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1 Introduction

Since classical methods exist for computing the motion of rigid and articulated
bodies in isolation, the most di�cult aspect of general rigid body simulation is
modeling the transient contacts that form between moving bodies. Two major
subproblems of contact modeling are detecting contacts, often termed collision
detection, and computing contact forces. This paper summarizes a new colli-
sion detection algorithm, designed for robustness and speed, that handles rigid
polyhedral models. Often the issue of collision detection is considered indepen-
dently from the issue of contact force computation, which is unfortunate since
the processes are tightly intertwined in simulation. After describing the collision
detection algorithm, this paper goes on to show how its output is connected to
the computation of contact forces. Three families of methods for computing
contact forces are briey described, and a fourth, newer method is explained
in more detail. This new method is easy to implement, and has been applied
successfully to some simple simulation problems, but more general testing of it
is needed to evaluate its practicality.

The contact detection and tracking methods described here operate on poly-
hedral object models. The advantage of this representation is its generality: any
shape can be represented within an arbitrary tolerance by a polyhedral model.
The algorithms presented are insensitive to the complexity of the polyhedral
model, and so it is not detrimental from an e�ciency standpoint to use highly
tesselated models. In some situations, surface curvature plays a signi�cant role
in contact dynamics, but polyhedral models do not admit accurate curvature
measurements. Nonetheless, previous experience suggests that highly tesselated
polyhedral models are su�cient to model phenomena such as rolling spheres
and cylinders [21].

A more signi�cant limitation of the algorithms presented here is that they
are designed for piecewise convex models. Nonconvex models are allowed if
they are speci�ed as a hierarchy of convex pieces. Some objects are di�cult to
represent in this manner. For these, other types of collision detection algorithms
are more suitable, such as those based on octrees [1], binary space partitioning
trees [24], sphere hierarchies [14], or oriented bounding boxes [12, 15]. Many of
these algorithms, however, do not return an accurate estimate of the distance
between objects nor the closest points between them, which is a drawback for
simulation applications. They are also logarithmic in the polyhedral complexity
when models are in close proximity.

2 V-Clip collision detection

Several algorithms have been developed for collision detection between polyhe-
dral models speci�ed by a boundary representation. The most recent algorithms
cache witnesses that are used to verify disjointness or penetration in constant
time. By exploiting the coherence properties of bodies moving continuously
through space, these algorithms achieve near constant time performance.
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The popular Lin-Canny closest features algorithm [17] computes the distance
between disjoint polyhedra; it is among the fastest solutions for this problem.
Convex polyhedra are decomposed into vertex, edge and face features. The algo-
rithm tracks and caches the closest features between a pair of convex polyhedra.
The closest points between the polyhedra are computable from the closest fea-
tures.

Lin-Canny has two signi�cant drawbacks. The �rst is that it does not read-
ily handle the case of penetrating polyhedra. This makes it di�cult to use
Lin-Canny in the usual collision detection paradigm: detecting collisions after
penetration occurs, and then backtracking to �nd the exact point of collision.
The second drawback is a lack of robustness. Lin-Canny is prone to cycling be-
havior when presented with models in degenerate con�gurations. The algorithm
is di�cult to code, and it is also di�cult to tune the various oating point tol-
erances. Despite these problems, Lin-Canny's speed, and availability through
the I-Collide package [9] have made it a popular choice for collision detection
applications.

Gilbert, Johnson and Keerthi developed a simplex-based algorithm for �nd-
ing the distance between two disjoint convex polyhedra, or the distance by which
they penetrate [11]. Given two polyhedra, GJK searches for a simplex, de�ned
by four vertices of the Minkowski di�erence polyhedron, that either encloses or
is nearest to the origin. Others have made several improvements on the basic
GJK algorithm, mostly to improve e�ciency [27, 8, 7]. GJK algorithms are
more robust than Lin-Canny, and handle the penetration case, but the imple-
mentations generally require more oating point operations.

The Voronoi clip, or V-Clip algorithm is a closest features algorithm that
bears a family resemblance to its ancestor, Lin-Canny, but which overcomes
many of the limitations of the latter: V-Clip e�ciently handles the penetration
case; V-Clip is very robust, has no numerical tolerances, and does not exhibit
cycling problems; and V-Clip is simpler to implement. V-Clip's operation count
is comparable with Lin-Canny's and generally lower than that of Cameron's
Enhanced GJK algorithm [7]. The remainder of this section briey motivates
the V-Clip algorithm; more details are given in [22].

