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Perceptual systems routinely separate \content" from \style", classifying famil-

iar words spoken in an unfamiliar accent, identifying a font or handwriting style

across letters, or recognizing a familiar face or object seen under unfamiliar view-

ing conditions. Yet a general and tractable computational model of this abil-

ity to untangle the underlying factors of perceptual observations remains elusive

[Hofstadter, 1985]. Existing factor models [Mardia et al., 1979, Hinton and Zemel, 1994,

Ghahramani, 1995, Bell and Sejnowski, 1995, Hinton et al., 1995, Dayan et al., 1995,

Hinton and Ghahramani, 1997] are either insu�ciently rich to capture the com-

plex interactions of perceptually meaningful factors such as phoneme and speaker

accent or letter and font, or do not allow e�cient learning algorithms. We present

a general framework for learning to solve two-factor tasks using bilinear models,

which provide su�ciently expressive representations of factor interactions but can

nonetheless be �t to data using e�cient algorithms based on the singular value

decomposition (SVD) and expectation-maximization (EM). We report promising

results on three di�erent tasks in three di�erent perceptual domains: spoken vowel

classi�cation with a benchmark multi-speaker database, extrapolation of fonts to

unseen letters, and translation of faces to novel illuminants.

1 Introduction

Perceptual systems routinely separate the \content" and \style" factors of their observations,

classifying familiar words spoken in an unfamiliar accent, identifying a font or handwriting style

across letters, or recognizing a familiar face or object seen under unfamiliar viewing conditions.

These and many other basic perceptual tasks have in common the need to process separately

two independent factors that underly a set of observations. This paper shows how perceptual

systems may learn to solve these crucial two-factor tasks using simple and tractable bilinear

models. By �tting such models to a training set of observations, the in
uences of style and

content factors can be e�ciently separated in a 
exible representation that naturally supports

generalization to unfamiliar styles or content classes.
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Figure 1 illustrates three abstract tasks that fall under this framework: classi�cation, ex-

trapolation and translation. Examples of these abstract tasks in the domain of typography

include classifying known characters in a novel font, extrapolating the missing characters of

an incomplete novel font, or translating novel characters from a novel font into a familiar font

(see Figure 1). The essential challenge in all of these tasks is the same. A perceptual system

observes a training set of data in multiple styles and content classes, and is then presented

with incomplete data in an unfamiliar style, missing either content labels (Figure 1a) or whole

observations (Figure 1b) or both (Figure 1c). The system must generate the missing labels or

observations using only the available data in the new style and what it can learn about the

interacting roles of style and content from the training set of complete data.

We describe a uni�ed approach to the learning problems of Figure 1 based on �tting models

that discover explicit parameterized representations of (i) what the training data of each row

have in common independent of column, (ii) what the data of each column have in common

independent of row, and (iii) what all data have in common independent of row and column {

the interaction of row and column factors. Such a modular representation naturally supports

generalization to new styles or content. For example, we can extrapolate a new style to un-

observed content classes (Figure 1b) by combining content and interaction parameters learned

during training with style parameters estimated from available data in the new style.

A number of models for the underlying factors of observations have recently been proposed

in the literature on unsupervised learning. These include essentially additive factor models,

as used in principal component analysis [Mardia et al., 1979], independent component analy-

sis [Bell and Sejnowski, 1995], and cooperative vector quantization [Hinton and Zemel, 1994,

Ghahramani, 1995], and hierarchical factorial models, as used in the Helmholtz machine and

its descendants [Hinton et al., 1995, Dayan et al., 1995, Hinton and Ghahramani, 1997].

We model the mapping from style and content parameters to observations as a bilinear map-

ping. Bilinear models are two-factor models with the mathematical property of separability:

their outputs are linear in either factor when the other is held constant. Their combination

of representational expressiveness and e�cient learning procedures enables bilinear models to
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overcome two principal drawbacks of existing factor models which might be applied to learning

the tasks in Figure 1 . In contrast to additive factor models, bilinear models provide for rich fac-

tor interactions by allowing factors to multiplicatively modulate each other's contributions (see

Section 2). Model dimensionality can be adjusted to accomodate data that arise from arbitrar-

ily complex interactions of style and content factors. In contrast to hierarchical factorial mod-

els, model �tting can be carried out by e�cient techniques well-known from the study of linear

models, such as the singular value decomposition (SVD) and the expectation-maximization

(EM) algorithm, without having to invoke extensive sampling-based [Hinton et al., 1995] or

variational [Dayan et al., 1995] approximations.

Our approach is also related to the \learning to learn" research program [Thrun and Pratt, 1998]

{ also known as \task transfer" or \multitask learning" [Caruana, 1998]. The central insight of

\learning to learn" is that learning problems often come in clusters of related tasks, and thus

learners may automatically acquire useful biases for a novel learning task by training on many

related ones. Rather than families of related tasks, we focus on how learners can exploit the

structure in families of related observations, bound together by their common styles, content

classes, or style � content interaction, to acquire general biases useful for carrying out various

tasks on novel observations from the same family. Thus our work is closest in spirit to the

\family discovery" approach of [Omohundro, 1995], di�ering primarily in our focus on bilinear

models to parameterize the style-content interaction.

The paper is structured as follows. Section 2 explains and motivates our bilinear modeling ap-

proach. Section 3 describes how these models are �t to a training set of observations. Sections

4, 5, and 6 present speci�c applications of these techniques to the three tasks of classi�cation,

extrapolation, and translation, using realistic data from several perceptual domains. Section

7 concludes with a general discussion.

A note on terminology. We will use the terms \style" and \content" generically to refer to any

two independent factors underlying a set of perceptual observations. For tasks that require

generalization to novel classes of only one factor (Figure 1a,b), we will refer to the variable

factor (which changes during generalization) as \style" and the invariant factor (with a �xed
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set of classes) as \content". For example, in a task of recognizing familiar words spoken in

an unfamiliar accent, we would think of the words as \content" and the accent as \style".

For tasks that require generalization across both factors (Figure 1c), the labels \style" and

\content" are arbitrary and we will use them as seems most natural.

2 Bilinear models

We have explored two bilinear models, closely related to each other, which we distinguish by

the labels symmetric and asymmetric. The rest of this section describes these models and

illustrates them on a simple data set of face images.

2.1 Symmetric model

In the symmetric model, we represent both style s and content c with vectors of parameters,

denoted as and bc and with dimensionalities I and J respectively. Let ysc denote a K-

dimensional observation vector in style s and content class c. We assume that ysc is a bilinear

function of as and bc given most generally by the form

ysck =
IX

i=1

JX
j=1

wijka
s
ib
c
j : (1)

Here i, j, and k denote the components of style, content, and observation vectors respectively. 1

The wijk terms are independent of style and content and characterize the interaction of these

two factors. Their meaning becomes clearer when we rewrite Equation 1 in vector form. Letting

Wk denote the I � J matrix with entries fwijkg, Equation 1 can be written as

ysck = as
T

Wkb
c: (2)

In Equation 2, the K matrices Wk describe a bilinear map from the style and content vector

spaces to the K-dimensional observation space.

1
The model in Equation 1 may appear trilinear, but we view the wijk terms as describing a �xed bilinear

mapping from as and bc
to ysc

.

5



The interaction terms have another interpretation which can be seen by writing the symmetric

model in another vector form. Letting wij denote the K-dimensional vector with components

fwijkg, Equation 1 can be written as

ysc =
X
i;j

wija
s
ib
c
j : (3)

In Equation 3, the wijk terms represent I�J basis vectors of dimension K, and the observation

ysc is generated by mixing these basis vectors with coe�cients given by the tensor product of

as and bc.

