



## (2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering







Tim K. Marks



Mitsubishi Electric Research Labs (MERL), Cambridge, MA

AAAI Virtual, 2022







2







**Question**: Why did the book drop?

© MERL







#### Video from the NExT-QA dataset

NExTQA: Next Phase of Question-Answering to Explaining Temporal Actions, Xiao et al., CVPR, 2021

4







Video from the NExT-QA dataset

**Question**: Why did the book drop?

#### Candidate answers

A1: open the cup A2: baby kicked it A3: the girl in pink slipped A4: safety A5: lady pushed it too hard

NExTQA: Next Phase of Question-Answering to Explaining Temporal Actions, Xiao et al., CVPR, 2021





## Visual Scene Graphs for Question Answering



© MERL

scene reasoning.

and inference.





## Scene Graphs for Video Reasoning



Scene Graphs + Graph Pooling Geng et al., AAAI, 2021



Ji et al., CVPR, 2020



Scene Graphs + Knowledge Distillation Pan et al., CVPR, 2020



Scene Graphs + Graph Alignment Jiang and Han., AAAI, 2020



© MERL

(2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering

7





### Standard Video Question Answering Pipeline



Dynamic Graph Representation Learning for Video Dialog via Multi-Modal Shuffled Transformers, Geng et al., AAAI, 2021

(2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering cherian@merl.com





# Key Questions

- Isn't constructing a scene graph for every video frame redundant? Usually several of the objects in the scene (and their relationships) will not change from frame to frame?
- Won't the learning and inference be computationally challenging for long video sequences if we create a scene graph for every frame?



© MERL





# Key Insights

 Video frames are <u>2D views</u> of a 3D space in which various events happen spatiotemporally. Can we use this **3D knowledge** to build a scene graph?







# Key Insights

 Video frames are <u>2D views</u> of a 3D space in which various events happen spatiotemporally. Can we use this **3D knowledge** to build a scene graph?

#### <u>Advantages</u>:

- A 3D scene graph could remove redundant object nodes
- Objects are disentangled from their views and thus could help with occlusion reasoning (e.g., objects are visible in some views but not in all)
- A smaller graph implies less memory footprint and faster training/inference



#### $2D \rightarrow 2.5D$ Scene Graphs Construction







## 2D Scene Graphs

- For every video frame,
  - We use a Fast-RCNN object detector to find
    - the bounding boxes of objects
    - their object classes
    - and their feature vectors

Each box (and its attributes) forms a node in the graph

But, what are the edges for the *graph*? They will come later.







## (2.5+1)D Spatio-Temporal Scene Graphs

- How to remove the redundancy in the graph nodes from all video frames?
  - The video is a view of happenings in a 3D space
  - Ground each repeated 2D graph node to a single 3D graph node in a 3D space
- Challenges:
  - How to construct the 3D scene graph?
  - Usually needs
    - a static scene,
    - the camera parameters,
    - multiple overlapping views, etc.
  - Unavailable for arbitrary internet videos that we use







 $P_i$ 

 $p_{j,k+1}$ 

## (2.5+1)D Spatio-Temporal Scene Graphs

- How to remove the redundancy in the graph nodes from all video frames?
  - The video is a view of happenings in a 3D space
  - Ground each repeated 2D graph node to a single 3D graph node in a 3D space
- Challenges:
  - How to construct the 3D scene graph?
  - Usually needs
    - a static scene
    - the camera parameters
    - multiple overlapping views, etc.
  - Unavailable for arbitrary internet videos that we use

#### Do we need an accurate reconstruction for reasoning?

object point

feature point

 $p_{j,k-1}$ 

 $P_i$ 





## $2D \rightarrow 2.5D$ Scene Graphs

- For every video frame,
  - We use MiDAS Monocular  $\rightarrow$  3D pseudo-depth mapping algorithm
  - to produce a 2.5D approximate depth map and ground FRCNN bounding boxes in it
  - For each box, we use its 2.5D centroid as its 3D location attribute





Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer, Ranftl et al., PAMI, 2020





## (2.5+1)D Spatio-Temporal Scene Graphs

- To construct the 3D scene, we need to register the objects into a common 3D coordinate frame.
  - We split the FRCNN bounding boxes into two object classes
    - Static: that usually do not move in the scene (e.g., table, bed, window, etc.)
    - Dynamic: that may move in the scene (e.g., people, cup, car, etc.)
  - We use only the static object classes for registration to create the 3D scene.
  - We use the first video frame as the key frame and propose to progressively map all other frames to the coordinate frame defined by the first frame
  - For frames that do not have overlaps with the first frame (such as shot changes), we use the respective first frame of the shot as its coordinate frame