2.1 Features and Voronoi regions

The boundary of a convex polyhedron comprises vertices, edges, and faces; these
features are convex sets. The neighbors of a vertex are the edges incident to that
vertex. The neighbors of a face are the edges bounding the face. An edge has
exactly four neighbors: the two vertices at its endpoints and the the two faces
it bounds. Note that the neighbor relation is symmetric. Polyhedral features
are treated as closed sets. Hence, a face includes the edges that bound it, and
an edge includes its vertex endpoints. Voronoi regions and planes (see Figure 1)
are central to the V-Clip algorithm:

De�nition 1 For feature X on a convex polyhedron, the Voronoi region

VR(X) is the set of points outside the polyhedron that are as close to X as
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to any other feature on the polyhedron. The Voronoi plane VP(X;Y ) between
neighboring features X and Y is the plane containing VR(X) \ VR(Y ).

::::::::::::
::::::::::::
::::::::::::
::::::::::::
::::::::::::

F

V

E

VR(F)

VP(F,E)

VR(E)

VP(V,E)

VP(F,E)

VR(V)
VP(V,E)

Figure 1: Top left: A cubical polyhedron. Among its features are face F , edge
E, and vertex V . Top right: The Voronoi region VR(V ). One of the Voronoi
planes bounding this region is VP(V;E), corresponding to V 's neighboring edge
E. Bottom left: The Voronoi region VR(E). Two of the Voronoi planes bound-
ing this region are VP(V;E) and VP(F;E), corresponding respectively to E's
neighboring features V and F . Bottom right: The Voronoi region VR(F ). One
of the Voronoi planes bounding this region is VP(F;E), corresponding to F 's
neighboring edge E. The support plane of F itself also bounds VR(F ).

All Voronoi regions are bounded by Voronoi planes, and the regions collec-
tively cover the entire space outside the polyhedron. Voronoi planes between
neighboring features come in two varieties: vertex-edge and face-edge planes.
Vertex-edge planes contain the vertex and are normal to the edge, while face-
edge planes contain the edge and are parallel to the face normal (Figure 1).

2.2 Algorithm overview

The V-Clip algorithm is based on a fundamental theorem that is proved in [22]:

Theorem 1 Let X and Y be a pair of features from disjoint convex polyhedra,
and let x 2 X and y 2 Y be the closest points between X and Y . If x 2 VR(Y )
and y 2 VR(X), then x and y are a globally closest pair of points between the
polyhedra.

Theorem 1 does not require the closest points on X and Y to be unique, and
in degenerate situations they are not. If the conditions of the theorem are met,
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however, no pair of points from the two polyhedra are any closer than x and
y. Like Lin-Canny, the V-Clip algorithm is essentially a search for two features
that satisfy the conditions of Theorem 1. At each iteration, V-Clip tests whether
the current pair of features satisfy the conditions, and if not, updates one of the
features, usually to a neighboring one.

The state diagram of Figure 2 illustrates the algorithm. Each state corre-
sponds to a possible combination of feature types, for example, the V -F state
means one feature is a vertex, and the other is a face. The arrows denote pos-
sible update steps from one state to another. Solid arrows mark updates that
decrease the inter-feature distance; dashed arrows mark updates for which the
inter-feature distance stays the same. The four primary states of the algorithm
are V -V , V -E, E-E, and V -F ; it may terminate in any one of these states. The
�fth state, E-F , is special in that the algorithm cannot terminate in this state
unless the polyhedra are penetrating. Figure 2 implies that the algorithm must
terminate, for since there are no cycles in the graph comprising only dashed
arrows, any in�nite path through the graph would contain an in�nite number
of strict reductions in inter-feature distance, which is impossible.

V−V

V−E

E−E

E−F

V−F

Figure 2: States and transitions of the V-Clip algorithm.