Of course all of these interpretations are formally equivalent, but they suggest di�erent intu-

itions which we will exploit later. As a concrete example, Figure 2 illustrates a symmetric

model of face images of di�erent people in di�erent poses (sampled from the complete data in

Figure 6). Here the basis vector interpretation of the wijk terms is most natural, by analogy

to the well-known work on \eigenfaces" [Turk and Pentland, 1991]. Each pose is represented

by a vector of I parameters, a
pose
i , and each person by a vector of J parameters, b

person
j . To

render an image of a particular person in a particular pose, a set of I � J basis images wij

is linearly mixed with coe�cients given by the tensor product of these two parameter vectors

(Equation 3). The symmetric model can exactly reproduce the observations when I and J

equal the numbers of styles S and content classes C observed respectively, as is the case in Fig-

ure 2. The model provides coarser but more compact representations as these dimensionalities

are decreased.

2.2 Asymmetric model

Sometimes linear combinations of a few basis styles learned during training may not describe

new styles well. We can obtain more 
exible, asymmetric models by letting the interaction

terms wijk themselves vary with style. Then Equation 1 becomes ysck =
P

i;j w
s
ijka

s
ib
c
j . Without

loss of generality we can combine the style-speci�c terms of Equation 1 into

asjk =
X
i

ws
ijka

s
i ; (4)
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giving

ysck =
X
j

asjkb
c
j : (5)

Again, there are two interpretations of the model corresponding to di�erent vector forms of

Equation 5. First, letting As denote the K � J matrix with entries fasjkg, Equation 5 can be

written as

ysc = Asbc: (6)

Here, we can think of the asjk terms as describing a style-speci�c linear map from content

space to observation space. Alternatively, letting asj denote the K-dimensional vector fasjkg,

Equation 5 can be written as

ysc =
X
j

asjb
c
j : (7)

Now we can think of the asjk terms as describing a set of J style-speci�c basis vectors which

are mixed according to content-speci�c coe�cients bcj (independent of style) to produce the

observations.

Figure 3 illustrates an asymmetric bilinear model applied to the face database, with head pose

as the \style" factor. Now each pose is represented by a set of J basis images Apose and each

person represented by a vector of J parameters bperson. To render an image of a particular

person in a particular pose, the pose-speci�c basis images are linearly mixed with coe�cients

given by the person-speci�c parameter vector.

Note that the basis images for each pose look like eigenfaces [Turk and Pentland, 1991] in the

appropriate style of each pose. However, they do not provide a true orthogonal basis for any one

pose, as in [Moghaddam and Pentland, 1997] where a distinct set of eigenfaces is computed for

each of several poses. Instead, the factorized structure of the model ensures that corresponding

basis vectors play corresponding roles across poses (e.g. the �rst vector holds (roughly) the

mean face for that pose, the second seems to modulate hair distribution, the third seems to

modulate head size), which is crucial for adapting to new styles. Familiar content can be easily

translated across to a new style by just mixing the new style-speci�c basis functions with the

old content-speci�c coe�cients.
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Figure 4 shows the same data represented by an asymmetric model, but with the roles of

\style" and \content" switched. Now the As parameters provide a basis set of poses for each

person's face. Again, corresponding basis vectors play corresponding roles across styles (e.g.

for each person's face, the �rst vector holds (roughly) the mean pose, the second modulates

head orientation, the third modulates amount of hair showing, the fourth adds in facial detail),

allowing ready stylistic translation.

Finally, we note that because the asymmetric model can be obtained by summing out redundant

degrees of freedom in the symmetric model (Equation 4), 2 the three sets of basis images in

Figures 2 - 4 are not at all independent. Both the pose- and person-speci�c basis images in

Figures 3 and 4 can be expressed as linear combinations of the symmetric model basis images

in Figure 2, mixed according to the pose- or person-speci�c coe�cients (respectively) from

Figure 2.

The asymmetric model's high-dimensional matrix representation of style may be too 
exible

in adapting to data in new styles, and cannot support translation tasks (Figure 1c) because

it does not explicitly model the structure of observations that is independent of both style

and content (represented by wijk in Equation 1). However, if over�tting can be controlled

by limiting the model dimensionality J or imposing some additional constraint, asymmetric

models may solve classi�cation and extrapolation tasks (Figure 1a,b) that could not be solved

using symmetric models with a realistic number of training styles.

3 Model �tting

In conventional supervised learning situations, the data are divided into complete training

patterns and incomplete (e.g. unlabeled) test patterns, which are assumed to be sampled ran-

domly from the same distribution [Bishop, 1995]. Learning then consists of �tting a model

to the training data which allows the missing aspects of the test patterns (e.g. class labels

2
This only holds exactly when the dimensionalities of style and content vectors are equal to the number of

observed styles and content classes, respectively.
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in a classi�cation task) to be �lled in given the available information. The tasks in Figure 1,

however, require that the learner generalize from training data sampled according to one dis-

tribution (i.e. in one set of styles and content classes) to test data drawn from a di�erent but

related distribution (i.e. in a di�erent set of styles and/or content classes).

Because of the need to adapt to a di�erent but related distribution of data during testing, our

approach to these tasks involves model �tting during both training and testing phases. In the

training phase, we learn about the interaction of style and content factors by �tting a bilinear

model to a complete array of observations of C content classes in S styles. In the testing or

generalization phase, we adapt the same model to new observations which have something in

common with the training set, either in content or style, or in their interaction. The model

parameters corresponding to the assumed commonalities are clamped to the values learned

during training, and new parameters are estimated for the new styles and/or content using

algorithms similar to those used in training. New and old parameters are then combined to

accomplish the desired classi�cation, extrapolation, or translation task.

This section presents the basic algorithms for model �tting during training. The algorithms

for model �tting during testing are essentially variants of these training algorithms, but they

depend on the particular task and thus will be presented in the appropriate sections below.

The goal of model �tting during training is to minimize the total squared error over the training

set for the symmetric or asymmetric models. This goal is equivalent to maximum likelihood

estimation of the style and content parameters given the training data, under the assumption

that the data were generated from the models plus i.i.d. gaussian noise.

3.1 Asymmetric model

Becuase the procedure for �tting the asymmetric model is simpler, we discuss it �rst. Let y(t)

denote the tth training observation (t = 1; : : : ; T ). Let the indicator variable hsc(t) = 1 if y(t)

is in style s and content class c, and 0 otherwise. Then the total squared error E over the
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training set for the asymmetric model (in the form of Equation 6) can be written as

E =
TX
t=1

SX
s=1

CX
c=1

hsc(t)jjy(t)�Asbcjj2: (8)

If the training set contains equal numbers of observations in each style and in each content

class, there exists a closed-form procedure to �t the asymmetric model using the SVD. While

we are the �rst to use this procedure as the basis for a learning algorithm, it is mathemati-

cally equivalent to a family of computer vision algorithms [Koenderink and Doorn, 1997] best

known in the context of recovering structure from motion of tracked points under orthographic

projection [Tomasi and Kanade, 1992].

Let �ysc =

P
t
hsc(t)y(t)P
t
hsc(t)

, the mean observation in style s and content class c. These observations

are most naturally represented in a three-way array, but in order to work with standard matrix

algorithms, we must stack these SC K-dimensional (column) vectors into a single (SK)� C

observation matrix

�Y =

2
666664

�y11 � � � �y1C

...
. . .

�yS1 �ySC

3
777775 : (9)

We can then write the asymmetric model (see Equation 6) in compact matrix form,3

�Y = AB; (10)

identifying the (SK) � J matrix A and J � C matrix B as the stacked style and content

parameters respectively,

A =

2
666664
A1

...

