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Overview

e Apply machine learning to design modulation and detection

m Target: space-time constellations for non-coherent MIMO channel
m Recent trend: encode/decode with Deep Neural Networks (DNN)

e Simulation-driven, end-to-end, encoder/decoder optimization

m Minimizing cross-entropy loss < maximizing mutual info
m We compare DNN-based vs DNN-free systems

e Learned schemes can outperform traditional designs at some SNRs

m DNNs can be avoided altogether while keeping similar performance
m Feasibility of non-coherent MIMO with only two time slots
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Non-Coherent MIMQO Channel

Using m Tx and n Rx antennas over L time slots

Y=HX+7Z

Signal X € C"™*” sent over m Tx antennas and L time slots

Unknown block fading channel H € C"*™ ’ CN(0,1/m)
Gaussian noise Z € C"<E 1< CN(0,02?)
e Power constraint: E[||X||?/(mL)] = 1, average SNR = 1/5?

Receive Y € C"*L on n Rx antennas

Goal: design k-bit modulation and non-coherent detection scheme
m e {0,1}* - |[ENC|]—» X —|[MIMO|— Y — |DEC| — m
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Encoding Signal Constellation via a Lookup Table

For small k (#bits), lookup table most effective and efficient
e Encoder : {0,1}* — C™*L fully captured by table C € C2"*m*L
e Subtract centroid (mean across first axis) to get centered C
o Normalize average power of codebook C := CvV2FmL/|/C|
e For message m ¢ {0, 1}*, signal Xy, is selected from C
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Encoding Signal Constellation via a Lookup Table

For small k (#bits), lookup table most effective and efficient
e Encoder : {0,1}* — C™*L fully captured by table C € C2"*m*L
e Subtract centroid (mean across first axis) to get centered C
o Normalize average power of codebook C := CvV2FmL/|/C|
e For message m ¢ {0, 1}*, signal Xy, is selected from C

Common alternative: DNN-encoder with one-hot message input
e Vastly over-parameterizes the codebook with extraneous layers
e Binary input encoding would scale better for large k

e Our work uses lookup table to avoid encoder DNN
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Decoding with or without DNN

We optimize two soft-decision decoders: DNN-based vs DNN-free
e Both output unnormalized, log-likelihoods for each message

e Apply softmax to yield approximate posterior PrenlY
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Decoding with or without DNN

We optimize two soft-decision decoders: DNN-based vs DNN-free
e Both output unnormalized, log-likelihoods for each message

e Apply softmax to yield approximate posterior PrenlY

Neural Network (NN) Decoder: 6 is network parameters
e Used Multi-Layer Perceptron (MLP) or Residual MLP (ResMLP)

e Blind decoder trained end-to-end with cross-entropy loss
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Decoding with or without DNN

We optimize two soft-decision decoders: DNN-based vs DNN-free
e Both output unnormalized, log-likelihoods for each message

e Apply softmax to yield approximate posterior PgﬂY

Neural Network (NN) Decoder: 6 is network parameters
e Used Multi-Layer Perceptron (MLP) or Residual MLP (ResMLP)

e Blind decoder trained end-to-end with cross-entropy loss

Pseudo-ML (pML) Decoder: based on orthonormal code ML decoding

e If codeword orthonormal, i.e., Vm, XmXL1 =L -1, then ||YXL1H2
is proportional to unnormalized, log-likelihood log aP(Y |m)

e Outputs {GHYXInHQ}me{OJ}k where ¢ > 0 captures confidence

e Requires additional codebook orthonormality constraint
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Cross-Entropy Loss Training Maximizes Mutual Info

m — |ENCc| = Xm = [MIMO] — Y —|DECy | Py

End-to-end optimization with cross-entropy loss

%igE [—log anlY(m|Y)]
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Cross-Entropy Loss Training Maximizes Mutual Info

m —[ENCg|— Xm — [MIMO| - Y —[DECy | - Pl 1y

End-to-end optimization with cross-entropy loss

%I?E [—log hod |Y(m|Y)]

Equivalent to maximizing mutual info Z(m;Y) since
o E[log P%,y (m]Y)] = H(m|Y) + KL(Puyy | P%y)
e Z7(m;Y) = H(m) — H(m|Y), with constant H(m) = k
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Cross-Entropy Loss Training Maximizes Mutual Info

m —[ENCg|— Xm — [MIMO| - Y —[DECy | - Pl 1y

End-to-end optimization with cross-entropy loss

p— 0
min B[~ log Pryyy (m[Y))]

Equivalent to maximizing mutual info Z(m;Y) since
o E[—log Ple(mw)] = H(m|Y) + KL(Pm‘YHng'Y)
e Z(m;Y) =H(m) — H(m|Y), with constant H(m) = k
For pML decoder, we also enforce orthonormality with soft penalty

%3511@[— log P,y (m|Y)](1+A¢(C)), A>0
1

gz o XX /L - L
me{0,1}*

((C) =
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Experimental Evaluation

e Non-coherent MIMOQO parameters
m Bits k € {2,4,6,8}, time slots L € {2,4}
m RXne{2,3,4}, TXm=nfor L=4, TXm=2for L =2

e Encoders/decoders optimized over a range of hyperparameters
m MLP: varied depth and width of fully-connected layers
m ResMLP: MLP with additional skip connections and batch-norm
m pML: varied A\ parameter controlling code orthonormality

e Compare performance vs codes constructed by [Liang, Xia '02]
m Existing Grassmann code designs require L > m
m We demonstrate novel feasibility of learning for L = m = 2

e Cross-entropy loss gives approximate lower-bound on throughput:

k—E[-log PLy(mY)] _ 1(m;Y)

L ~ L

m Compare with capacity lower-bounds of [Yang, Durisi, Riegler '13]
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Comparison for L = 4 Time Slots, TX-RX (m,n) = (2,2)
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NN Decoder Performance for L =4
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NN Decoder Throughput for L =4
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NN Decoder Performance for L = 2
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NN Decoder Throughput for L =2
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pML Decoder Performance for L = 4
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pML Decoder Throughput for L =4
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Codebook via pML Decoder for k =2, L =4, (m,n) = (4,4)
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Summary

Decoder

MIMO Channel or pseudo-ML

Encoder

Look-Up Table or arg m"z‘xx"YXTn”

e Applied learning to non-coherent MIMO modulation and detection

m Simulation-driven, end-to-end, space-time constellation optimization
m Minimizing cross-entropy loss < maximizing mutual info
m We offer a DNN-free system as alternative to using DNN

e Learned schemes can outperform traditional designs at some SNRs

m DNNs can be avoided altogether while keeping similar performance
m Non-coherent MIMO feasible with only two time slots
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