One reason for V-Clip's robustness in the face of degeneracy is that the
face-face case, which is the most problematic case in Lin-Canny, is not allowed.
The edge-face case, also somewhat problematic in Lin-Canny, is only used as
a terminating state when the objects penetrate. There is a tradeo� involved.
An algorithm like Lin-Canny can return more information to the caller. If the
closest features are two parallel faces, F1 and F2, the caller will be informed of
such. V-Clip is less informative. It will return some pair of features that are
no farther apart than F1 and F2, but that are of lower total dimension, such
as F1 and one of the vertices of F2. This has the undesirable e�ect of leaving
more work to the application, as will be seen in Section 3, however, it provides
a robustness to the collision detection algorithm. Another reason for V-Clip's
robustness is that, unlike Lin-Canny, it never actually computes the points x
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and y of Theorem 1 during the search for closest features,1 except in the trivial
case of vertex features. The next section gives an example that shows how this
is possible.

2.3 Voronoi clipping example

Suppose that the current pair of closest features is an edge E from one polyhe-
dron, and a face F from the other. To check the condition of Theorem 1, we
need to determine if the closest point on E to F lies within the VR(F ). If E's
endpoints are t (for tail) and h (for head), then E \ VR(F ) is either empty, or
a line segment along E:

(1� �)t+ �h; � � � � �:

The values of � and � are simple to calculate. One simply enumerates over each
Voronoi plane P bounding VR(F ). If ever t and h lie on opposite sides of P ,
an interpolation operation determines the exact value of � at which E crosses
the plane P . After discarding all of the sections of E that are clipped by the
Voronoi planes, what remains is either a null interval of E, indicating that E is
disjoint from VR(F ), or the bounds � and � that de�ne the portion of E within
VR(F ). Algorithm 1 gives a formal description of the process. It computes the
values � and �, and also the neighboring features N and N of F that correspond
to the planes that clip E: E enters VR(F ) as it crosses VP(X;N), and exits
as it crosses VP(X;N) (Figure 3). The algorithm returns TRUE if and only
if E \ VR(F ) 6= ;. The divisions that occur in steps 11 and 18 are the only
divisions that occur in the entire V-Clip algorithm. In these cases, the divisor's
magnitude must be nonzero and never less than the dividend's magnitude, thus
no overow can occur.

2222222222222222222
2222222222222222222
2222222222222222222
2222222222222222222
2222222222222222222
2222222222222222222
2222222222222222222
2222222222222222222
2222222222222222222

t

h

N

N
e(    )λ

e(    )λ

X

Figure 3: Clipping an edge against planes bounding the Voronoi region of a
pentagonal face X. The edge enters the region VR(F ) as it crosses VP(X;N)
at the parameterized point e(�); it exits VR(F ) as it crosses VP(X;N) at point
e(�).

1Most of Lin-Canny's robustness problems stem from checking the conditions of Theorem 1

with explicitly computed closest points when these points are not unique.
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Algorithm 1 clipEdge. Clip the edge from t to h against the Voronoi region
in VR(F ). Return FALSE if the edge is completely clipped, otherwise TRUE.

1: � 0; � 1
2: N  N  ;
3: for all Voronoi planes P bounding VR(F ) do
4: N  neighboring edge of F corresponding to P .
5: dt  DP (t)
6: dh  DP (h)
7: if dt < 0 and dh < 0 then
8: N  N  N
9: return FALSE
10: else if dt < 0 then
11: � dt=(dt � dh)
12: if � > � then

13: � �
14: N  N
15: if � > � then

16: return FALSE
17: else if dh < 0 then
18: � dt=(dt � dh)
19: if � < � then

20: � �
21: N  N
22: if � > � then

23: return FALSE
24: return TRUE

After clipping E against VR(F ), it is necessary to determine whether or not
the closest point on E to F lies within VR(F ). In the case where E lies com-
pletely within or completely outside VR(F ), this question is trivially answered.
In the more general case, the answer can be inferred without actually computing
the closest point by examining the derivatives of a certain distance function at
the values � and �.