AS

3
777775 ; (11)

B =
h
b1 � � �bC

i
: (12)

To �nd the least-squares optimal style and content parameters for Equation 10, we simply

compute the SVD of �Y = USVT . (By convention, we always take the diagonal elements of S

3
Strictly speaking, Equation 10 is a model of the mean observations. However, when the data are evenly

distributed across styles and content classes, the parameter values which minimize the total squared error for

Equation 10 will also minimize E in Equation 8.
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to be ordered by decreasing eigenvalue). We then de�ne the style parameter matrix A to be

the �rst J columns of US, and the content parameter matrix B to be the �rst J rows of VT .

The model dimensionality J can be chosen in various ways: from prior knowledge, by requiring

a su�ciently good approximation to the data, or by looking for a \knee" in the singular value

spectrum.

If the training data are not distributed equally across the di�erent styles and content classes,

we must minimize Equation 8 directly. There are many ways to do this. We use a quasi-

newton method (BFGS; [Press et al., 1992]) with initial parameter estimates determined by

the SVD of the mean observation matrix �Y, as described above. If there happen to be no

observations in a particular style s and content class c, �Y will have some indeterminate (0=0)

entries. Before taking the SVD of �Y, we replace any indeterminate entries by the mean of

the observations in the appropriate style s (across all content classes) and/or content class c

(across all styles). In our experience, this method has yielded satisfactory results, although it

is at least an order of magnitude slower than the closed-form SVD solution. Note that if the

training data are almost equally distributed across styles and content classes, then the closed-

form SVD solution found by assuming the data are exactly balanced will almost minimize

Equation 8, and improving this solution via quasi-newton optimization will probably not be

worth the much greater e�ort involved. Because all of the examples presented below have

equally distributed training observations, we will need only the closed-form procedure for the

remainder of this paper.

3.2 Symmetric model

The total squared error E over the training set for the symmetric model (in the form of

Equation 2) can be written as

E =
NX
t=1

SX
s=1

CX
c=1

KX
k=1

hsc(t)jjyk(t)� as
T

Wkb
cjj2: (13)

Again, if we assume the training set consists of an equal number of observations in each style

and content class, there are e�cient matix algorithms for minimizing E. The algorithm we use

was described for scalar observations by [Magnus and Neudecker, 1988] and adapted to vector
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observations by [Marimont and Wandell, 1992], in the context of characterizing color surface

and illuminant spectra. Essentially, we repeatedly apply the above SVD algorithm for �tting

the asymmetric model, alternating the role of style and content factors within each iteration

until convergence.

First we need a few matrix de�nitions. Recall that �Y consists of the SC K-dimensional mean

observation vectors �ysc stacked into a single SK �C matrix (Equation 9). In general, for any

AK �B matrix X constructed by stacking AB K-dimensional vectors A down and B across,

we can de�ne its \vector-transpose" XVT to be the BK � A matrix consisting of the same

K-dimensional vectors stacked B down and A across, where the vector a across and b down

in X becomes the vector b across and a down of XVT. See the illustration in Figure 5. In

particular, �YVT consists of the means �ysc stacked into a single (KC)� S matrix:

�YVT =

2
666664

�y11 � � � �y1S

...
. . .

�yC1 �yCS

3
777775 : (14)

Finally, we de�ne the IK � J stacked weight matrix W, consisting of the IJ K-dimensional

basis functions wij (see Equation 3) in the form,

W =

2
666664
w11 � � � w1I

...
. . .

wJ1 yIJ

3
777775 : (15)

Its vector-transpose WVT is also de�ned accordingly.

We can then write the symmetric model (see Equation 6) in either of these two equivalent

matrix forms,4

�Y =
h
WVTA

iVT
B; (16)

�YVT = [WB]VTA; (17)

4
As with the asymmetric model, when the data are evenly distributed across styles and content classes, the

parameter values that minimize the total squared error for the mean observations in Equations 17 or 17 will

also minimize E in Equation 13.
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identifying the I � S matrix A and the J � C matrix B as the stacked style and content

parameter vectors respectively,

A =
h
a1 � � �aS

i
;B =

h
b1 � � �bC

i
: (18)

The iterative procedure for estimating least-squares optimal values of A and B proceeds as fol-

lows. We initialize B using the closed-form SVD procedure described above for the asymmetric

model (i.e. Equation 12). Note that this initial B is an orthogonal matrix (i.e. BBT is the J�J

identity matrix), so that [ �YBT]VT =WVTA (from Equation 16). Thus, given this initial esti-

mate for B, we can compute the SVD of [ �YBT]VT = USVT and update our estimate of A to

be the �rst I rows of VT . This A is also orthogonal, so that
h
�YVTAT

iVT
=WB (from Equa-

tion 17). Thus, given this estimate of A, we can compute the SVD of [ �YVTAT]VT = USVT

and update our estimate of B to be the �rst J rows of VT . This completes one iteration of

the algorithm. Typically, convergence occurs within 5 iterations (i.e. around 10 SVD opera-

tions). Convergence is also guaranteed; see [Magnus and Neudecker, 1988] for a proof for the

scalar case (K = 1) which can easily be extended to the vector case considered here. Upon

convergence, we solve for W = [[ �YBT]VTAT]VT to obtain the basis vectors independent of

both style and content. As with the asymmetric model, if the training data are not distributed

equally across the di�erent styles and content classes, we minimize Equation 8 starting from

the same initial estimates for A and B but using a more costly quasi-newton method.

4 Classi�cation

Many common classi�cation problems involve multiple observations likely to be in one style,

for example, recognizing the handwritten characters on an envelope or the accented speech

of a telephone voice. People are signi�cantly better at recognizing a familiar word spoken

in an unfamiliar voice or a familiar letter character written in an unfamiliar font when it is

embedded in the context of other words or letters in the same novel style [Bergem et al., 1988,

Sanocki, 1992, Nygaard and Pisoni, 1998], presumably because the added context allows the

perceptual system to build a model of the new style and factor out its in
uence.
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In this section, we show how a perceptual system may use bilinear models and assumptions

of style consistency to factor out the e�ects of style in content classi�cation, and thereby

signi�cantly improve classi�cation performance on data in novel styles. We �rst describe the

two concrete tasks investigated. We then present the general classi�cation algorithm and

the results of several experiments comparing this algorithm to standard techniques from the

pattern recognition literature, such as nearest neighbor classi�cation, which do not explicitly

model the e�ects of style on content classi�cation.

4.1 Task speci�cs

We report experiments with two data sets: a benchmark speech data set and a face data

set which we collected ourselves. The speech data consist of 6 samples of each of 11 vowels

(content classes) uttered by 15 speakers (styles) of British English (originally collected by

David Deterding and available from the UC Irvine machine learning repository 5.) Each data

vector consists of K = 10 log area parameters, a standard vocal tract representation computed

from a linear predictive analysis of the digitized speech. The speci�c task we must learn to

perform is classi�cation of spoken vowels (content) for new speakers (styles).

The face data were introduced in Section 2 (Figures 2-4). Figure 6 shows the complete data

set, consisting of images of 11 people's faces (styles) viewed under 15 di�erent poses (content

classes). The poses span a grid of three vertical positions (up, level, down) and �ve horizontal

positions (far-left, left, straight-ahead, right, far-right). The pictures were shifted to align the

nose tip position, found manually. The images were then blurred and cropped to 22�32 pixels,

and represented simply as vectors of K = 704 pixel values each. The speci�c task we must

learn to perform is classi�cation of head pose (content) for new people's faces (styles).