## Static Sub-Graphs

- We merge two static nodes into a single 2.5D static scene graph node, if they:
  - are temporally close, and
  - · have the same object classes, and
  - bounding boxes overlap by more than  $\gamma$ , and
  - 3D object centroids are closest

$$C(v_t, v_{t'}) := (c_{v_t} = c_{v_{t'}}) \land IoU(bbox_{v_t}, bbox_{v_{t'}}) > \gamma$$
$$match(v_t) = \underset{\substack{v_{t'} \in V_{t-\delta}^s \cup \dots \cup V_{t-1}^s \\ \text{such that } C(v_t, v_{t'}) = 1}}{arg \min} \|p_{v_t} - p_{v_{t'}}\|$$







## Dynamic Sub-Graphs

- For dynamic objects in the scene, we do not merge their scene graph nodes:
  - Since their informative cues may change from frame-to-frame
  - and their spatio-temporal dynamics are important for reasoning.







## Dynamic Sub-Graphs

- For dynamic objects in the scene, we do not merge their scene graph nodes:
  - Since their informative cues may change from frame-to-frame
  - and their spatio-temporal dynamics are important for reasoning.
  - We augment the frame-level FRCNN features of the dynamic objects with motion features (I3D) capturing spatio-temporal dynamics within these boxes.







#### (2.5+1)D Spatio-Temporal Scene Graphs







## Hierarchical (2.5+1)D Transformer







# Hierarchical (2.5+1)D Transformer

Key idea:

To augment a standard Transformer architecture with an attention model that captures the spatio-temporal proximity of the (2.5+1)D scene graph nodes.



#### Hierarchical Kernel Attention and Fusion



Apply kernel attention at different granularity, each capturing interaction at different scales.

AAAI-2

Then, fuse the interaction features via an MLP.





# Hierarchical (2.5+1)D Transformer









# Hierarchical (2.5+1)D Transformer







## Inference Engine





## Inference Engine / Losses

- The provided question and the candidate answers are encoded using a multihead standard Transformer followed by average pooling
- The model is trained using:
  - Softmax cross-entropy loss, and
  - Contrastive loss between the *embeddings* of correct answer and all candidates in a *batch*

The question embeddings are used to condition the (2.5+1)D fused graph features to generate an answer representation, that is cosine-aligned with candidate answers, selecting the best match.







## **Experiments and Results**

(2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering

41





## **Experiments:** Datasets

- We used two datasets:
  - NExT-QA: Xiao et al., CVPR, 2020
    - A recent video QA dataset that goes beyond traditional VQA tasks
    - incorporates a significant number of <u>why and how questions</u>
    - consists of 3,870 training, 570 validation, and 1,000 test videos.
    - the task is to select one of the five candidate answers.
  - AVSD-QA: Alamri et al., CVPR, 2019
    - A variant of the Audio-Visual Scene Aware Dialog for the QA task.
    - consists of 7,985, 1,863, and 1,968 for training, validation, and test.
    - We use only the video features for this dataset (not dialog, text, or audio)