De�nition 2 Let E be an edge, and e(�) a parameterized point along it. For a
polyhedral feature X, the edge distance function DE;X(�) : < ! < is de�ned
as

DE;X(�) = min
x2X

kx� e(�)k:

DE;X(�) is the distance between e(�) and X . It can be shown that this function
is continuous, convex, and di�erentiable at any point �0 such that e(�0) 62 X .
These facts imply that it is su�cient to check the signs of the derivativeD0

E;X(�)

at � and � to localize the closest point. The minimum occurs in the interval
[0; �) if and only if D0

E;X(�) > 0; it occurs in the interval (�; 1] if and only if

D0

E;X(�) < 0. If neither of the conditions hold, then the minimum must occur
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in the interval [�; �] and hence within VR(X). In the current example, X is a
face, and the derivative signs are easy to compute. If û is a unit vector in the
direction of h� t, and n̂ is the unit exterior normal to the face F ,

sign[D0

E;X(�)] =

�
+sign(u � n); DF [e(�)] > 0
�sign(u � n); DF [e(�)] < 0;

where DF [e(�)] denotes the signed distance of e(�) from the support plane of
F . The case of determining whether the closest point on an edge lies within
a face's Voronoi region has been discussed in detail, but the other cases are
similar. Edges may be clipped against the Voronoi regions of vertices and other
edges in a similar manner, and the clipping operations are always followed by
the checking of signs of distance derivatives to localize closest points.

2.4 Experimental results

Experiments were performed to compare three collision detection algorithms: V-
Clip, Lin-Canny, and Enhanced GJK.2 The �rst round of experiments counted
the number of oating point operations required to track the closest features
between a pair of polyhedra at various levels of coherence. The graph shown in
Figure 4 is representative of these experiments: typically, V-Clip and Lin-Canny
required comparable numbers of oating point operations, while Enhanced GJK
required 50-100%more operations. The horizontal axis in the plot is a coherence
parameter: higher values correspond to larger motions of the moving model
between algorithm invocations.

0
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500

0 5 10 15 20 25
relative movement per call (degrees)

Icosahedron:  floating point operations per call

V-clip
Lin-Canny

Enhanced GJK

Figure 4: Total oating-point operations for icosahedra.

A second set of experiments tested the robustness of the algorithms in degen-
erate con�gurations. These experiments focused on critical con�gurations where
the witnesses changed. For Lin-Canny and V-Clip, the witnesses are polyhedral

2Source code for all three algorithms is publicly available. V-
Clip: see www.merl.com/people/mirtich/vclip.html. Lin-Canny: see

www.cs.berkeley.edu/~mirtich/collDet.html or www.cs.unc.edu/~geom/I COLLIDE.html.
Enhanced GJK: see www.comlab.ox.ac.uk/oucl/users/stephen.cameron/distances.html.
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features; for Enhanced GJK, they are polyhedral simplices. Lin-Canny exhib-
ited problems in 4.5% of the 100,000 trials. Enhanced GJK exhibited problems
in 0.1% of the trials when a oating point tolerance was set too tightly; using
the default tolerance eliminated the problems. V-Clip, with no tolerances to
set, exhibited no detectable problems. In short, both in terms of speed and
robustness, V-Clip compared favorably with existing algorithms for polyhedral
collision detection.

3 Handling extended contacts

In conjunction with a backtracking method, the V-Clip algorithm is su�cient
for localizing the time at which two bodies begin to penetrate, and the closest
points between the bodies just before this point. If the relative normal velocity
between these points is above some small threshold, the interaction is treated
as a collision, and applied collision impulses instantaneously change the body
velocities, causing the bodies to separate at the collision points. See [6] for
a good survey of methods for computing collision impulses algebraically, and
[5, 16, 21, 29, 31] for more sophisticated methods. When the relative normal
velocity between two bodies about to collide is below the threshold, the inter-
action is more naturally modeled as a contact. This is a�ected by applying a
small collision impulse that brings the relative normal velocity to zero, and sub-
sequently applying contact forces that keep the contact points from accelerating
toward each other. For the remainder of this paper, contact means non-colliding
contact, as when bodies rest on, slide along, or roll along each other.

3.1 Contact sets

A closest feature algorithm like V-Clip only returns information about the pair
of closest features (and points) between two polyhedral models. Contact regions
between three-dimensional bodies are frequently one- or two-dimensional, and
so the raw output from V-Clip is insu�cient for determining the contact region.
One solution to this problem is to provide hysteresis in tracking pairs of closest
features. The contact tracker maintains a set of contacts, each de�ned by a
pair of features, one from each body. For each contact there is also a pair
of contact points, which are the closest points between the contact features.
The points are where the contact forces are applied. Consider the situation in
Figure 5, where body A settles on body B, The initial contact occurs between
some pair of features, such as vertex V and face F . V-Clip returns both this
feature pair, and the closest points between the features. The contact set is
initialized to contain the pair (V; F ). Henceforth, equal and opposite contact
forces are continuously applied at the contact points to prevent the features
from penetrating. In response to this force, the bottom face of body A will
continue to tilt toward the top surface of body B.