5
http://www.ics.uci.edu/AI/ML/Machine-Learning.html
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4.2 Algorithm

For both speech and face data sets, we train on observations in all content classes but in

a subset of the available styles (the \training" styles). We �t asymmetric bilinear models

(Equation 10) to this training data using the closed-form SVD procedure described in Section

3.1. This yields a K � J matrix As representing each style s and a J-dimensional vector bc

representing each content class c. The model dimensionality J is a free parameter, which we

discuss in depth at the end of this section.

The generalization task is then to classify observations in the remaining styles (the \test"

styles), i.e. to �ll in the \missing" content labels for these novel observations using the style-

invariant content vectors bc learned during training (see Figure 6). Observe that trying to

estimate both content labels as well as style parameters for the new data presents a classic

\chicken-and-egg" problem, very much like the problems of k-means clustering or mixture

modeling [Duda and Hart, 1973]. If the content class assignments were known, then it would

be easy to estimate parameters for a new style ~s by simply inserting into the basic asymmetric

bilinear model (i.e. Equation 6) all the observation vectors in style ~s, along with the appropriate

content vectors bc and solving for the style matrix A~s. Similarly, if we had a model A~s of

new style ~s, then we could classify any test observation from this new style based simply on

its distance to each of the known content vectors bc multiplied by A~s. 6 Initially, however,

both style models and content class assignments are unknown for the test data.

To handle this uncertainty, we embed the bilinear model within a gaussian mixture model to

yield a separable mixture model (SMM) [Tenenbaum and Freeman, 1997] which can then be �t

e�ciently to new data using the EM algorithm [Dempster et al., 1977]. The mixture model

has S � C gaussian components, one for each pair of S styles and C content classes, with

means given by the predictions of the bilinear model. However, only O(S + C) parameters

are needed to represent the means of these S � C gaussians, because of the bilinear model's

separable structure. To simultaneously classify known content in new styles and estimate new

6
This is equivalent to maximum likelihood classi�cation, assuming gaussian likelihood functions centered on

the predictions of the bilinear model A~sbc
.
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style parameters, the EM algorithm alternates between estimating the most likely content

labels given current style parameter estimates (E-step) and estimating the most likely style

parameters given current content label estimates (M-step), with likelihood determined by the

gaussian mixture model. If in addition the test data are not segmented according to style,

style labels can be estimated simultaneously as part of the E-step.

More formally, after training on labeled data from S styles and C content classes, we are given

test data from the same C content classes and ~S new styles, with labels for content (and

possibly also style) missing. We assume that the probability of a new unlabeled observation y

being generated in new style ~s and old content c is given by a gaussian distribution of variance

�2 centered at the prediction of the bilinear model: p(yj~s; c) / expf�ky�A~sbck2=(2�2)g. The

total probability of y is then given by the mixture distribution p(y) =
P

~s;c p(yj~s; c)p(~s; c). Here

we assume equal prior probabilities p(~s; c), unless the observations are otherwise labeled. 7

The content vectors bc are known from training. The EM algorithm [Dempster et al., 1977]

alternates between two steps in order to �nd new style matrices A~s and style-content labels

p(~s; cjy) that best explain the test data. In the E-step, we compute the probabilities p(~s; cjy) =

p(yj~s; c)p(~s; c)=p(y) that each test vector y belongs to style ~s and content class c, given the

current style matrix estimates. In the M-step, we estimate new style matrices by setting

A~s to maximize the total loglikelihood of the test data, L� =
P
y log p(y). The M-step can

be computed in closed form by solving the equations @L�=@A~s = 0, which are linear in A~s

given the probability estimates from the E-step and the quantities m~sc =
P
y p(~s; cjy)y and

n~sc =
P
y p(~s; cjy):

A~s =

"X
c

m~scbc
T

#"X
c

n~scbcbc
T

#
�1

: (19)

The EM algorithm is guaranteed to converge to a local maximum of L� and this typically takes

around 20 iterations for our problems. After each E-step, test vectors in new styles can be

7
That is, if the style identity s� of y is labeled but the content class is unknown, we let p(~s; c) = 1=C if

~s = s� and 0 if ~s 6= s�. If both the style and content identities of y are unlabeled, we let p(~s; c) = 1=( ~SC for all

~s and c.
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classi�ed by selecting the content class c that maximizes p(cjy) =
P

~s p(~s; cjy). Classi�cation

performance is determined by the percentage of test data for which the probability of content

class c, as given by EM, is greatest for the actual content class. Note that because content

classi�cation is determined as a \by-product" of the E-step, the standard practice of running

EM until convergence to a local maximum in likelihood will not necessarily lead to optimal

classi�cation performance. In fact, we have often observed \over�tting" behavior, in which

optimal classi�cation is obtained after only two or three iterations of EM, but the likelihood

continues to increase in subsequent iterations as observations are assigned to incorrect content

classes.

This classi�cation algorithm thus has three free parameters for which good values must some-

how be determined. In addition to the model dimensionality J mentioned above, these include

the model variance �2 and the maximum number of iterations for which EM is run, tmax. In

general, we set these parameters using a leave-one-style-out cross-validation procedure with

the training data. That is, given S complete training styles, we train separate bilinear models

on each of the S subsets of S � 1 styles and evaluate these models' classi�cation performance

on the one style that each was not trained on. For each of these S training set splits, we try a

range of values for the parameters J , �2, and tmax. Those values which yield the best average

performance over the S training set splits are then used in �tting a new bilinear model to the

full training data and generalizing to the designated test set.

Initialization is an important factor in determining the success of the EM algorithm. As we

are primarily interested in good classi�cation, we initialize EM in the E-step, using the results

of a simple 1-nearest neighbor classi�er to set the content-class assignments p(cjx). That

is, we initially assign each test observation to the content class of the most similar training

observation (for which the content labels are known).

4.3 Results

We conducted four di�erent experiments, three using the benchmark speech data to investigate

di�erent aspects of the algorithm's behavior and one using the face data to provide evidence
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from a separate domain. In each case, we report results with all three free parameters set

using the cross-validation procedure described above, as well as for two conditions in which

EM was run until convergence (i.e. tmax =1): J , �2 determined by cross-validation, and J , �2

set to their optimal values (as an indicator of best in-principle performance for the maximum

likelihood solution).

4.3.1 Train 8, test 7 on speech data { speakers labeled

The �rst experiment with the speech data was the standard benchmark task described in

[Robinson, 1989]. Robinson compared many learning algorithms trained to categorize vowels

from the �rst 8 speakers (4 male and 4 female) and tested on samples from the remaining

7 speakers (4 male and 3 female). The variety and the small number of styles make this a

di�cult task. Table 1 shows the best results we know of for standard approaches that do

not adapt to new speakers. Of the many techniques that Robinson [Robinson, 1989] tested,

1-nearest neighbor (1-NN) performs the best with 56.3% correct; chance is approximately

9% correct. Hastie & Tibshirani's [Hastie and Tibshirani, 1996] discriminant adaptive nearest

neighbor (DANN) classi�er slightly outperforms 1-NN, obtaining 59.7% correct with its generic

parameter settings and 61.7% correct for optimal parameter settings.