We follow standard training practices and report on standard evaluation metrics





## Quantitative Results

| Method                                 |            |            | Accuracy (%)↑ | _               | Method                              |                                            |           |              | Mean R    | ank↓         |         |
|----------------------------------------|------------|------------|---------------|-----------------|-------------------------------------|--------------------------------------------|-----------|--------------|-----------|--------------|---------|
| Spatio-Temporal VOA (Jang et al. 2019) |            |            | 47.94         |                 | Question Only (Alamri et al. 2019a) |                                            |           | 7.6          | 7.63      |              |         |
| Co-Memory-QA                           | (Gao et a  | al. 2018)  | ,             | 48.04           |                                     | Multimodal Transformers (Hori et al. 2019) |           |              | 9) 7.23   | 3            |         |
| Hier. Relation n/                      | w (Le et a | al. 2020)  |               | 48.20           |                                     | Question + Video (Alamri et al. 2019a)     |           |              | 6.80      | 6            |         |
| Multi-modal Att                        | n VQA (I   | Fan et al. | 2019)         | 48.72           |                                     | MTN (Le et al. 2019)                       |           |              | 6.8       | 5            |         |
| graph-alignment                        | VQA (Ji    | ang and l  | Han 2020)     | 49.74           |                                     | ST Scene Graphs (Geng et al. 2021)         |           |              | 5.9       | 1            |         |
| (2.5+1)D-Transformer (ours)            |            |            | 53.40         |                 | (2.5+1)D-Transformer (ours)         |                                            |           | 5.8          | 4         |              |         |
| NExT-QA                                |            |            | -             |                 |                                     | AVSD                                       | -QA       |              |           |              |         |
| Method                                 | Why (W)    | How (H)    | Avg. (W+H)    | Prev&Next (P&N) | Present (P)                         | Avg. (P&N+P)                               | Count (C) | Location (L) | Other (O) | Avg. (C+L+O) | Overall |
| STVQA, IJCV'19                         | 45.37      | 43.05      | 44.76         | 47.52           | 51.73                               | 49.26                                      | 43.50     | 65.42        | 53.77     | 55.86        | 47.94   |
| CoMem, CVPR'18                         | 46.15      | 42.61      | 45.22         | 48.16           | 50.38                               | 49.07                                      | 41.81     | 67.12        | 51.80     | 55.34        | 48.04   |
| HCRN, CVPR'20                          | 46.99      | 42.90      | 45.91         | 48.16           | 50.83                               | 49.26                                      | 40.68     | 65.42        | 49.84     | 53.67        | 48.20   |
| HME, CVPR'19                           | 46.52      | 45.24      | 46.18         | 47.52           | 49.17                               | 48.20                                      | 45.20     | 73.56        | 51.15     | 58.30        | 48.72   |
| HGA, AAAI'20                           | 46.99      | 44.22      | 46.26         | 49.53           | 52.49                               | 50.74                                      | 44.07     | 72.54        | 55.41     | 59.33        | 49.74   |
| Ours                                   | 52.39      | 48.36      | 51.33         | 50.91           | 54.28                               | 52.30                                      | 46.02     | 77.08        | 58.31     | 62.58        | 53.4    |
| % improvement                          | +5.4       | +3.12      | +5.07         | +1.38           | +1.79                               | +1.56                                      | +0.82     | +3.52        | +2.91     | +3.25        | +3.66   |

Performances on individual question classes in the NExT-QA dataset





|                       | NExT-QA      | AVSD-QA    |
|-----------------------|--------------|------------|
| Method                | Acc (%)↑     | mean rank↓ |
| No dynamic graph      | 52.49        | 5.97       |
| No static graph       | 53.00        | 6.03       |
| No I3D                | 52.65        | 6.09       |
| No hier. kernel       | 52.90        | 5.97       |
| No ans. augment       | 49.98        | 5.92       |
| No question condition | 50.39        | 5.96       |
| Full Model            | <b>53.40</b> | 5.84       |





|                       | NExT-QA      | AVSD-QA    |   |                                         |               |
|-----------------------|--------------|------------|---|-----------------------------------------|---------------|
| Method                | Acc (%)↑     | mean rank↓ | # | Ablation                                | Accuracy (%)↑ |
| No dynamic graph      | 52.49        | 5.97       | 1 | Txr + I3D + FRCNN + QC                  | 47.90         |
| No static graph       | 53.00        | 6.03       | 2 | (1) + Ans. Aug.                         | 49.80         |
| No I3D                | 52.65        | 6.09       | 2 | $T_{yr} + V(2+1)DT_{yr} + Ang Aug + OC$ | 52.40         |
| No hier. kernel       | 52.90        | 5.97       | 3 | 1XI + V(2+1)D TXI + Alls. Aug. + QC     | 52.40         |
| No ans. augment       | 49.98        | 5.92       | 4 | Txr + V(2.5+1)D Txr + Ans. Aug. + QC    | 53.40         |
| No question condition | 50.39        | 5.96       | 5 | (4) using all nodes (no pruning)        | 53.50         |
| Full Model            | <b>53.40</b> | 5.84       |   |                                         |               |





|                       | NExT-QA      | AVSD-QA    |
|-----------------------|--------------|------------|
| Method                | Acc (%)↑     | mean rank↓ |
| No dynamic graph      | 52.49        | 5.97       |
| No static graph       | 53.00        | 6.03       |
| No I3D                | 52.65        | 6.09       |
| No hier. kernel       | 52.90        | 5.97       |
| No ans. augment       | 49.98        | 5.92       |
| No question condition | 50.39        | 5.96       |
| Full Model            | <b>53.40</b> | 5.84       |

| # | Ablation                             | Accuracy (%)↑ |
|---|--------------------------------------|---------------|
| 1 | Txr + I3D + FRCNN + QC               | 47.90         |
| 2 | (1) + Ans. Aug.                      | 49.80         |
| 3 | Txr + V(2+1)D Txr + Ans. Aug. + QC   | 52.40         |
| 4 | Txr + V(2.5+1)D Txr + Ans. Aug. + QC | 53.40         |
| 5 | (4) using all nodes (no pruning)     | 53.50         |
|   |                                      |               |

