EEG-GNN:
Graph Neural Networks for Classification of
Electroencephalogram (EEG) Signals

ANDAC DEMIR:, TOSHIAKI KOIKE-AKINO2, YE WANG2, MASAKI HARUNA3, DENIZ ERDOGMUS!

1 COGNITIVE SYSTEMS LABORATORY, ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, NORTHEASTERN UNIVERSITY, BOSTON, MA 02115, USA
2 MITSUBISHI ELECTRIC RESEARCH LABORATORIES (MERL), CAMBRIDGE, MA 02139, USA

3 ADVANCED TECHNOLOGY R&D CENTER, MITSUBISHI ELECTRIC CORPORATION (MELCO), AMAGASAKI, HYOGO, JAPAN

Graph Neural Networks

| type
ext WA m/h Atom; | coordinates | € R%
. W i} : / charge g
R ™ — 1 if ij bond
: Bond; A = {

0 otherwise

b Y

Al s

WAl s '

T RY type_ c R%

energy | .
Brain analysis Funectional
{ Meuroscience /neuro-diseases) activations (fMRI) . —
Quantum Chemistry Atom; | coordinates | € R
(novel molecules for drugs charge
INCSSREES and materials}
User,; images c R
videns

User Ay = { []J ift:j frir?mls
connection, otherwise

IMESSAEeS
Uﬂﬂl'l mages R
videos

Social networks
(Advertisement/

Convolution on Graphs

e For graph signals we define graph convolutions as polynomials on matrix representations of

graphs,

e Graph convolutions share the locality of conventional convolutions.

A signal supported on a graph Another signal supported on another graph

X wo4 4 Wi X
@00
‘W/-) (ﬁ‘
x1 w34 wo5 Whg wa7 xg
o - - O
xﬂe ° °<—’°8/
. -7 7
3 w3g w57 7

x5

Filter with coefficients h, => Output z= hoS°x +h S'x +h S’ +h3S’% +...=> h S"x
k=0

Graph Shift Operator

Normalized adjacency and Laplacian matrices express weights relative to the nodes’ degrees

Normalized adjacency matrix = A := D Y2AD'? . Itis symmetric if the graph is symmetric
Normalized Laplacian matrix = L := D Y2LD Y2 | It is symmetric if the graph is symmetric

Given definitions of Normalized adjacency and Laplacian = L:=1—A

The Graph Shift Operator S is a stand in for any of the matrix representations of the graph

Adjacency Matrix Laplacian Matrix Normalized Adjacency Normalized Laplacian

S—A S=L S=A s=L

Convolution on Graphs

- Convolutions are polynomials

: : 1
on the adjacency matrix of s= S by s ———
. k=
a line graph. ° Layer 1
Xq
- GNN's are just another =
way of writing CNNs 2= X, kS =z
Layer 2
X2
Py
23=Zh3kskx2 x3=o[23]
k=0
Layer 3

> x3 = ®(x; H)

Convolution on Graphs

- The graph can be any
arbitrary graph.

- The polynomial on the
graph shift operator S becomes
a graph convolutional filter.

w =o[n]

_—

o = o]

> x3 = ®(x; H)

Convolution on Graphs

- A graph NN composes a cascade of
layers.

- Each of which are themselves
compositions of graph convolutions
with pointwise nonlinearities.

- Recovers a CNN if S describes a
line graph.

x1 = o[z |

X1

x, = 0|2

X2

x3 = o|z]

> x3 = ®(x; H)

Layer 1

Layer 2

Layer 3

Convolution on Graphs

If we let S be the shift operator of an arbitrary graph we recover the graph convolution

thDx hlslx h252x h353x

Graph Neural Networks

We increase expressivity further with a GNN K—1 21
21=Z hlkskx xl_o{zl]
= Layer 1
Layer a few graph perceptrons (3 in the figure) =
X1
= Feed the input signal x to Layer 1 7
K—1 z
= Connect output of Layer 1 to input of Layer 2 2= hyS¥x 2> X = O[Zz]
k=0
] Layer 2
= And output of Layer 2 to input of Layer 3 -
X2
Last layer output is the GNN output = ®(x; S, H) K—1 2
Z3=Zh3k5kx2 > x3=0[23]
=- Parametrized on filter tensor H = [hy, hy, hs] =0 Layer 3

