
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Network Latency in DART and Windows
NT

John Howard, Neil McKenzie, Olivier Voumard, Ross Casley

TR98-03a December 1998

Abstract

This paper reports on I/O latency measurements made using an experimental network adapter
based on Mitsubishis M65433̈DARTc̈hip. DART has achieved its design goal of very low
application-to-application latency by mapping buffers and ring queues directly into virtual mem-
ory and thus avoiding all operating system latency.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1998
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL – A Mitsubishi Electric Research Laboratory

Abstract

This paper reports on I/O latency measurements made using an experimental network adapter based on
Mitsubishi’s M65433 “DART” chip. DART has achieved its design goal of very low application-to-
application latency by mapping buffers and ring queues directly into virtual memory and thus avoiding all
operating system latency.

Performance of the M65433
“DART” ATM Network Interface

John H Howard
Olivier Voumard
Neil McKenzie

Ross Casley (VSIS, Inc)

TR98-03a July 21, 1998

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Information Center America, of Cambridge, Massachusetts; an acknowledgment of the authors and individual
contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing
for any other purpose shall require a license with payment of fee. All rights reserved.

Copyright © Mitsubishi Electric Information Technology Center America, Inc., 1998
201 Broadway, Cambridge, Massachusetts 02139

ii

Revision History:

1. Initial version, May 22, 1998

2. Greatly expanded, June 25, 1998

3. Re-format charts, July 21, 1998

11

Introduction
The M65433 DART1 ATM Network Interface chip integrates ATM segmentation and reassembly functions
with a PCI interface and various innovative features for a very low latency host interface, traffic shaping,
and message processing. It is designed to work together with a M65434 SONET STS-3C Framer
Transmission Convergence chip and external RAM on a local bus controlled by the M65433 to make a PCI-
based network interface card, or NIC.

Specific performance-related DART features include:

• Onboard virtual address translation, allowing the I/O adapter and the application to communicate
directly through application virtual memory.

• A ring queue architecture for flexibly transferring empty and full buffers between application and
adapter. Both the buffers and the ring queues themselves occupy the shared virtual memory space. It
was hoped that this architecture would allow application to application latencies comparable to network
hardware latencies by bypassing all software bottlenecks, and at the same time support full network
bandwidth for bulk data transfers. We had set a latency target of 20 microseconds.

• Ability to map certain I/O adapter registers into the application address space, further facilitating direct
communication between adapter and application (this feature was not implemented perfectly in DART,
but we were nevertheless able to evaluate its performance by temporarily allowing a security hole in the
driver.)

• A host request mechanism which allows the host system’s CPU to handle address translation faults and
certain other adapter events efficiently in the interrupt handlers. It was specifically hoped that the HRQ
mechanism could support ATM ABR resource management cell processing in software with a host
system overhead of no more than 10%.

• A “message processing” co-processor which flexibly allows hardware-assisted transactions between
two host systems. We did not evaluate this feature due to lack of resources.

An initial prototype interface board was developed and evaluated at Vsis, Inc in Sunnyvale at the end of
1997, then delivered to MERL in February 1998 for further performance evaluation. A number of board
problems were discovered, leading us to redesign the board. Performance measurements made with the
original boards were re-validated and extended using the new boards.

Performance results are divided into two parts; those related with the fundamental timing of the chip itself,
and those related to the success of the DART architecture in the context of a host operating system,
Windows NT 4.0.

It should be emphasized that resources were too limited to perform a comprehensive performance or
functional evaluation. We have not evaluated message processing at all, have barely touched the traffic
management features, and have not attempted a conventional NDIS driver. Nevertheless, we feel confident
that DART meets its basic objective of supporting direct application access to a network adapter with
application-to-application latencies less than 20 microseconds and throughput approaching the theoretical
maximum. RM cell processing overhead can be as high as 30%, but is likely to be substantially less than
10% in normal operation.

Network latency
Low latency has been a primary goal of most recent network architecture research. It is generally
recognized that improving throughput by providing more buffering comes at the cost of increasing latency
as well. On the other hand, if we can decrease latencies we can not only improve throughput without
additional buffering, but at the same time reap other benefits such as improved real-time performance and
efficient processing of client-server traffic, and parallel processing using networks of workstations.

