0, 10, 20.0} 53.00
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Ablative Results
NExT-QA AVSD-QA
Method Acc (%)T mean rank} # Ablation Accuracy (%)71
Nodysamic graph 0249 :00 1 Txr+13D + FRCNN + QC 47.90
No static graph 53.00 6.03 2 (1) + Ans. Aug. 49.80
NoI3D 52.65 6.09 3 Txr+V(2+1)D Txr + Ans. Aug. + QC 52.40
No h:}if :e;nlfelm ig-gg g-g; 4 Txr+V(2.5+1)D Txr + Ans. Aug. + QC 53.40
ING:ns. | . ' ' 5 (4) using all nodes (no pruning) 53.50
No question condition 50.39 5.96
Full Model 53.40 5.84
. . AVSD-QA NEXT-QA

Hier. levels bandwidths o Accuracy

1-level 0.01 52.13 Full graph 002.43 656.30

2-levels {0.01,0.1} 52.58 Static graph 97.26 68.68

3-levels {0.01,0.1,1.0} 52.97 Dynamic graph 136.10 430.83

4-levels {0.01,0.1,1.0,10.0} 53.20 :

5-Jevels {0.01,0.1, 1.0, 10, 20.0} 53.00 Zlnedsieduciion 230 o
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Qualitative Results

What does the man in grey do after sitting down int the middle?
Al: talking on phone

A2: take the pipe GT: smell burger
A3: smiling Ours: smell burger
A4: smell burger HGA: take the pipe

AS5: cross his legs
Where is the baby while him was fed milk?

Al: mobile

A2:in lady’s arm GT: in lady’s arm
A3: pillow Ours: in lady’s arm
A4: baby trolley HGA: living room

A5: living room

why did he get up ?

GT answer: the man got up to start cleaning the plate
Our answer: he stands up so he can go over to the stove
Our rank =4 STSGR rank =20

Does she pick anything up from off the couch ?

GT answer: yes , she folds clothes that are on the couch
Our answer: yes , she folds clothes that are on the couch
Ourrank=1 STSGRrank=11

GT = Ground truth

HGA = Hierarchical Graph Alignment, Jiang and Han, AAAI, 2020 STSGR = Spatio-Temporal Scene Graphs, Geng et al., AAAI, 2021
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Summary and Future Work

* |n this talk,

— We looked at the problem of video question answering using scene graphs via
reducing the redundancy in the graph nodes

— Our key insight being to treat a video as a "view” of a 3D space, and
reconstruct an approximate 2.5D scene graph for the 3D space, removing
redundant nodes.

— We built a hierarchical (2.5+1)D Transformer using our proposed scene graph
where we use the spatio-temporal locations of the query and key pairs for
attention.

— Our results on two recent Video QA datasets demonstrates significant gain
« Going forward
— A more accurate 3D graph could improve results; e.g., 3D point clouds
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Thank you!

For questions, write to
cherian@merl.com
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