L x3 = ®(x; S, H)

Graph Neural Networks

X

K—1
21=Z hlkSkx ‘1 xlzo[zl]
k=0
. Layer 1
Learn Optimal GNN tensor H* = (hj,h}, h}) as B,
1
X1
H™ = argmin Z E(‘D(x; S, ’H),y) — .
(an)ET Zy = Z h2k Sk X1 > Xy = O’[Zz]
k=0
Layer 2
Optimization is over tensor only. Graph S is given X2
X2
= Prior information given to the GNN)
K—1
Z3=Zh3kskx2 23’ X3=0'[Z3:|
k=0
Layer 3

L> x3 = ®(x; S, H)

Convolution on Graphs with Multiple Features

Graph signal =- Single scalar associated to each node = x: nodes — R

Extend descriptive power =- Assign a vector to each node
= X : nodes — R? = X : nodes — R® = X : nodes — R

Multiple feature graph signal = Matrix X of size N (nodes) x F (features)
= Row i/ collects all features at node i =- Local information at node i

= Column f represents feature f at all nodes = x’ is a graph signal

Convolution on Graphs with Multiple Features

Convolution = Linear operation, local information, distributed implementation

K—1
Y = S"XH,
k=0
Multiplication by S on the left = Shifts each graph signal feature Sx’

Multiplication by H on the right = Linear combination of features at each node

The convolution is now equivalent to the application of a bank of graph filters
For each feature x” we apply the (f, g) filter to obtain x’¢ = Linear, local, distributed

x'& = Skxfhig

= There are G filters applied to each input x* = There a total of F x G filters

F
Aggregate the output of each gth filter across all F features = y&8 = x'&

f=1

Graph Neural Networks — Model Hyperparameters

Multi feature graph neural networks = ®(x;S,H) = X,

Ky—1

X, = O‘[Z Skxe—1ka}
k=0
Xy graph signal at layer £ = Size N x Fy
Hi kth filter tap at layer £ = Size Fy—y x F; = Learn >, KiFoFy—; filter taps H = {Hu}
S shift operator (given by the problem) = Size N x N

Hyperparameters (design choices) = Affect the number of learnable parameters
= L: number of layers

= Ky: number of filter taps on each layer

= F;: number of features on each layer

EEG-GNN

Feeding EEG data to a CNN typically uses two methodologies:

1. Applying 2D convolutions to each EEG trial, which is presented a pseudo-image R¢*T where
C' denotes number of EEG channels, and 7" denotes number of discretized time samples,

which effectively treats the EEG channels and time samples like spatial dimensions for CNN

processing.
2D CNN convolution Arbitrary fupctional neural
2. Applying 1D convolutions along only the time axis of the EEG trial, while treating the EEG e TR e

channels as separate channels of the CNN processing.

Contributions

e EEG-GNN properly maps the network of the brain as a graph, where each electrode used

to collect EEG data according to intl. 10-5 system represents a node in the graph and time

samples acquired from an electrode corresponds to that node’s feature vector. .'z‘.'v‘.’v‘.
Ov vtv.

e Adjacency matrix of this graph can be constructed flexibly, e.g., 1) every pair of nodes is

connected by an unweighted edge, i1) every pair of nodes is connected by an edge weighted by 'v"""‘
the functional neural connectivity factor, which is the Pearson correlation coefficient between .‘0‘.‘.
the feature vectors of the two nodes, 1i1) a sparse adjacency matrix can be designed under the (1)
2D CNN convolution Arbitrary functional neural
constraint only nodes that are closer than a heuristic distance are connected, or iv) a sparse connectivity between

electrode sites
adjacency matrix can be constructed via k-nearest neighbors (k-NNG).

e EEG-GNN can learn and visualize the connectivity between salient nodes, which addresses a

critical issue of neuroscientific interpretability.