Architectures (for example Application Data Channels2, Hamlyn3, and U-Net4) for achieving low latency
generally seek to avoid data copying by receiving and transmitting data directly from buffers located in the
application’s virtual address space. This requires mechanisms to:

2

- use virtual rather than physical addresses in the network adapter (DART incorporates a TLB like that in
U-Net5 for this purpose)

- exchange full and empty buffers between kernel and application with little or no kernel involvement
(DART incorporates five ring queues for this, for each of two different applications, and also can give
the applications direct access to adapter registers)

- demultiplex incoming messages “on the fly” in the adapter in order to deliver them to the correct
application (DART uses the connection-orientation of ATM to associate VC’s with applications.)

The DART architecture was presented previously. This paper reports specifically on performance obtained
from the M65433 chip which implements that architecture. Not surprisingly, that performance is
remarkably sensitive to the properties of the PCI bus. Moll and Shand6 present some relevant insights into
PCI bus performance and NT interrupts.

Base Hardware Performance

Experimental Setup
The test platform consisted of two Pentium workstations running Windows NT Workstation 4.0, service
pack 3. The two workstation were connected to MERL’s internal Ethernet. Measurements were made using
an ATM fiber either looped back to a single workstation or directly connected between the two. Additional
details are given in Table 1.

266 MHz workstation 300 MHz workstation

Motherboard Intel PD440FX Intel AL440LX

Bios AMI 1.00.05.DT0 Phoenix 4.0 release 6.0

Chipset 82440FX PCI set 82440LX AGP set

Processor 266 MHz Pentium II 300MHz Pentium II

Number of CPU(s) 1 1

Primary Cache 32 KB 32 KB

Secondary Cache 512 KB 512 KB

Memory 128 MB SDRAM 64 MB SDRAM

Graphic card ATi Rage Pro Turbo Matrox Millennium II AGP

Hard drive Maxtor 85108 A8, 4.3GB Quantum Fireball ST2.1A, 2.1GB

Ethernet adapter 3Com EtherLink III PCI (3C590) 3Com Fast EtherLink XL (3C905)

ATM adapter DART DART

Table 1: Measurement platform

The measurement software consisted of an elementary device driver, plus an application program which did
the actual measurements. The driver took advantage of the adapter’s flexible addressing capabilities and of
various memory mapping mechanisms provided by Windows NT to expose adapter registers and local
memory directly to the application program, and also to expose application virtual memory to the adapter.
Once all of this was set up, the device driver got out of the way. The test application program controlled the
adapter directly to send and receive data.

Time Stamp Counter
Timing measurements used the Pentium’s Time Stamp Counter. This 64-bit counter increments once per
processor clock cycle and is readable by any user- or kernel-mode program. In a few cases we also used an

33

oscilloscope to measure intervals between certain physical events such as cell framing signals in the
UTOPIA physical interface between the SAR and TC chips. Reading and storing the Time Stamp Counter
require about 0.17 VHF�����F\FOHV��RQ�WKH�����0+]�SODWIRUP��ZKLFK�LV�QRWLFHDEOH�DW�WKH�UHVROXWLRQ�ZH�DUH
using. Including additional code to scale the value read and store it in a histogram raised the measurement
overhead to 0.57 VHF������F\FOHV��

Figure 1 gives a histogram of the intervals between successive TSC readings and shows that there are
several noise sources in TSC measurements. The very strong peak (99.99 percent of the samples taken) at
0.57 VHF�UHSUHVHQWV�WKH�XVXDO�FDVH�RI�QR�LQWHUIHULQJ�HYHQWV�EHWZHHQ�WZR�VXFFHVVLYH�7LPH�6WDPS�&RXQWHU
readings. There is a triplet of secondary peaks at about 3.4, 4.1, and 5.1 VHF��ZKLFK�ZH�VSHFXODWH�DUH�GXH
to timer interrupts (for more detail see the section on “Interrupt processing overhead”.) These peaks were
present even with the network and as many devices as possible disabled and the measurement program run
at a high priority. Additional samples scattered up to and past 30 VHF�SUREDEO\�UHSUHVHQW�RWKHU�RSHUDWLQJ
system interrupts. There were some samples larger than 33.3 VHF�ZKLFK�ZHUH�GLVFDUGHG�LQ�WKLV�KLVWRJUDP�

The various peaks in the histogram are spread out somewhat, indicating the presence of jitter in the timer
measurements. Jitter sources include SONET framing, internal polling loops in both the chip and the
measurement program, processor cache misses, and operating system overhead. Since there may be jitter in
both starting and ending times, it is important to look at multiple samples and disregard noise when using
the Time Stamp Counter.