After �tting an asymmetric bilinear model to the training data, we tested classi�cation per-

formance using our separable mixture model (SMM) on the 7 new speakers' data. We �rst

assumed style labels were available for the test data (indicating only a change of speaker, but

no information about the new speaker's style). Running EM until convergence (tmax = 1),

our best results of 77.3% correct were obtained with J = 4 and �2 = 1=16. Almost comparable

results of 75.8% correct were obtained using cross-validation to set all parameters (J; �2; tmax)

automatically (see Table 1). The SMM clearly outperforms the many nonadaptive techniques

tested, by exploiting extra information available in the speaker labels which nonadaptive tech-

niques make no use of.
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4.3.2 Train 8, test 7 on speech data { speakers not labeled

We next repeated the benchmark experiment without the assumption that any style labels

were available during testing. Thus our SMM algorithm and the nonadaptive techniques had

exactly the same information available for each test observation (although the SMM had style

labels available during training). We used EM to �gure out both the speaker assignments as

well as the vowel class assignments for the test data. EM requires that the number of style

components S in the mixture model be set in advance; we choose S = 7 (the actual number

of distinct speakers) for consistency with the previous experiment. In initializing EM in the

E-step, we assigned each test observation equally to each new style component, plus or minus

ten percent random noise to break symmetry and allow each style component to adapt to a

distinct subset of the new data. Using cross-validation to set J , �2 and tmax automatically,

we obtained 69:8%� :3% correct. Table 1 presents results for other parameter settings. These

scores re
ect average performance over ten di�erent random initializations. Not surprisingly,

SMM performance here was worse than in the previous section, where the correct style labels

were assumed to be known. Nonetheless, the SMM still provided a signi�cant improvement

over the best nonadaptive approaches tested.

4.3.3 Train 14, test 1 on speech data

We noticed that the performance of the SMM on the speech data varied widely across di�erent

test speakers, and also depended signi�cantly on the particular speakers chosen for training

and testing. In some cases, the SMM did not perform much better than 1-NN, and in other

cases the SMM actually did worse. Thus, we decided to conduct a more systematic study of the

e�ects of individual speaker style on generalization. Speci�cally, we tested the SMM's ability

to classify the speech of each of the 15 speakers in the database individually, when the other

14 speakers were used for training. Because only one speaker was presented during testing, we

used only a single style model in EM and thus there was no distinction between the \speakers

labeled" and \speakers not labeled" conditions investigated in the previous two sections.
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Averaged over all 15 possible test speakers, 1-NN obtained 63:9% � 3:4% correct. Using

cross-validation to set J; �2 and tmax automatically, our SMM obtained 74:3%� 4:2% correct.

Running EM until convergence (tmax =1), we obtained 75:6%�4:0% using the best parameter

settings of J = 3, �2 = 1=16 and 73:5%� 4:4% correct using cross-validation to select J and

�2 automatically. These SMM scores are not signi�cantly di�erent from each other, but are all

signi�cantly higher than 1-NN as measured by paired t-tests (p < :01 in all cases). The results

suggest that the superior performance of SMM over nonadaptive classi�ers such as nearest

neighbor will hold in general over a range of di�erent test styles.

4.3.4 Train 10, test 1 on face data

To provide further support for the generality of SMM over nonadaptive approaches, we repli-

cated the previous experiment using the face database instead of the speech data. While the

two databases are of roughly comparable size, the nature of the observations are quite di�er-

ent: 704-dimensional vectors of pixel values vs. 10-dimensional vectors of vocal tract log area

coe�cients. Speci�cally, we tested the SMM's ability to classify head pose for each of the 11

faces in the database individually, when the other 10 people's faces were used for training.

There were 15 di�erent possible poses, with one image of each face in each pose.

Averaged over all 11 possible test faces, 1-NN obtained 53:9% � 4:3% correct. Using cross-

validation to set J; �2 and tmax automatically, our SMM obtained 73:9%� 6:7% correct. Run-

ning EM until convergence (tmax = 1), we obtained 80:6%� 7:5% using the best parameter

settings of J = 6, �2 = 105 and 75:8%� 6:4% correct using cross-validation to select J and �2

automatically. As on the speech data, these SMM scores are not signi�cantly di�erent from

each other, but do represent signi�cant improvements over 1-NN as measured by paired t-tests

(p < :05 in all cases).
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4.4 Discussion

Our approach to style-adaptive content classi�cation involves two signi�cant modeling choices:

�rst, the use of a bilinear model of the mean observations, and second, the use of a gaussian

mixture model { centered on the predictions of the bilinear model { for observations whose

content and/or style assignments are unknown. The mixture model provides a principled

probabilistic framework, allowing us to use the EM algorithm to solve the chicken-and-egg

problem of simultaneously estimating style paramters for the new data and labeling the data

according to content class (and possibly style as well). The bilinear structure of the model

allows the M-step to be computed in closed form, by solving systems of linear equations. In

this sense, bilinear models represent the content of observations independent of their style in a

form that can be generalized easily to model data in new styles. To summarize our results in

this section, we found that separating style and content with bilinear models improves content

classi�cation in new styles substantially over the best nonadaptive approaches to classi�cation,

even when no style information is available during testing, and dramatically so when style

demarkation is available. Although our SMM classi�er has several free parameters which must

be chosen a priori, we showed that near optimal values can be determined automatically, using

a cross-validation training procedure. We obtained good results on two very di�erent data

sets, low-dimensional speech data and high-dimensional face image data, suggesting that our

approach may be widely applicable to many two-factor classi�cation tasks that can be thought

of in terms of recognizing invariant content elements under variable style.

5 Extrapolation

The ability to draw analogies across observations in di�erent contexts is a hallmark of human

perception and cognition [Hofstadter, 1995, Holyoak and Barnden, 1994]. In particular, the

ability to produce analogous content in a novel style { and not just recognize it as in the

previous section { has been taken as a severe test of perceptual abstraction [Hofstadter, 1995,

Grebert et al., 1992]. The domain of typography provides a natural place to explore these
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issues of analogy and production. Indeed, Hofstadter has argued that the question of \What

is the letter `a'?" may be \the central problem of AI" ([Hofstadter, 1985], p. 633). Following

Hofstadter, we study the task of extrapolating a novel font from an incomplete set of letter

observations in that font to the remaining unobserved letters. We �rst describe the task

speci�cs and our shape representation for letter observations. We then present our algorithm

for stylistic extrapolation based on bilinear models and show results on extrapolating a natural

font.

5.1 Task speci�cs

Given a training set of C = 62 characters (content) in S = 5 standard fonts (style), the

task is to generate characters that are stylistically consistent with letters in a novel sixth

font. The initial data were obtained by digitizing the uppercase letters, lowercase letters,

and digits 0-9 of the six fonts at 38 � 38 pixels using Adobe Photoshop. Successful shape

modeling often depends on having an image representation that makes explicit the appropri-

ate structure which is only implicit in raw pixel values. Speci�cally, the need to represent

shapes of di�erent topologies in comparable forms motivates using a particle-based repre-

sentation [Szeliski and Tonnesen, 1992]. We also want the letters in our representation to

behave like a linear vector space, where linear combinations of letters also look like letters.

[Beymer and Poggio, 1996] advocate a dense warp map for related problems. Combining these

two ideas, we chose to represent each letter shape by a 2�38�38 = 2888-dimensional vector of

(horizontal and vertical) displacements that a set of 38�38 = 1444 ink particles must undergo

to form the target shape from a reference grid.

With identical particles, there are many possible such warp maps. To ensure that similarly

shaped letters are represented by similar warps, we use a physical model. We give each particle

of the reference shape (taken to be the full rectangular bitmap) unit positive charge, and each

pixel of the target letter negative charge proportional to its grey level intensity. The total

charge of the target letter is set equal to the total charge of the reference shape. We track the

electrostatic force lines from each particle of the reference shape to where they intersect the
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plane of the target letter, positioned opposite to the reference shape. The force lines land in a

uniform density over the target letter, resulting in a smooth, dense warp map from each pixel of

the reference shape to the letter. The electrostatic forces are easily calculated from Coulomb's

law. We call this a \Coulomb warp" representation. To render a warp map representation of

a shape, we �rst translate each particle of the reference shape by its warp map value, using a

grid at four times the linear pixel resolution. We then blur and sub-sample to the original font

resolution. By allowing non-integer charge values and sub-pixel translations, we can preserve

font anti-aliasing information.