EEG-GNN

EEG Classification
|
-
Sl
o) @
z, —||o| (8| ——
al o
(i) ® (Softmax
/' ®
Readout — —
eadou MLP y

Functional neural
connectivity ———

ReLUﬁ}A

B] I

Electrode positions I B aR S i anm

. R e L i U
in the 10-5 system et ReLU
vt i Tt el . .
ety Aot Non-linear Non-linear O30
ettt U A, - - . .
R St ey v activation activation .

\ eelel | e NI /

Learning node (EEG channel) embeddings

e A s oy
AR et Pt
.\:1l''J\ap.,_1-'L'.'\-,',1I-1|'L|1Jl|J'|l|'.-;,_-\x\-x.-.-,l.\ﬂj‘ﬂ,'tf\r.-,al

EEG Data Graph Convolution Graph Convolution

BRI
B

GraphSage

Algorithm 1 GraphSAGE forward propagation - learning
graph embedding, /g.

1: hY + X,,Vv € V Initialize a representation vector for
each node

2: fork=1...K do

3 for veV do

4: hﬁ,(v) < AGGREGATE;({H*" !, vu e N(v)})

. k k. k—1 pk
5: hi «+ o (W CONCAT(h; ', hN(v)))
6: hE<h/|nt]],
7: hg < READOUT({rK, WweV})

AGGREGATEy = mean({6(Wpoothk, +b), Vu; € N(v)})

Graph Isomorphlsm Network (GIN)

Fig. 3: An injective surjective mapping (bijection) between 2 S

topologically identical graphs. Adjacencies are preserved.

L1
| i) {1,11} {1 I} 5 7
v v v v’ v (11)
(1,11} 3
(i) (i) (i) ang MY
Fig. 5: (i) v and V' would have the same node embedding, if (1.2}
AGGREGATE function in (i) i$ mean or max, in (ii) is max, {2,13}
A (2,23}
and in (ii1) 1S mean or max. 2
(111)
k k ky . pk—1 k—1 e ’
h, <— MLP ((1+l)-hT 4+ Y A, ,VuEN(V)) 2.23) {3,222}
u
L WL Subtree Kernel Method
hg <~ CONCAT (READOUT({hv, YWweV}) | k=0,1.. K)

SortPool

o Sorting vertices based on their structural importance
established by WL isomorphism test.

o After K iterations of graph convolution, SortPool layer
gets an input of size |V| x K - |h,|, where |V| denotes the
number of nodes, and |A,| denotes the size of a node’s
embedding vector.

« The output of SortPool layer has size p x K - |h, |, where
p is a heuristically selected parameter, and p < |V|.

o Sorted output 1s reshaped as a row vector of size p - K -
|hy| x 1 and applied 1D convolutional layers with kernel
size K - |h,| followed by MaxPool.

|

EdgePool

o Softmax function is applied to all edge weights to
compute edge scores, denoted as s;;.

o According to these scores, edges are iteratively con-
tracted unless nodes have already been part of a con-
tracted edge.

» Edges between contracted nodes are preserved.

If there 1s an isolated node after edge contraction, edges

between the isolated node and contracted nodes are

reconstructed.

o In the process of edge contraction, node features are
combined, and then multiplied by the edge score.

Fig. 6: After EdgePool operator, number of nodes is down-
sampled by a fixed ratio of 2.

Let e = {v;,v;} is the edge contracting 2 nodes, then

hy;; = sij(hy, + hvj)

v,-j

SagPool

i _, , Masking @'
— —_—
Graph (~ 777 ® C/)
Convolution node -4

+ Activation ranking

W, € RF*! denotes the learnable pooling parameters.