If V-Clip is called periodically3 on bodies A and B while they are integrated,

3In our system, V-Clip is invoked within the inner integration loop, from the routine that
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A

B

A

B

V

F

E1

E2

Figure 5: Left: Initial V -F contact between bodies A and B. Right: Sometime
later, the contact set comprises two V -F contacts, and two E-E contacts.

penetration will be detected at some point. This triggers a binary search to
locate a time t when A and B are disjoint, and the pair of closest features
between them are not in the current contact set. Such a time and feature pair
must exist since penetration was detected at the end of the interval, and the
feature pairs in the contact set are kept apart by contact forces. For the example
of Figure 5, a time t is found when the edges E1 and E2 are closer than V and F .
At this point, the pair (E1; E2) is added to the contact set, and the integration
proceeds onward from time t. Contact forces between E1 and E2 will prevent
the previously detected penetration. Eventually, enough contacts are created
to keep the entire objects from penetrating. The right side of Figure 5 shows a
possible �nal resting position of bodies A and B.

3.2 Tracking contacts

A contact's feature pair remains unchanged during the lifetime of the contact,
but the contact points must be tracked as they move continuously along the
features. Closest points on vertex features can't move and are known trivially.
This leaves only three cases to solve for:

1. Closest point on edge to vertex. The closest point on the edge's support
line is given by

e+ [(v � e) � û]û;

where v is the location of the vertex, e is the location of one endpoint
of the edge, and û is a unit vector directed along the edge, away from
e. If this point lies between the two edge Voronoi planes perpendicular
to û (see Figure 1), it lies on the edge itself. Otherwise the contact is
inactivated.

2. Closest point on face to vertex. The closest point on the face's support
plane is given by

v � [(v � f) � n̂]n̂;

where v is the location of the vertex, f is the location of one corner of
the face, and n̂ the unit normal to the face. This point should be tested

calculates the accelerations of the contacting bodies. Pro�ling remains to be done, however,

we expect the computational cost of rechecking the closest features to be less than the cost of

computing the contact forces, which must also be done within the inner loop.
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against the Voronoi planes around the face's boundary (see Figure 1). If
it lies inside all of them, it is on the face itself. Otherwise the contact is
inactivated.

3. Closest points between two edges. For each edge i, let ei be the location
of one endpoint of the edge and ûi a unit vector directed along the edge,
away from ei. Compute:

k = û1 � û2

x = e1 +
(e2 � e1) � (û1 � kû2)

1� k2
û1:

Then x is the closest point on edge 1's support line to edge 2's support
line. The closest point on edge 2's support line to edge 1's support line
is found using the same approach as in Case 1, replacing v with x. Both
closest points are subjected to the same Voronoi checks as in Case 1. If
they pass, then they lie on the edges themselves, otherwise the contact is
inactivated.

The inactivation of a contact means that the features are no longer touching,
as when a vertex slides o� a face, for example. A contact is also inactivated if
the distance between the closest points exceeds the contact threshold ". This
means that the contact features have separated and contact forces should no
longer be applied. Figure 6 shows an example of contacts being tracked.

V1
V2ε

F

Figure 6: Side view of two bodies in contact (the face F is perpendicular to the
page). The contact set contains two contacts, de�ned by feature pairs (V1; F ) and
(V2; F ). The former is the current pair of closest features between the bodies; it
alone satis�es the conditions of Theorem 1. The pair (V2; F ) must have been the
closest feature pair at some previous time when it became an active contact. If
either V1 or V2 passes out of F 's Voronoi region (bounded by the vertical dotted
lines) or moves further than a distance " from F , the corresponding contact is
inactivated.

4 Computing contact reactions

Forces or impulses must be applied at the contact points to keep contacting bod-
ies from penetrating, and to model frictional e�ects. A variety of approaches
have been taken for computing contact reactions, each with their own strengths
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and weaknesses. We briey summarize three widely used approaches, and dis-
cuss a newer one in more detail.