| Hier. levels | bandwidths $\sigma$            | Accuracy |
|--------------|--------------------------------|----------|
| 1-level      | 0.01                           | 52.13    |
| 2-levels     | $\{0.01, 0.1\}$                | 52.58    |
| 3-levels     | $\{0.01, 0.1, 1.0\}$           | 52.97    |
| 4-levels     | $\{0.01, 0.1, 1.0, 10.0\}$     | 53.20    |
| 5-levels     | $\{0.01, 0.1, 1.0, 10, 20.0\}$ | 53.00    |



|                       | NExT-QA      | AVSD-QA    |
|-----------------------|--------------|------------|
| Method                | Acc (%)↑     | mean rank↓ |
| No dynamic graph      | 52.49        | 5.97       |
| No static graph       | 53.00        | 6.03       |
| No I3D                | 52.65        | 6.09       |
| No hier. kernel       | 52.90        | 5.97       |
| No ans. augment       | 49.98        | 5.92       |
| No question condition | 50.39        | 5.96       |
| Full Model            | <b>53.40</b> | 5.84       |

| Hier. levels | bandwidths $\sigma$            | Accuracy |
|--------------|--------------------------------|----------|
| 1-level      | 0.01                           | 52.13    |
| 2-levels     | $\{0.01, 0.1\}$                | 52.58    |
| 3-levels     | $\{0.01, 0.1, 1.0\}$           | 52.97    |
| 4-levels     | $\{0.01, 0.1, 1.0, 10.0\}$     | 53.20    |
| 5-levels     | $\{0.01, 0.1, 1.0, 10, 20.0\}$ | 53.00    |

| # | Ablation                             | Accuracy (%)↑ |
|---|--------------------------------------|---------------|
| 1 | Txr + I3D + FRCNN + QC               | 47.90         |
| 2 | (1) + Ans. Aug.                      | 49.80         |
| 3 | Txr + V(2+1)D Txr + Ans. Aug. + QC   | 52.40         |
| 4 | Txr + V(2.5+1)D Txr + Ans. Aug. + QC | 53.40         |
| 5 | (4) using all nodes (no pruning)     | 53.50         |

|                  | AVSD-QA | NExT-QA |
|------------------|---------|---------|
| Full graph       | 502.43  | 656.30  |
| Static graph     | 97.26   | 68.68   |
| Dynamic graph    | 136.10  | 430.83  |
| % node reduction | 53.6    | 23.9    |







# Qualitative Results

| What does the man in grey do aft<br>A1: talking on phone<br>A2: take the pipe<br>A3: smiling<br>A4: smell burger<br>A5: cross his legs | er sitting down int the middle?<br>GT: smell burger<br>Ours: smell burger<br>HGA: take the pipe |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| Where is the baby while him was<br>A1: mobile<br>A2: in lady's arm<br>A3: pillow<br>A4: baby trolley<br>A5: living room                | fed milk?<br>GT: in lady's arm<br>Ours: in lady's arm<br>HGA: living room                       |
| why did he get up ?<br>GT answer: the man got up to a<br>Our answer: he stands up so he<br>Our rank = 4 STSGR rank = 20                | start cleaning the plate<br>e can go over to the stove                                          |
| Does she pick anything up from<br>GT answer: yes , she folds clot<br>Our answer: yes , she folds clo<br>Our rank = 1 STSGR rank = 11   | n off the couch ?<br>hes that are on the couch<br>thes that are on the couch<br>L               |

GT = Ground truth HGA = Hierarchical Graph Alignment, Jiang and Han, AAAI, 2020

STSGR = Spatio-Temporal Scene Graphs, Geng et al., AAAI, 2021





## Summary and Future Work

- In this talk,
  - We looked at the problem of video question answering using scene graphs via reducing the redundancy in the graph nodes
  - Our key insight being to treat a video as a "view" of a 3D space, and reconstruct an approximate 2.5D scene graph for the 3D space, removing redundant nodes.
  - We built a hierarchical (2.5+1)D Transformer using our proposed scene graph where we use the **spatio-temporal locations of the query and key pairs** for attention.
  - Our results on two recent Video QA datasets demonstrates significant gain
- Going forward
  - A more accurate 3D graph could improve results; e.g., 3D point clouds





#### Thank you!

For questions, write to cherian@merl.com

© MERL

(2.5+1)D Spatio-Temporal Scene Graphs for Video Question Answering

cherian@merl.com 5

50