Z =0(SXW,,) attention scores, Z € RIVIx1

1dx = top—rank (Z , [p |V|_|) , Zmask = Zidx Top-rank function selects the indices of most useful p x |V/|
number of nodes according to Z for a heuristic parameter

Xout = Xidx © Zmask p € (0,1].

Training Methodologies

« Datasets: ErtP, RSVP « We present 6 different methods to connect electrode
o EEG trials from all subjects were shuffled, 80% — 20% sites by edges e.g.,

train-validation split.
« Data Augmentation: Adding AWGN to every channel
of the original signal.

1) each pair of electrode sites is connected (complete

graph)
2) complete graph allows self-loops

« Parameter Regularization: L2 regularizer (f = 0.4) 3) k-NNG
. PytTorch Geometric v1.8.0 to implement all GNN vari- 4) k-NNG allows self-loops
ants.

5) heuristic distance threshold

o Minibatch size of 256 for 400 epochs on NVIDIA Tesla 6) distance threshold allows self-loops

K80 12GB GPU
e Optimized by Adam with an initial learning rate of 0.001,
which decays into half every 50 epochs.

Experimental Results

TABLE I: Task classification performance of GNN compared

to a CNN classifier, AutoBayes models, and the ensemble of
AutoBayes.

Method ErrP RSVP
Acc. # Model Params. Acc. # Model Params.
EEG-GNN 76.73+0.40 106,562 93.49+0.10 83,138
Standard CNN 74.72+0.31 127,335 93.07£0.15 268,865
Best of AutoBayes 75.9140.44 3,407,390 93.42+0.15 2,005,917
100 1 1 T LI T T 1T T T
S
< s0f ol
2
]
=
5
<
60 - —e— EEG-GNN
—&— Standard CNN Classifier
o] Ll L
10° 104 10° 100

Number of Parameters

(a) ErrP Dataset

Accuracy (%)

100

90

80

70

—&— EEG-GNN
—@— Standard CNN Classifier

103

Accuracy vs. Space Complexity

104 10°
Number of Parameters

(b) RSVP Dataset

106

Experimental Results

TABLE II: Performance of datasets: Edge index matrix construction using a complete graph (all), a complete graph containing
self-loops (all with self-loops), computing graph edges to the nearest k neighbors (k-NNG), and k-NNG containing self-loops
(k-NNG w. self-loops).

Dataset Model All All w. Self-Loops k-NNG k-NNG w. Self-Loops
k=1 k=2 k=4 k=1 k=2 k=4

GraphSage 74.44+0.75 75.94+£1.42 74.04+£098 74.89+1.88 75.29+0.70 74.34+0.62 74474088 76.33+0.69

Set2Set 75.38£0.54 74.62£0.17 75.66+£082 7437x0.83 7588+1.18 7538+0.90 73.27+050 74.53+£1.04

ErtP SortPool 72.90£0.61 74.831£1.71 73.52+053 7499+0.16 7456+0.39 75234085 74344070 75.08+0.53

1T

EdgePool 73.03+0.96 73.05+0.72 7398+0.54 7560+0.72 74.194+0.53 75.11%+1.17 7456+1.80 76.24+1.28

SagPool 74.71+1.09 75.57+0.80 73.524+080 7566+1.74 74964+0.59 74534054 75784217 74.86+£1.32

GINO 75.48 £0.60 76.09£1.15 7526195 73.79x0.56 75.14+0.59 76.24+0.85 74.99+1.00 74.44+0.62