4.1 Previous approaches

Penalty methods are the oldest and simplest approach to computing contact
forces. These methods do not strictly enforce non-penetration; instead, they
keep penetrations negligible relative to the scale of the system. A sti� spring
is attached between the contact points, so that as two bodies move into one
another, the spring attempts to push them apart. The more penetration, the
stronger the restoring force. If the bodies move apart, the spring is destroyed.
Penalty methods are used for rigid body simulation [20, 23, 28] but are most
useful in deformable body simulation [10]. Penalty methods can produce sti�
equations of motion due to the large spring constants needed to keep penetra-
tions small. Choosing the spring constants is done in an ad-hoc way, and must
be tailored to speci�c situations. Because of these drawbacks, their use use in
general settings is limited.

LCP methods cast the contact force problem as a linear complementarity
problem (LCP) [3, 4, 18, 19, 25, 30]. There is a linear relationship between the
relative accelerations of the contact points a and the contact forces f :

a = Af + b: (1)

Here a and f are (respectively) stacked vectors of the relative accelerations and
the contact forces between each pair of contact points. A and b are matrix
and vector constants that are determined from the known con�guration of the
system. Inequality constraints enforce the requirements that the contact points
do not accelerate toward each other and that the contact forces only push, never
pull. Finally, complementarity constraints require that at each contact, either
the relative normal acceleration or the normal force is zero. When there is no
friction, the LCP is convex and solutions can be computed using algorithms
that run in worst case exponential time but expected polynomial time in the
number of contacts.

Friction can be incorporated into the same framework by modifying or
adding constraints to the LCP. To do this, the usual Coulomb friction cone
is linearly approximated by a pyramid. Frictional constraints destroy the con-
vexity of the LCP and admit the possibility of having no valid solution. Bara�
showed that the problem of determining the existence of a valid set of contact
forces that obey Coulomb friction laws at the contacts is NP-hard when there
is sliding friction [2, 3]. Pang and Trinkle [25] and Trinkle, et. al. [30] give com-
prehensive results on the existence and uniqueness of solutions for rigid body
contact forces under the Coulomb friction model. Roughly speaking, existence
and uniqueness can be guaranteed if the coe�cients of friction are small enough.
Certain problems, such as the static stability problem in which the bodies in
the system are at rest, always have solutions. In general, the reliability of the
algorithms decrease as the number of contact points increases, or as friction
increases.
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Impulse-based methods were pioneered by Hahn [13] and extended by Mir-
tich [21]. The fundamental strategy of this approach is to model all contact
between bodies by collisions at contact points. Between collisions, the bodies
move along ballistic trajectories. If friction and restitution are incorporated
into the collision model, then trains of collision impulses can generate persistent
contact phenomena like rolling, sliding, and settling. The major advantage of
an impulse-based method is that only a single pair of contact points is handled
at a given time; many of the computational problems associated with simul-
taneous contacts under the LCP method are avoided. There is always a valid
solution when computing the collision impulses between two bodies. Unlike
the LCP methods, impulse-based methods do not require contact coherence for
e�ciency. They work well on systems of bodies where the contacts are chang-
ing rapidly. The main disadvantage of impulse-based methods is their inability
to e�ciently handle more than a few simultaneous, persistent contacts. These
methods will grind to a halt on systems such as a tall stack of blocks at rest,
due to the large number of collisions that must be propagated up and down the
stack. Ad-hoc methods must also be used to model static friction in certain
cases.

4.2 SVD approach

We are currently exploring another method of computing the contact forces,
based on the singular value decomposition (SVD) of a matrix. Equation (1) is
used, but in a di�erent way than with the LCP methods. At each contact, the
contact normal is de�ned as a unit vector along the segment between the two
contact points. If the component of relative velocity between the contact points
in the plane perpendicular to the contact normal is below a small threshold,
the contact is treated as a static friction contact, otherwise it is a dynamic
friction contact. Call these static contacts and dynamic contacts for short. The
direction of the contact force for dynamic contacts is completely speci�ed by
the Coulomb friction law; only the magnitude must be solved for. For static
contacts, the direction of the force is not known, and so three components must
be solved for. Numbering the n contacts such that the �rstm are static contacts,
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and the remainder are the dynamic contacts, Equation (1) takes the form2
66666666666666664
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...
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...
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kfm+1k
...
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3
77777777777777775

| {z }
f

+b: (2)

The vector f contains the three unknown components of each static contact
force, and the unknown magnitudes of each dynamic contact force; the goal
is to solve for f . The vector a comprises the three components of relative
acceleration for each static contact, and the z-component|chosen to be the
normal direction|of relative acceleration for each dynamic contact. The square
matrixA and the nonhomogeneous term b are known quantities computed from
the current dynamic state.