Figure 7 shows three pairs of shapes of di�erent topologies, and the average of each pair in a

pixel representation and in a Coulomb warp representation. Averaging the shapes in a pixel

representation simply yields a \double-exposure" of the two images; averaging in a Coulomb

warp representation results in a shape intermediate to the two being averaged.

5.2 Algorithm

During training, we �t the asymmetric bilinear model (Equation 10) to �ve full fonts using

the closed-form SVD procedure described in Section 3.1. This yields a K � J matrix As

representing each font s and a J-dimensional vector bc representing each letter class c, with

the observation dimensionality K = 2888 (see above). Adapting the model to an incomplete

new style ~s can be carried out in closed form, using the content vectors bc learned during

training. Suppose we observe M samples of style ~s, in content classes C = fc1; : : : ; cMg. We

�nd the style matrix A~s that minimizes the total squared error over the test data,

E� =
X
c2C

ky~sc �A~sbck2: (20)

The minimum of E� is found by solving the linear system @E�=@A~s = 0. Missing observations

in the test style ~s and known content class c can then be synthesized from y~sc = A~sbc.

In order to allow the model su�cient expressive range to produce natural-looking letter shapes,

we set the model dimensionality J as high as possible. However, such a 
exible model led to

over�tting on the available letters of the test font and consequently poor synthesis of the
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missing letters in that font. To regularize the style �t to the test data and thereby avoid

over�tting, we add a prior term to the squared-error cost of Equation 20 which encourages A~s

to be close to the linear combination of training style parameters A1; : : : ; AS , which best �ts

the test font. Speci�cally, let AOLC be the value of A~s which minimizes Equation 20 subject

to the constraint that AOLC is a linear combination of the training style parameters As, i.e.,

AOLC =
PS

s=1 �sA
s for some values of �s. (\OLC" stands for \optimal linear combination".)

Without loss of generality, we can think of the �s coe�cients as the best �tting style parameters

of a symmetric bilinear model with dimensionality I equal to the number of styles S. We then

de�ne E� to include this new cost,

E� =
X
c2C

ky~sc �A~sbck2 + �kA~s �AOLCk2; (21)

and again minimize E� by solving the linear system @E�=@A~s = 0. The tradeo� between these

two costs is determined by the free parameter �, which we set by eye to yield results with the

best appearance. For this example we used a model dimensionality of 60 and � = 2� 104.

5.3 Results

Figure 8 shows the results of extrapolating the unseen letters \A"-\I" of a new font, Monaco,

using the asymmetric model with a symmetric model (i.e. OLC) prior as described above.

All characters in the Monaco font except the upper case letters \A" through \I" were used to

estimate its style parameters (via Equation 20). In contrast to the objective performance scores

on the classi�cation tasks reported in the previous section, here the evaluation of our results is

necessarily subjective. Given examples of \A" through \I" in only the �ve training fonts, the

model nonetheless has succeeded in rendering these letters in the test font, with approximately

correct shapes for each letter class and with the distinctive stylistic features of Monaco: strict

upright posture and uniformly thin strokes. Note that each of these stylistic features appears

separately in one or more of the training fonts, but they do not appear together in any one

training font.
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5.4 Discussion

We have shown that it is possible to learn the style of a font from observations and extrapolate

that style to unseen letters, using a hybrid of asymmetric and symmetric bilinear models. Note

that the asymmetric model uses 173280 parameters (the 2888� 60 matrix A~s) to describe the

test style, while the optimal linear combination style model AOLC uses only 5 (i.e. the number

of training styles) parameters in the �i. Results using only the high-dimensional asymmetric

model without the low-dimensional OLC prior are far too unconstrained and fail to look like

recognizable letters (Figure 9, second column). Results using only the low-dimensional prior

without the high-dimensional asymmetric model are clearly recognizable as the correct letters,

but fail to capture the distinctive style of Monaco (Figure 9, third column). The combination

of these two terms, with a 
exible high-dimensional model constrained to lie near the subspace

of known style parameters, is capable of successful stylistic extrapolation on this example

(Figure 8 and Figure 9, fourth column). It is an interesting question why this hybrid modeling

strategy was necessary here, but not in the classi�cation tasks investigated above. We think

this is due at least in part to a general feature of extrapolation tasks which makes them

objectively harder than classi�cation tasks. Successful classi�cation requires only that the

outputs of the bilinear model using the correct content classes be closer in mean squared error

to the test data than are the model outputs using incorrect content classes. Extrapolation

tasks require that the model outputs be close to the true data not only in mean squared error,

but also in the metric of visual appearance, which is far more subtle than mean squared error

[Teo and Heeger, 1994].

Using an appropriate representation, such as our Coulomb warp, was also important in ob-

taining visually satisfying results. Applying the same modeling methodology to a pixel space

representation of letters resulted in signi�cantly less appealing output (Figure 9, �rst col-

umn). Previous models of extrapolation and abstraction in typography have been restricted

to arti�cial grid-based fonts, for which the grid elements provide a reasonable distributed rep-

resentation [Hofstadter, 1995, Grebert et al., 1992], or even simpler \grandmother-cell" repre-

sentations of each letter [Polk and Farah, 1997]. In contrast, our shape representation allowed
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us to work directly with natural fonts.

Although the choice of model and representation turned out to be essential in this example,

our results were obtained without any detailed knowledge or processing speci�c to the domain

of typography. Hofstadter [Hofstadter, 1995] has been critical of approaches to stylistic extrap-

olation which minimize the role of domain-speci�c knowledge and processing, in particular the

connectionist model of [Grebert et al., 1992], arguing that models which \don't know anything

about what they are doing" (p. 408) cannot hope to capture the subtleties and richness of a

human font designer's productions. We agree with Hofstatder's general diagnosis. There are

many aspects of typographical competence, and we model only a subset of those. In particular,

we have not tried to model the higher-level creative processes of an expert font designer, who

draws on an elaborate knowledge base, re
ects on the results of his work, and engages in mul-

tiple revisions of each synthesized character. However, we do think that our approach captures

two essential aspects of human competence in font extrapolation: (1) our representations of

letter and font characteristics are modular and independent of each other; (2) our knowledge of

letters and fonts is abstracted from the ability to perform the particular behavior of character

synthesis. Generic connectionist approaches to font extrapolation such as [Grebert et al., 1992]

do not satisfy these constraints. Letter and font information is mixed together inextricably

in the extrapolation network's weights, and an entirely di�erent network would be needed to

perform recognition or classi�cation tasks with the same stimuli. Our bilinear modeling ap-

proach, in contrast, captures the perceptual modularity of style and content in terms of the

mathematical property of separability that characterizes Equations 1 - 7. Knowledge of style

s, in Equation 6 for example, is localized to the matrix parameter As while knowledge of

content class c is localized to the vector parameter bc, and both can be freely combined with

other content or style parameters respectively. Moreover, during training, our models acquire

knowledge about the interaction of style and content factors that is truly abstracted from any

particular behavior, and thus can support not only extrapolation of a novel style, but also a

range of other synthesis and recognition tasks as shown in Figure 1.
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6 Translation

Many important perceptual tasks require the perceiver to recover simultaneously two unknown

pieces of information from a single stimulus in which these variables are confounded. A canon-

ical example is the problem of separating the intrinsic shape and texture characteristics of a

face from the extrinsic lighting conditions, which are confounded in any one image of that face.