GraphSage 93.27+0.05 93.254+0.35 93.05+£0.11 93.47+0.06 93.224+0.08 93.094+0.33 93.084+0.20 93.23+0.17
Set2Set 93.33+£0.09 93.194+0.22 9294+0.11 93.34+0.17 93.244+0.26 93.30+0.24 93.324+0.10 93.26+£0.07
SortPool 93.24+0.20 93.36+£0.16 93.39+0.28 93.38+0.27 93.29+0.21 93.05£0.34 9331+£0.14 93.35+0.24
EdgePool 92.89+0.04 93.02£0.26 9332+£0.06 9347+049 93.394+0.23 93.31+0.06 93.49+0.17 93.43+0.22
SagPool 93.45=0.19 93.34+0.09 93.14+£0.23 92.99+0.16 93.36+0.02 93.24+0.20 93.03£0.07 93.07£0.11

GINO 93.26 £0.07 93.234+0.01 93.18+£0.10 93.07£0.19 93.23+£0.11 93141034 93.10£0.18 93.22+0.10

RSVP

Experimental Results

TABLE III: Performance of datasets: Edge index construction using a distance threshold for the formation of edges, and

distance threshold containing self-loops.

Dataset Model Distance Distance w. Self-Loops
d=0.3 d=0.4 d=0.5 d=0.3 d=0.4 d=0.5
GraphSage 75.05+045 7486+1.50 7581+199 7578+1.02 74.89+0.50 74.89+0.61
Set2Set 74.68+2.02 74.07+0.71 75.024+0.57 7557+0.38 76.15+1.11 74.25+1.20
ErP SortPool 75944095 74161026 74.34+1.59 74994+1.62 73.79+0.84 74.62+0.45
T
EdgePool 74.71+£0.75 74.83+041 74.47+1.53 75844055 7523+0.74 74.56+1.23
SagPool 76.06+0.74 74404132 76.154+0.53 73.884+0.67 74.471+1.20 74.80+1.28
GINO 76.06+:091 74.65+0.66 74.831+0.85 76.03+1.05 75.75+0.51 75.97+0.46

Experimental Results

TABLE IV: Performance of datasets: Hyperparameter selection for L1, L2, and ElasticNet Regularization of GNN models.

Dataset Model L1 Regularization L2 Regularization ElasticNet Regularization
a=0.1 a=0.01 a =10.001 B=02 B=04 =038 Best of a&p
GraphSage 76.55+0.87 7630+1.00 74.074+0.23 75544044 7456+120 7493+141 73.39+0.22
Set2Set 74.86£0.20 74.65+148 7456+£1.65 T4.68+0.67 76.18+£0.19 74.22+0.96 74.50+0.34
ErP SortPool 75.14+0.33 74.89+1.78 74.80+1.74 73.73+1.36 7526+0.71 74.65+0.74 73.94+0.82
EdgePool 73.64+0.17 7496+1.02 76.15+1.06 7499+046 7496+1.05 75.23+0.23 73.76 +0.67
SagPool 75.60+0.40 76.584+0.54 75.11+£0.30 74.134+0.23 7419+1.13 7523+1.04 73.58+0.36
GINO 7560042 75.02+0.55 75.17+£1.01 7440+1.35 7673040 74.56+1.06 74.04+£0.85
GraphSage 92.51+0.19 93.49+0.10 93.074+0.32 92.64+0.28 92.60+0.11 92.76+0.13 92.89+0.12
Set2Set 93.03+0.17 93.124+0.13 93.224+0.27 92934+0.08 9297+0.11 93.03+0.30 91.47+0.20
RSVP SortPool 93.144+0.12 93.114+020 92914+0.13 92.714+031 93.10+0.13 92.7440.08 92.90+0.12
EdgePool 93.49+£0.10 93.294+0.10 93.12+£0.04 93.124+0.01 93.13+£0.19 92.74+0.19 92.57+0.16
SagPool 93.09+£0.18 93.18+£0.21 93.38+£0.30 92.74+0.09 93.08+£0.17 9291+0.34 92.87+0.23
GINO 92.87+0.10 93.26+0.12 93.13+0.21 92.934+0.06 93.07+0.13 92.49+0.13 92.85+0.15

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

