
MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

E�cient Algorithms for Two-Phase

Collision Detection

Brian Mirtich

TR-97-23 December 1997

Abstract

This article describes practical collision detection algorithms for robot motion
planning. Attention is restricted to algorithms that handle rigid, polyhedral ge-
ometries. Both broad phase and narrow phase detection strategies are discussed.
For the broad phase, an algorithm using axes-aligned bounding boxes and a hi-
erarchical spatial hash table is described. For the narrow-phase, the Lin-Canny
algorithm is presented. Alternatives to these algorithms are also discussed. Fi-
nally, the article describes a scheduling paradigm for managing collision checks
that can further reduce computation time. Pointers to downloadable software
are included.

To appear in Practical Motion Planning in Robotics: Current Approaches and Future Directions,
K. Gupta and A.P. del Pobil, editors.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c Mitsubishi Electric Information Technology Center America, 1997

201 Broadway, Cambridge, Massachusetts 02139

1. First printing, TR97-23, December 1997

1

1 Introduction

Collision detection algorithms are fundamental in robot motion planning. They
serve di�erent purposes depending on the application. In �ne motion planning,
collision detection algorithms determine the time and location of contacts, a
necessary step in computing contact forces. In gross motion planning, collision
detection algorithms are used to report the distances between objects, with the
aim of constructing feasible motion paths, or keeping the robot maximally clear
from obstacles, or building maps of the environment. In any case, collision de-
tection is a low level process in a motion planning system, which must execute
before higher level processes can proceed. For this reason, collision detection
algorithms must be fast. In the context of rigid-body simulation, Hahn found
collision detection often required over 95% of the computation time [12]. Algo-
rithms have improved since then, however, they remain a bottleneck in many
situations.

Collision detection algorithms have roots in computational geometry, where
the basic problem is to report intersections among a group of static objects. In
motion planning, the problem is more di�cult because the objects are moving.
Their trajectories might be closed form functions of time, as in the case of a
kinematically controlled manipulator. Alternatively, the trajectories might be
described through the di�erential equations of Newtonian dynamics.

This article describes some practical algorithms for collision detection, pre-
senting both theoretical and empirical results. To limit the scope, we restrict
attention to situations with rigid, polyhedral objects. These restrictions allow
signi�cant optimizations and are tolerable for many motion planning applica-
tions. In particular, the polyhedral restriction is a mild one since more general
shapes, such as parametric surfaces or CSG-style solids, can be approximated to
arbitrary closeness with polyhedral models. The algorithms discussed here are
quite insensitive to the complexity of the polyhedra. We also restrict attention
to exact algorithms: those that ultimately use the underlying polyhedral mod-
els in their computations. The alternatives are approximate methods, which
are less concerned with the true geometry and more concerned with real-time
performance.1 A good reference list of work in collision detection is in [14].

1.1 Coherence and locality

Early collision detection algorithms for moving polyhedral objects solved prob-
lem instances from scratch at every time step. These algorithms required run-
ning time that was quadratic in the complexity of the polyhedra to determine
if the objects were disjoint [21, 12]; they are too slow for many motion planning
applications. Some early linear time algorithms were also proposed [10].

The biggest improvement over these early algorithms came from the use of
coherence: the fact that the collision detection system solves a series of related
problems, each one only slightly di�erent than the one before. This is the usual

1See, for example, Hubbard's work on collision detection for time-critical applications using
bounding sphere hierarchies [15].

MERL-TR-97-23 December 1997

2

case in motion planning as well as dynamic simulation. Caching results from
previous invocations greatly reduces the amortized cost of collision detection.
Gilbert, et. al. describe an adaptation of their algorithm to take advantage of
coherence when it exists [10]. Coherence is also used in Bara�'s witness plane
algorithm [3], Cameron's enhancement of the Gilbert algorithm [4], the Lin-
Canny closest features algorithm [18, 17], and the V-Clip algorithm [20]. Use
of locality often goes hand-in-hand with coherence in many algorithms. This
property allows an algorithm to verify that the cached result is still valid using
only local geometric tests. Locality usually relies on convexity of the objects.
Coherence and locality combine to form almost constant time algorithms for
verifying disjointness or computing the distance between objects.

1.2 Two-phase collision detection

When there are n distinct objects in a motion planning problem, collision detec-
tion must be performed between O(n2) di�erent pairs of objects. Most e�cient
collision detection systems use a two-phase approach to reduce the computa-
tional costs of making these checks. The broad phase culls away most of the
pairs using a trivial rejection test based on bounding boxes, bounding spheres,
octrees, or the like. The culled pairs fall below a relevance threshold for the
higher level planning processes. The pairs that survive this culling are passed
to the narrow phase, which uses a more re�ned algorithm to check for collisions
or to compute distances. Since the broad phase basically acts as a �lter for the
narrow phase, choices for the two algorithms can usually be made independently.

This article describes collision detection from a two-phase perspective, ad-
dressing the broad phase in Section 2 and the narrow phase in Section 3. In
both cases, the article focuses on one particular approach, but briey mentions
alternatives and their relative merits. Section 4 describes a novel scheduling
paradigm for invoking the collision detection system that has advantages over
the more traditional scheme. Many of the algorithms discussed have imple-
mentations in the public domain. Section 5 contains pointers to downloadable
code.

It is impossible to recommend collision detection algorithms that are best
for all applications. The ones emphasized here were e�ectively used in the Im-
pulse simulation system, described in detail in [19]. Impulse places demanding
requirements on the collision detection system that are similar to the require-
ments of many motion planning systems.