Interrupt overhead time (1e8 samples, 250’000 RM cells)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00

Latency [µsec]

TSC reading latency

Figure 1: Time Stamp Counter baseline distribution

Latency for short frames
Latency is the time period starting when the application program enqueues data be sent (TXin entry stored
by application) and ending when it is fully delivered to the receiving buffer and the receiving application is
notified (RXdone entry stored by NIC). We measured the interval as the difference between Time Stamp
Counter readings immediately before setting the TXin entry and immediately after observing the creation of
the RXdone entry, using a wait loop which polled the RXdone queue. No I/O interrupt was used. Time
stamp counter intervals were accumulated in a histogram. The starting times were varied randomly to avoid
resonances between intrinsic events such as cell times, SONET framing, and built-in polling loops.

Figure 2 gives the histogram of the latency to send very short (0 byte) AAL5 frames. The average latency is
17.7 VHF�ZLWK�VSUHDG��RU�MLWWHU��RI�DERXW��� VHF�

4

AAL5 frames latency using TXin (1e6 frames of 0 bytes, H300)

0

2,000

4,000

6,000

8,000

10,000

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0

RX Latency [µsec]

Figure 2: AAL5 frame latency

Latency breakdown

AAL5 frames latency using TXin (1e6 frames of 0 bytes, H300)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0

Latency [µsec]

Figure 3: Transmit Latency

Figure 3 shows the time required for transmit processing only, that is, from TXin queue request until the
TXdone queue response which indicates that transmission complete. (Note that the M65433 indicates that
transmission is complete when the cell(s) to be transmitted have been fetched from main memory, not when
it is actually sent.) The mean is 4.8 VHF�ZLWK�D�MLWWHU�RI�DERXW��� VHF���7KH�GLVWULEXWLRQ�KDV�WZR�SHDNV
separated by about 0.5 VHF�

55

Oscilloscope measurements show a physical transmission time of about 7.2 VHF��PHDVXUHG�IURP�WKH
UTOPIA TxSOC (start-of-cell) signal to the corresponding RxSOC. Additional oscilloscope measurements
using a mixture of software and hardware markers produced an estimate of 8.1 VHF�IURP�WKH�WLPH�WKH�TXin
queue entry was created until the TxSOC signal is observed. Combining, we estimate a latency budget of:

time [VHF@ Activity

4.8 TXin to TXdone (send overhead)

3.3 TXdone to TxSOC (transmit FIFO)

7.2 TxSOC to RxSOC (physical latency)

2.4 RxSOC to RXdone (receive overhead)

17.7 TOTAL

Table 2: Latency breakdown (AAL5 frames)

Raw Cell Latency
The M65433 also supports a special “raw cell” mechanism intended to bypass normal scheduling and
deliver cells directly to the output FIFO.

AAL0 frames via SCHE_HOST_IN (1e6 frames of 40 bytes, H300)

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

40,000

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0

Latency [µsec]

RXdone

TXdone

> 300’000

Figure 4: Raw cell latencies

Figure 4 shows latencies for the raw cell mechanism. In this figure the transmission and reception
histograms are superimposed. The left peak represents the sending time (measured from when the
SCHE_IN_HOST register is set until the location specified by the SCHE_IN_NOTIFY_P register is
cleared), while the right peak represents full transmit latency, from SCHE_IN_HOST until the RXdone
queue entry is created. In comparison with the AAL5, latencies decreased by 2.3 VHF�DQG�WKH�MLWWHU�ZDV
unchanged. The 2.3 VHF�GLIIHUHQFH�DSSHDUV�WR�EH�HQWLUHO\�DWWULEXWDEOH�WR�TXin/TXdone processing
overhead.

6

Latency and throughput as a function of payload size
Latency increases linearly with payload size, as shown in Figure 5. The slope is 2.852 VHF�SHU�FHOO��FORVH
to the theoretical time of 2.83 VHF�WR�VHQG�D�FHOO���Figure 6 presents throughput as a function of frame size,
contrasting it with the theoretical maximum of 135.63 Mbit/sec. For large frames the throughput
approaches 95% of the maximum.

