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• Motivations

– Machine learning for real-world data analysis

• Dimensionality reduction

– Principal component analysis (PCA)

– Auto-encoder (AE)

• Rateless property

– Fountain codes

• Stochastic bottleneck

– Stochastic Width vs. Stochastic Depth

– TailDrop regularization

• Multi-objective learning

• Experiments

– MSE

– SSIM

– Accuracy

• Summary

Outline
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How many latent variables required?
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• Gartnar’s Hype Cycle for Emerging Technologies, 2019 August

Emerging Technologies
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• Deep learning = fancy name of multi-layer perceptron neural networks.
– 2006 Hinton: Many layers, layer-wise pre-training, massive data sets

• Massively parallel computation
– Driver: graphic processor units, tensor processor units …

• Variants:
– Deep belief networks
– Deep convolutional networks
– Deep recurrent networks
– Deep Boltzmann machines
– Deep autoencoder

Deep Learning for AI
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Convolutional Networks Recurrent Networks
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• Audio & Visual Applications

Deep Learning for Media Signal Processing
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AI Surpassing Human-Level Performance
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• AI has been applied to various fields

Applied Deep Learning
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• The hit count of articles per year in GoogleScholar; Wireless Communication applications

Moore’s Law: Exponential Grow in Applications
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• Raw data dimensionality is often extremely large

High-Dimensional Real-World Data
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• Data-space volume exponentially increases with dimensionality

Curse of Dimensionality
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• Classifier performance drops for high-dimension data with finite training samples

Hughes Phenomenon
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Higher Dimensionality

Accuracy Degrades
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Dimensionality Reduction
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• Principal component analysis (PCA)

• Kernel PCA

• Independent component analysis (ICA)

• Isomap

• Local linear embedding (LLE)

• Auto-encoder (AE)

• …
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• High-dimensional data may be well-described by lower-dim latent variables

Reduced-Dimension Feature
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• Bottleneck neural network architecture: M<N
• Encoder and decoder networks are jointly trained

such that latent variables can regenerate
original data with smallest distortion

Auto-Encoder (AE): Bottleneck Network
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Original data

Latent variable

Encoder network

Decoder network

Loss function (e.g. MSE)
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• AE is often called NLPCA due to analogy
• Without nonlinear activations, an optimal AE model coincides with PCA for Gaussian data 

under MSE distortion (Karhunen-Loeve)

AE as Nonlinear PCA (NLPCA)
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Encoder Affine Transform

Decoder Affine Transform

Consider Gaussian data

Covariance EVD

Eigen projection gives minimum MSE
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• Random matrix theorem:
If covariance matrix follows i.i.d. Gaussian Gram matrix, eigenvalue distribution follows 
Marchenko-Pastur distribution

PCA: Eigen-Spectrum
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Cumulative is well 
approximated by 
exponential
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• PCA universally achieves best MSE for all dimensionality 1<M<N under Gaussian datasets
• The downstream users can freely change the dimensionality by discarding the least-

principal components or appending the most-principal components without changing 
encoder and decoder models

• The MSE is gracefully improved by 
increasing the compression rate M/N

• We do not need to pre-determine 
the dimensionality when training the model

• This rateless property can resolve the issue: 

Rateless Property
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How many latent variables do we need for training the AE model?
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• Capacity approaching codes need to pre-determine code rates under the knowledge of 
channel capacity

Coding Theory: Rateless Channel Codes
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Single Rateless Code

Multiple LDPC codes with different rates
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• Continue sending more redundant parity until the user satisfies
– Luby-Transform (LT) codes [2002], Online codes [2002], 

Raptor codes [2006], Tornado codes [2004]

• We do not pre-determine the code rates

• Rateless codes are capacity-achievable

• We introduce “rateless” AE which does not have to determine the dimensionality 
beforehand

Rateless Fountain Codes

June 2020; T. Koike-Akino and Ye Wang, Stochastic Bottleneck 19



© MERL

• For PCA, principal components are sorted in significance, thus scalable
– For AE, latent variables are equally important, thus not adaptable

• Once AE is learned with pre-determined dims, it requires another learning to reduce or expand dims
– Hierarchical AE (hAE) to append dim for residual reconstruction
– Stacked AE (sAE) to further reduce dimensionality

• Conditional update for progressive learning usually does not work best and often finite-tuning is 
required while flexibility is compromised

• We propose a very simple dropout mechanism to realize ratelessness

Dimensionality Flexibility

June 2020; T. Koike-Akino and Ye Wang, Stochastic Bottleneck 20



© MERL

• Dropout is an effective method to prevent over-training by regularizing 
over-parameterized networks

• It can be viewed as Bayesian approximation [Gal2016]
• There are many different regularization techniques: DropConnect, DropBlock, StochasticDepth, 

DropPath, ShakeDrop, SpatialDrop, ZoneOut, Shake-Shake, etc.