In this section, we show how a perceptual system may, using a bilinear model, learn to solve

this problem from a training set of faces labeled according to identity and lighting condition.

The bilinear model allows a novel face viewed under a novel illuminant to be \translated" to

its appearance under known lighting conditions, and the known faces to be translated to the

new lighting condition. Such translation tasks are the most di�cult kind of two-factor learning

task, because they require generalzation across both factors at once. That is, what is common

across both training and test data sets is not any particular style nor any particular content

class, but only the manner in which these two factors interact. Thus only a symmetric bilin-

ear model (Equation 1-3) is appropriate, because only it represents explicitly the interaction

between style and content factors, in the Wk parameters.

6.1 Task speci�cs

Given a training set of S = 23 faces (content) viewed under C = 3 di�erent lighting conditions

(style) and a novel face viewed under a novel light source, the task is to translate the new

face to known lighting conditions, and the known faces to the new lighting condition. The

face images, provided by Y. Moses of the Weizmann Institute, were cropped to remove non-

facial features and blurred and subsampled to 48� 80 pixels. Because these faces were aligned

and lacked sharp edge features (unlike the typed characters of the previous section), we could

represent the images directly as 3840-dimensional vectors of pixel brightness values.
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6.2 Algorithm

We �rst �t the symmetric model (Equation 2) to the training data using the iterated SVD

procedure described in Section 3.2. This yields vector representations as and bc of each face

c and illuminant s, and a matrix of interaction parameters W (de�ned in Equation 15). The

dimensionalities for as and bc were set equal to S and C respectively, allowing the bilinear

model maximum expressivity while still ensuring a unique solution.

For generalization from a single test image ~y, we adapt the model simultaneously to both the

new face identity ~c and the new illuminant ~s, while holding �xed the face-illuminant interaction

term W learned during training. Speci�cally, we �rst make an initial guess for the new face

identity vector b~c (e.g. the mean of the training set style vectors) and solve for the least-squares

optimal estimate of the illuminant vector a~s:

a~s =

�h
Wb~c

iVT��1
~y: (22)

Here [: : :]�1 denotes the pseudoinverse. Given this new value for a~s, we then re-estimate b~c

from

b~c =

�h
WVTa~s

i
VT
�
�1

~y; (23)

and iterate Equations 22-23 until both a~s and b~c converge. We can then generate images of

the new face under known illuminant s (from ys~ck = as
T

Wkb
~c), and of known face c under the

new illuminant (from y~sck = a~s
T

Wkb
c).

6.3 Results

Figure 10 shows results, with both the old faces translated to the new illuminant and the new

face translated to the old illuminants. For comparison, the true images are shown next to the

synthetic ones. Again, evaluation of these results must necessarily be subjective. The lighting

and shadows for each synthesized image appear approximately correct, as do the facial features

of the old faces translated to the new illuminant. The facial features of the new face translated

to the old illuminants appear slightly blurred, but otherwise resemble the new face more than

any of the old faces. One reason the synthesized images of the new face are not as sharp as
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the synthesized images of the old faces is that the latter are produced by averaging images of a

single face under several lighting conditions { across which all the facial features are precisely

aligned { while the former are produced by averaging images of many faces under a single

lighting condition { across which the facial features vary signi�cantly in their positions.

6.4 Discussion

A history of applying linear models to face images motivates our bilinear modeling approach.

The original work on eigenfaces [Kirby and Sirovich, 1990, Turk and Pentland, 1991] estab-

lished that images of many di�erent faces taken under identical lighting and viewpoint condi-

tions occupy a low-dimensional linear subspace of pixel space. Subsequent work [Hallinan, 1994]

showed that images of a single face taken under many di�erent lighting conditions also occupy

a low-dimensional linear subspace. Thus the factors of facial identity and illumination have

already been shown to satisfy approximately the de�nition of bilinearity { the e�ects of one

factor are linear when the other is held constant { so it is natural to integrate them into a

bilinear model.

While the general problem of separating shape, texture, and illumination features in an image

is underdetermined [Barrow and Tenenbaum, 1978], here the bilinear model learned during

training provides su�cient constraint to approximately recover both face and illumination

parameters from a single novel image. [Atick et al., 1996] proposed a related approach to

learning shape-from-shading for face images, based on a linear model of head shape in three

dimensions and a physical model of the image formation process; in contrast, our bilinear

model is completely two-dimensional (i.e. image-based) and requires no prior knowledge about

the physics of image formation. Of course, we have not solved the general shape-from-shading

recovery problem for arbitrary objects under arbitrary illumination. Our solution (as well as

that of [Atick et al., 1996]) depends critically on the assumption that the new image, like the

images in the training set, depicts an upright face under reasonable lighting conditions. In

fact, there is evidence that the brain does not solve the shape-from-shading problem in its

most general form, but rather has learned (or evolved) solutions to important special cases
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such as face images [Cavanagh, 1991]. So-called \Mooney faces" { brightness-thresholded face

images in which shading is the only cue to shape { can be easily recognized as images of

three-dimensional surfaces when viewed in upright position, but cannot be discriminated from

two-dimensional ink blotches when viewed upside-down so that the shading conventions are

atypical [Shepard, 1990], or when the underlying 3D structure has been distorted away from

a globally face-like shape [Moore and Cavanagh, 1998]. More generally, the ability to learn

constrained solutions to a priori underconstrained inference problems may turn out to be

essential for perception [Poggio and Hurlbert, 1994, Nayar and Poggio, 1996]. Bilinear models

o�er one simple and general framework for how biological and ariti�cal perceptual systems

may learn to solve a wide range of such tasks.

7 Directions for future work

The most obvious extension of our work is to observations and tasks with more than two under-

lying factors, via multilinear models [Magnus and Neudecker, 1988]. For example, a symmetric

trilinear model in three factors q, r, and s would take the form:

y
qrs
l =

X
i;j;k

wijkla
q
i b
r
jc
s
k: (24)

The procedures for �tting these models are direct generalizations of the learning algorithms for

two-factor models that we describe in this paper. As in the two-factor case, we iteratively apply

linear matrix techniques to solve for the parameters of each factor given parameter estimates

for the other factors, until all parameter estimates converge [Magnus and Neudecker, 1988].

As with any learning framework, the success of bilinear models depends on having a suitable

input representation. Further research is needed to determine what kinds of representations

will endow speci�c kinds of observations with the most nearly bilinear structure. In particular,

the font extrapolation task might bene�t from a representation that is better tailored to the

important features of letter shapes. Also, it would be of interest to develop general procedures

for incorporating available domain-speci�c knowledge into bilinear models, e.g. via a priori

constraints on the model parameters [Simard et al., 1993].
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Finally, we would like to explore the relevance of bilinear models for research in neuroscience

and psychophysics. The essential computational procedures for learning in bilinear models,

SVD and EM, can be implemented naturally in neural networks, using Hebb-like learning

rules [Sanger, 1994] and soft competitive mechanisms [Nowlan and Senjowski, 1995] respec-

tively. What would a biologically plausible instantiation of our bilinear models look like?