0.0

50.0

100.0

150.0

200.0

250.0

300.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Frame size (bytes)

Tx done min

Tx done Average

Rx done min

Rx done average

Figure 5: Latency as a function of payload size

Maximum throughput for AAL5 frames (100’000 frames, HIQ 266MHz)

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

0 500 1000 1500 2000 2500 3000 3500 4000

Frame size [Bytes]

Throughput [Mbit/s]

ATM layer max throughput, 135.63 [Mbit/s]

94.8 % bandwidth used

Figure 6: Throughput as a function of frame size

77

Two-machine round trip latency

Two way AAL5 frames latency time (100’000 frames, HIQ 266MHz)

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

400.0

450.0

500.0

0 500 1000 1500 2000 2500 3000 3500 4000

Frame size [Bytes]

Two-way message latency, minimum

Two-way message latency

Figure 7: Two machine latency

Finally, we measured round-trip latency between two systems. In this case, the application program in the
second system returns incoming messages to the originator, which receives them and measures total round-
trip time. Total round trip time, not counting processing time in the remote machine, is reported in Figure
7. For a payload size of 40 bytes the round trip time is 39.7 VHF�

8

Software performance implications
A key goal in DART’s Direct Access Architecture is to minimize latency and overhead by bypassing the
operating system kernel whenever possible. This section presents measurements of various kernel functions
on our host platform and relates them to the relevant DART features.

I/O Control Overhead
Table 3 presents the time to perform system I/O calls (IOCTL operations) and contrasts them with direct
access to the adapter.

Operation performed
(with measurement overhead removed)

time
[VHF@

average
[cycles]

minimum
[cycles]

Measurement overhead 0.17 47 44

Direct read of adapter register by application 0.43 127 121

Direct write of adapter register by application
(including LOCK OR to force synchronization)

0.32 95 91

Null IOCTL (serviced in dispatch routine) 8.79 2637 2552

IOCTL w/parameters, set & test one register 13.85 4157 4045

Dummy I/O (serviced through startIO & DPC) 17.05 5115 5023

Dummy I/O w/parameters, set & test register 19.54 5862 5704

Table 3: Basic timing measurements, 300 MHz platform

It takes 0.17 VHF�WR�UHDG�DQG�VWRUH�WKH�7LPH�6WDPS�&RXQWHU��HYHQ�ZLWKRXW�DFFXPXODWLQJ�D�KLVWRJUDP���7KLV
overhead value is subtracted from the remainder of the readings in the table. The register read and write
depended on Windows NT’s ability to map PCI addresses into the virtual address space. It is necessary to
include a serialization instruction (LOCK OR) after a register write in order to avoid caching, and also to
help deal with a bug in the chip’s PCI interface. The null IOCTL simply returns as quickly as possible from
the driver’s dispatch routine; the IOCTL with parameters sets and tests a single adapter register, and the
dummy I/O is actually a null IOCTL which is serviced through Windows NT’s standard Start I/O and
completion routines without any actual I/O.

If one assumes that one register read and write (totaling 0.6 VHF��PD\�EH�QHHGHG�WR�VWDUW�DQ�,�2�GLUHFWO\�
then direct register access is more than 20 times faster than a conventional start I/O. DART needs no
register operations to send a frame, but it does need one register write to for the application to notify the
adapter that RXfree and TXdone queue entries can be re-used. These writes can be amortized over several
frames. If the registers are not directly accessible by the application, then there may still be some gain to
be obtained by initiating physical I/O from the dispatch routine rather than a start I/O, but it is not nearly as
large as with direct register access.

Interrupt processing overhead
The time to process an interrupt was measured by comparing two histograms of time intervals, a baseline
and a second one with a source of interfering interrupts. Figure 8 overlays the baseline histogram
(previously presented in Figure 1) with the output of the same measurement program run in the presence of
interrupts caused by a stream of Resource Management (RM) cells provided by a second machine across the
ATM link. These RM cells are processed through the Host Request Queue directly in the driver’s Interrupt
Service Routine without any higher-level interrupts or notification.