Dropout Regularization
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• Simple idea: Non-uniform dropout mechanism 

Proposal: Stochastic Bottleneck
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• Non-uniform dropout has been used in StochasticDepth for ResNet

• Not only depth direction, we use width direction to concentrate important feature in 

upper neurons

– Independent or burst drops (TailDrop)

Stochastic Width: Tail Drop
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Drop random burst length of tail
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• We tested various eigenspectrum model: Poisson, Laplacian, 
exponential, sigmoid, Lorentzian, polynomial, and Wigner distribution

• Power cumulative mass function (CMF) showed a good tradeoff between distortion and 
compression rate.

• Best power order parameter is 
chosen dependent on datasets

Tail Drop Distribution
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Power CMF
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• Rateless objective is multi-task learning

Multi-Objective Learning
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Single:

Multi:

:Expected loss when the first L latent variables retained by user

Simple multi-objective optimization
with weighted sum:

e.g.) balanced weights: 

Weighted metric method, …
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• AE architecture
– 3 layers 1024 or 2048 nodes
– Adam (0.001)
– Mini-batch 100
– Max 500 epochs
– Power CMF TailDrop

• Datasets
– MNIST
– CIFAR-10
– FMNIST
– KMNIST
– SVHN
– CIFAR-100

Toy Experiments
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MSE Distortion Measure (MNIST)
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Conv.

Proposed

PCA
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• MSE does not fully tell perceptual distortion

MSE vs. Structural Similarity (SSIM)
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Original
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SSIM Distortion Measure (MNIST)

June 2020; T. Koike-Akino and Ye Wang, Stochastic Bottleneck 29

Conv.

Proposed

PCA
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Reconstructed Image Snapshots
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Conventional AE Proposed AE

4-dim

64-dim

Original
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Support Vector Machine (SVM) Classification (MNIST)
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Conv.

Proposed

PCA
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• The first 2 latent variables

Latent Space Geometry
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Conventional AE Proposed AE
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• 32x32 color images
• 10-class natural photos
• 50,000 training
• 10,000 test

CIFAR-10
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MSE Distortion (CIFAR-10)
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Conv.

Proposed
PCA
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• MNIST data is gray-scale image, but nearly binary (white or black) 
whose statistics are far from Gaussian distribution

• CIFAR-10 uses color natural photos. Such photos are well modeled by Gauss-Markov random field 
(GMRF)

• Hence, PCA surprisingly performs well for CIFAR-10 if we consider MSE distortion
• However, SSIM and accuracy measure …

MNIST vs. CIFAR-10
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MNIST: Bernoulli like CIFAR-10: Gauss like

Gauss-Markov
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SSIM Measure (CIFAR-10)
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Conv.

Proposed

PCA
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Reconstructed Image Snapshots (CIFAR-10)
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Conventional AE Proposed AE
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Example Use Case

June 2020; T. Koike-Akino and Ye Wang, Stochastic Bottleneck 38

Conventional:
- What purpose?
- Dimensionality?
- Which AE models?

Rateless:
- Single unified AE model
regardless of dimensionality
for application invariant

Moderate dimension
we need to diagnose!

All dimensions
we need to analyze! We do not care many

but final results
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• We introduced a new rateless concept in auto-encoder design
• We proposed Stochastic Bottleneck architecture

– Non-identical dropout rates for Stochastic Width and Depth

• New regularization called TailDrop was investigated
• Proposed AE offers an excellent trade-off between distortion and compression rates

– Benefits in MSE, SSIM, and SVM accuracy were confirmed
• Demonstrated the benefit for various benchmark datasets

• Questions?
– koike@merl.com
– More results in arXiv

2005.02870

Summary
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• Datasets
– MNIST
– CIFAR-10
– FMNIST
– KMNIST
– SVHN
– CIFAR-100

More Results in ArXiv
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• 28x28 gray-scale images
• 10-class fashion photos
• 60,000 train
• 10,000 test

Fashion MNIST (FMNIST)

June 2020; T. Koike-Akino and Ye Wang, Stochastic Bottleneck 41



© MERL

MSE Measure (FMNIST)
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Conv.

Proposed

PCA
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Snapshots (FMNIST)
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Conventional AE Proposed AE
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• 28x28 gray-scale images
• 10-class ancient Japanese letters
• 60,000 training data
• 10,000 test data

Kuzushiji MNIST (KMNIST)
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MSE Measure (KMNIST)
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Conv.

Proposed

PCA
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Snapshots (KMNIST)
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Conventional AE Proposed AE
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• 32x32 color images
• 10-class cropped digits
• 73,257 training
• 26,032 test

Street-View House Numbers (SVHN)
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MSE Measure (SVHN)
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Conv.

Proposed

PCA
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Snapshots (SVHN)
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Conventional AE Proposed AE
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• 32x32 color images
• 100-class natural photos (20 super-classes)
• 50,000 training data, 10,000 test data

CIFAR-100
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MSE Measure (CIFAR-100)
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Conv.

Proposed

PCA
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Snapshots (CIFAR-100)
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Conventional AE Proposed AE
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