The essential representational feature of bilinear models is their multiplicative factor interac-

tions. At the physiological level, multiplicative neuronal interactions [Andersen et al., 1985,

Olshausen et al., 1993, Riesenhuber and Dayan, 1997], arising from nonlinear synaptic [Koch, 1997]

or population-level [Salinas and Abbott, 1993] mechanisms, have been proposed for visual

computations that require the synergistic combination of two inputs, such as modulating

spatial attention [Andersen et al., 1985, Olshausen et al., 1993, Riesenhuber and Dayan, 1997,

Salinas and Abbott, 1993] or estimating motion [Koch, 1997]. May these same kinds of circuits

be co-opted to solve some of the tasks we study here? At the level of psychophysics, many

studies have demonstrated that the ability of the human visual and auditory systems to fac-

tor out contextually irrelevant dimensions of variation, such as lighting conditions or speaker

accent, is neither perfect nor instantaneous. Observations in unusual styles are generally more

di�cult or more time-consuming to process. Do bilinear models have di�culty on the same

kinds of stimuli that people do? Do the dynamics of adaptation in bilinear models (e.g. EM

for classi�cation, or the iterative SVD-based procedure for translation) take longer to converge

on stimuli that people are slower to process? These are just a few of the empirical questions

motivated by a bilinear modeling approach to studying perceptual inference.

8 Conclusions

In one sense, bilinear models are not new to perceptual research. It has previously been

shown that several core vision problems, such as the recovery of structure from motion under

orthographic projection [Tomasi and Kanade, 1992] or color constancy under multiple illumi-

nants [Brainard and Wandell, 1991, Marimont and Wandell, 1992, D'Zmura, 1992], are solv-

able e�ciently because they are fundamentally bilinear at the level of geometry or physics
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[Koenderink and Doorn, 1997]. These results are important but of limited usefulness, because

most two-factor problems in perception do not have this true bilinear character. More com-

monly, perceptual inferences based on accurate physical models of factor interactions are either

very complex (as in speech recognition), underdetermined (as in shape-from-shading), or sim-

ply inappropriate (as in typography).

Here we have proposed that perceptual systems may often solve such challenging two-factor

tasks without detailed domain knowledge, using bilinear models to learn approximate solu-

tions rather than to describe explicitly the intrinsic geometry or physics of the problem. We

presented a suite of simple and e�cient learning algorithms for bilinear models, based on the

familiar techniques of SVD and EM. We then demonstrated the scope of this approach with

applications to three di�erent two-factor tasks { classsi�cation, extrapolation, and translation

{ using three di�erent kinds of signals { speech, typography, and face images. With their

combination of broad applicability and ready learning algorithms, bilinear models may prove

to be a generally useful component in the toolkits of engineers and brains alike.
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Classi�er Percent correct on test data

Multi-layer perceptron (MLP) 51%

Radial basis function network (RBF) 53%

1-Nearest neighbor (1-NN) 56%

Discriminant adaptive nearest neighbor (DANN):

generic parameter settings 59.7%

optimal parameter settings 61.7%

Separable mixture models (SMM) { test speakers labeled:

all parameters set by CV (J = 3; �2 = 1=64; tmax = 2) 75.8%

tmax =1; J; �2 set by CV (J = 3; �2 = 1=32) 68.2%

tmax =1; optimal J; �2 (J = 4; �2 = 1=16) 77.3%

Separable mixture models (SMM) { test speakers not labeled:

all parameters set by CV (J = 3; �2 = 1=64; tmax = 2) 69:8%� :3%

tmax =1; J; �2 set by CV (J = 3; �2 = 1=32) 59:9%� 1:1%

tmax =1; optimal J; �2 (J = 3; �2 = 1=64) 63:2%� 1:5%

Table 1: Accuracy of classifying spoken vowels from a benchmark multi-speaker database.

MLP, RBF, and 1-NN results were obtained by [Robinson, 1989]. Hastie and Tibshirani's

DANN classi�er [Hastie and Tibshirani, 1996] achieves the best performance we know of for

an approach that does not adapt to new speakers. The SMM classi�ers perform signi�cantly

better vowel classi�cation by simultaneously modeling speaker style. \CV" denotes the cross-

validation procedure for parameter setting described in the text.
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AB C DE ? ? C D E ? ? F G H

? ? ?
Classification Extrapolation Translation

Generalization

A B C D E
A B C D E
A B C D E
A B C D E
A B C D E

A B C D E
A B C D E
A B C D E
A B C D E
A B C D E

A B C D E
A B C D E
A B C D E
A B C D E
A B C D E ? ? ?

a b c

Training

Figure 1: Given a labeled training set of observations in multiple styles (e.g. fonts) and content

classes (e.g. letters), we want to (a) classify content observed in a new style, (b) extrapolate a

new style to unobserved content classes, and (c) translate from new content observed only in

new styles into known styles or content classes.
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Reconstructed faces,  ypose,person

Person coefficients, bperson
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Figure 2: Illustration of symmetric bilinear model for a small set of faces (a subset of Figure 6).

The two factors for this example are identity and pose. A vector of coe�cients, a
pose
i , describes

the pose, and a second vector, b
person
j , describes the person. To render a particular person

under a particular pose, the vectors a
pose
i and b

person
j multiply along the 4 rows and 3 columns

of the array of basis images wijk. The weighted sum of basis functions yields the reconstructed

faces y
pose, person
k .
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Reconstructed faces,  ypose,personose−specific basis functions,  A pose

Person coefficients,  b person

Figure 3: The images of Figure 2, represented by an asymmetric bilinear model, with head pose

as the style factor. Person-speci�c basis vectors, bperson, multiply pose-speci�c basis images,

Apose; the sum reconstructs a given person in a given pose. The basis images are similar to an

eigenface representation within a given pose [Moghaddam and Pentland, 1997], except that in

this model the di�erent basis images are constrained to allow one set of person coe�cients to

reconstruct the same face across di�erent poses.
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Pose coefficients,  b pose

Reconstructed faces,  ypose,personPerson−specific basis functions,  A person

Figure 4: Asymmetric bilinear model applied to the data of Figs. 2 and 3, treating identity

is the \style" factor. The basis functions are person-speci�c basis functions, Aperson, and the

content vectors are pose-speci�c coe�cients, bpose. Each image of the person-speci�c basis

functions plays the same role in rotating head position, independent of the face being rotated.
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Figure 5: Schematic illustration of

the vector tranpose (following [Marimont and Wandell, 1992]). A matrix is considered to be

an array of stacked vectors, as in (a). The vector transpose, (b), is then the matrix of stacked

vectors with their positions in the matrix transposed.
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synthetic

actual

? ?

a

b

Figure 8: Style extrapolation in typography. (a) Rows 1-5: The �rst 13 (of 62) letters of the

training fonts. Row 6: The novel test font, with A-I unseen by the model. (b) Row 1: Font

extrapolation results. Row 2: The actual unseen letters of the test font.
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Figure 9: Result of di�erent methods applied to font extrapolation problem (Figure 8), where

unseen letters in a new font are synthesized. The asymmetric bilinear model has too many

parameters to �t, and generalization to new letters is poor (second column). The symmetric

bilinear model has only 5 degrees of freedom for our data, and fails to represent the characteris-

tics of the new font (third column). We used the symmetric model result as a prior to constrain

the 
exibility of the asymmetric model, yielding the result shown here (fourth column) and in

(Figure 8). All these methods used the Coulomb warp representation for shape. Performing the

same calculations in a pixel representation requires blurring the letters so that linear combina-

tions can modify shape, and yields barely passable results (�rst column). The far right column

shows the actual letters of the new font.
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Figure 10: Translation across style and content in shape-from-shading. (a) Row 1-3: The �rst

13 (of 24) faces viewed under the three illuminants used for training. Row 4: The single test

image of a new face viewed under a new light source. (b) Column 1: Translation of the new

face to known illuminants. Column 2: The actual (unseen) images. (c) Row 1: Translation of

known faces to the new illuminant. Row 2: The actual (unseen) images.
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