99

Interrupt overhead time (1e8 samples, 250’000 RM cells)

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00

Interrupt processing latency [µsec]

baseline

with HRQ interrupts

250’000 HRQ generated,
99.9% located in [8.9, 10.4]

Figure 8: Interrupt processing overhead

The overlay shows a clear additional peak beginning at 8.9 VHF�DQG�FRQWDLQLQJ�DERXW����.�HYHQWV��ZH
generated 250K cells.) Subtracting a 0.4 VHF�PHDVXUHPHQW�RYHUKHDG��LQFOXGLQJ�KLVWRJUDP�DFFXPXODWLRQ��
this indicates that it takes about 8.5 VHF�WR�DFFHSW��SURFHVV��DQG�UHWXUQ�IURP�D�+54�LQWHUUXSW���7KLV�LV
consistent with our estimate of 6 to 10 VHF�WR�SURFHVV�DQ�LQWHUUXSW��PDGH�ZKLOH�RULJLQDOO\�GHVLJQLQJ�WKH
HRQ mechanism1. Welsh7 reports an interrupt entry overhead of about 3 VHF�RQ�D����0+]�3HQWLXP
running NT, measured in software using the TSC, and Moll and Shand8 report about 5 VHF�ODWHQF\
measured by hardware to enter the ISR on a 200 MHz Pentium Pro.

ATM traffic management using the ATM Forum’s ABR (Available Bit Rate) service involves generating
one RM cell out of every 32 cells sent. The DART architecture specifies three HRQ events for every RM
cell: one just after the RM cell is generated, one at the receiving end to turn the RM cell around, and a third
at the sender to receive the returned RM cell. If each of these generated a separate HRQ interrupt we would
spend 26.7 VHF�IRU�HYHU\����FHOOV��DQG�LI�DOO�WKH�WUDIILF�ZHUH�$%5��XQOLNHO\��UXQQLQJ�DW�IXOO�VSHHG��WKLV
overhead would be incurred once every 90 microseconds, for a 30% overhead, on our current platforms.
This is above our target of 10%. However, DART also has a mechanism for batching HRQ requests by
imposing a minimum interval between interrupts, at a cost of somewhat longer latency. We estimate that it
would take about 17 microseconds to process a batch of three HRQ requests, reducing overhead to below
20%. Faster CPU’s will eventually bring this number into the acceptable range, and in addition the 100%
ABR scenario is unlikely.

Conclusions
One of the basic assumptions of DART was that a zero copy architecture could produce very low latencies.
DART exceeds its latency goal of 20 microseconds by a comfortable margin: small frames sent using the
standard (AAL5) mechanism had an application to application latency of 17.7 microseconds (with a jitter of
3 microseconds.) Sending a single cell with the raw cell mechanism was even faster, with an average
latency of 15.4 microseconds.

Throughput approached 95% of the theoretical maximum of 135.63 MBps for large frames.

We did not quite attain our goal of 10% overhead for processing RM cells using the host CPU. The worst
case overhead could be as high as 30%, which we can reduce to 20% by imposing a small delay in
responding to RM cells. However, this overhead occurs only if the network is fully saturated with ABR-
only traffic, and drops in proportion to the amount of ABR traffic present.

10

1 R. Osborne, Q. Zheng, J. Howard, R. Casley, D. Hahn, and T. Nakabayashi, DART - A Low Overhead
ATM Network Interface Chip, Hot Interconnects IV: A Symposium on High Performance
Interconnects, Stanford University, Palo Alto, CA, August 1996. MERL Technical Report TR96-18.
2 Druschel, P., Operating System Support for High-Speed Communication, Comm ACM 30, 9, September
1996, pp 41-51.
3 Buzzard, G., Jacobson, D., Marovich, S., & Wilkes, J., Hamlyn, a high-performance network interface
with sender-based memory management, Hot Interconnects III, August 1995. HP Labs Technical Report
HPL-95-86, http://www.hpl.hp.com/techreports/95/HPL-95-86.html.
4 Welsh, M., Basu, A., & von Eicken, T., ATM and Fast Ethernet Interfaces for User-level Communication,
Third International Symposium on High Performance Computer Architecture, Feb 1997.
http://www.cs.cornell.edu/U-Net/.
5 Welsh, M., Basu, A., & von Eicken, T., Incorporating Memory Management into User-Level Network
Interfaces, Hot Interconnects V, August 1997.
6 Moll, L. & Shand, M., Systems Performance Measurement on PCI Pamette, Symposium on Field-
Programmable Custom Computing Machines (FCCM 97), April 1997.
7 Welsh, M., Basu, Anindya, and von Eicken, T., Incorporating Memory Management into User-Level
Network Interfaces, Hot Interconnects IV, Stanford University, August 1997.
8Moll, L., and Shand, M., Systems performance measurement on PCI Pamette. FPGAs for Custom
Computing Machines (FCCM’97), IEEE, April 1997.

	Title Page
	Title Page
	page 2

	Network Latency in DART and Windows NT
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