The procedure is to solve for f by setting a to 0. This �nds forces that keep
the relative acceleration (normal and tangential) equal to 0 at all static contacts,
and the relative normal acceleration equal to zero at all dynamic contacts. Often
A is rank de�cient, and so f is solved for by

f = �AIb; (3)

where AI is the \inverse" of A computed by SVD [26]. Assuming b is in the
column space of A, which is the case in practice, the vector f obtained from (3)
is the vector of minimum norm that satis�es (2) with a set to 0. This gives a
naturally symmetric force distribution when there are contact degeneracies, as
shown in Figure 7.

w w w

w/2 w/4w/2
w/4

w/4w/4

(a) (b) (c)

w/8 3w/8

3w/8 w/8

Figure 7: For a table of weight w resting on the oor, there are many contact
force con�gurations that satisfy frictional and contact constraints, such as the
three shown above. The SVD method computes the composite force vector of
minimum norm, which would be case (c).

LCP methods enforce a complementarity constraint: the normal acceleration
or the normal force must vanishes at every contact point. This constraint is
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not explicitly modeled in the SVD method. The justi�cation for this is that the
acceleration is almost always the quantity that vanishes. A non-zero acceleration
means the bodies are separating near the contact point and the contact points
will be deactivated anyway, once the distance between them exceeds the contact
threshold ".

Computing the SVD of a matrix is a robust procedure, even for very singular
matrices. But two things can go wrong with the SVD method. At either a
static or dynamic contact, the computed normal force might be negative, which
is physically impossible. Or the force at a static contact might lie outside the
friction cone. Currently, these problems are handled as follows. If a computed
force at a static contact lies outside the friction cone, the contact is converted to
dynamic one with the initial tangential force component in the direction of the
invalid static tangential force. If the normal component of a computed contact
force is negative, the contact is converted to an inactive one. In either case,
the matrices A and b in (2) must be adjusted, and the SVD of A must be
recomputed. Adjusting A and b is e�cient: only a small number of rows or
columns must be changed or deleted. Computing the SVD ofA is currently done
from scratch; this method would bene�t from an incremental SVD algorithm
that e�ciently handles slightly modi�ed matrices. This procedure is repeated
until the computed contact forces are valid.

This looping procedure might not terminate with a correct set of contact
forces. It assumes, for example, that a negative normal contact force indicates
the contact is breaking, and so the contact force should be eliminated. However,
there is no guarantee that upon eliminating this contact force and re-solving for
the others, the relative acceleration at the o�ending contact will be positive. The
algorithm has been tested and works correctly on some simple cases, but more
study is needed. A more thorough characterization of when the approach fails,
as Pang and Trinkle provided for the LCP approach, would be helpful. Another
open question is whether the SVD approach is fast enough. All algorithms
for computing the SVD of a matrix are iterative in nature and have no �xed
complexity based on input size. Future tests on large contact groups will give
more information on the practicality of this approach. The main advantage of
the SVD approach is its simplicity.

5 Conclusion

We have presented V-Clip, a fast and robust algorithm for collision detection
between piecewise convex polyhedral models. The algorithm returns a pair of
closest features between objects, and can also return the closest points between
these features. For disjoint bodies, V-Clip only returns features that result in
zero-dimensional contact regions. However, one- and two-dimensional contact
regions are modeled by maintaining a set of closest feature pairs returned by
recent invocations of V-Clip. The most experimental work presented here is
a new method of computing contact forces between contacting bodies. The
method uses the singular value decomposition of the contact matrix to solve for
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forces that prevent interpenetration and model frictional e�ects. The method
is easy to implement, but more study is needed to determine the limits of its
practicality.
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