2 Broad phase collision detection

The function of the broad phase collision detection algorithm is to quickly re-
move most of the pairs of objects from consideration. Axes-aligned bounding
boxes provide a simple but e�ective approach for many applications. Boxes can
be used to bound the region of space occupied by an object at a single instant in
time, but when the objects are moving, it is more useful to bound the region of

MERL-TR-97-23 December 1997

3

f

ri

ri

ri

ri

ri

ri

Bi

time t0

time t + t0 ∆

Figure 1: The bounding box for object i's swept volume during a segment of a
parabolic trajectory.

space occupied by the object over a time interval. This swept volume approach
is easiest when objects follow simple trajectories. Consider �nding a bounding
box Bi that encloses object i over the time interval [t0; t0 + �t]. Let ri be
the maximum distance of any point on the object from its center of mass, and
suppose the center of mass follows a parabolic trajectory over the interval in
question. Bi is found by noting the position of the center of mass at the time t0,
at the time t0 +�t, and possibly at the apex of its parabolic trajectory, should
this occur during the interval [t0; t0 +�t]. The box which bounds these two or
three points is grown by ri to obtain Bi (Figure 1). In this case, computing Bi

is simple and takes constant time.
Other situations may not a�ord such a simple approach to bounding the

swept volume. One example is bounding the swept volume occupied by the end
e�ector of a serial chain manipulator with several links. In these situations,
one can use discretized points along the trajectory to compute a bounding box;
these points may be available from an integration routine at no extra cost.
Larger safety margins can be used to compute the box when there are larger
gaps between intermediate points. In motion planning applications, many of
the objects are often �xed in space. For these objects, the tightest axes-aligned
enclosing box can be computed once for all time.

If boxes Bi and Bj do not intersect, then the corresponding objects i and j do
not penetrate over the time interval [t0; t0+�t]. Object pairs with intersecting
bounding boxes are passed to the narrow phase collision detector for further
analysis. There are di�erent ways to �nd intersections among the set of swept-
volume bounding boxes. We �rst describe an algorithm based on a hashing
scheme for �nding intersections among a set of static boxes in space. Next,
we modify the algorithm to exploit coherence among moving boxes. We also

MERL-TR-97-23 December 1997

4

discuss alternative methods based on coordinate sorting.

2.1 Finding static box intersections

Point location problems occur frequently in computational geometry. One vari-
ant is expressed as follows:

Problem 1 (Point Location) Given a number of non-intersecting cells in
space, store the arrangement such that for a given query point p, the cell con-
taining p (if any) can be determined e�ciently.

Here, a cell is a connected region of space. Overmars presents two solutions
to this problem under certain restrictions in the cell shape [23]. The more
e�cient solution involves surrounding each cell by an axes-aligned bounding
box, and storing the location of these boxes in a hash table. The technique can
be extended to solve a more useful problem for collision detection:

Problem 2 (Static box intersections) Given n axes-aligned rectangular boxes
B1; : : : ; Bn, �xed in space, store this arrangement such that all pairs of boxes
that intersect can be determined e�ciently.

To attack this problem, consider partitioning space into a cubical tiling with
resolution �. Any point (x; y; z) in space belongs to a unique tile, speci�ed by
integer coordinates, under the tiling map � :

2
4 x

y
z

3
5 ��!

2
4 bx=�c
by=�c
bz=�c

3
5 (1)

The tiles that the box Bi intersects are found by computing the images
under � of two of Bi's corners: the one of minimum x, y, and z coordinates,
and the one of maximum x, y, and z coordinates. The two tiles containing
these corners, and the other tiles \between" them, are the tiles that intersect
Bi. A tile with coordinates (a; b; c) is between the two tiles with coordinates
(a�; b�; c�) and (a+; b+; c+) if and only if a� � a � a+, b� � b � b+, and
c� � c � c+. There are an in�nite number of tiles in unbounded space, but
only a �nite number that are intersected by at least one box. For each tile that
a box intersects, the box's label is stored in the hash table, hashed under the
tile's integer coordinates. When two di�erent labels are stored in the same hash
bucket, the corresponding boxes are marked as possibly intersecting.

How to choose the tiling resolution � is not obvious, and in fact this can be
problematic when the sizes of the boxes vary widely. If � is small, the larger
boxes may intersect a huge number of tiles, and thus require a large amount of
storage in the hash table. In addition, when the static assumption is relaxed,
updating the positions of these large, moving boxes would be ine�cient. On the
other hand, if � is large, the tiling will have poor resolution power for the smaller
boxes. Many small boxes may hash to the same tile, so the more expensive box
intersection test will be performed on many pairs. Overmars solves this problem

MERL-TR-97-23 December 1997

5

D

1

2

3

4

A B C D E F

A B B

C

E E

F F
r

e
s

o
l u

 t
i o

 n C

ρ
1

4
ρ

Figure 2: A one-dimensional example of a hierarchical spatial hash table, with
four resolutions. The one-dimensional boxes are shown at the bottom, labeled
A-F . The value �i is the size of the tiles at resolution i. Boxes are stored in the
hash table in order of increasing resolution. The cells which must be checked
when box E is stored in the table are shaded. This hash table veri�es that all
boxes are disjoint except for the pairs (C;D) and (C;E).

by partitioning the set of boxes into groups of similar size, and creating one hash
table for each group. For collision detection, however, each of the boxes must
be checked for intersection with all others|this is not true in the point location
problem|and so partitioning boxes into disjoint groups is not helpful. The
solution is to build a hierarchical hash table, comprising several resolutions,
and checking for intersections among boxes at di�erent resolutions.

To understand the method, consider the one dimensional example, shown
in Figure 2. Here, the six \boxes" (that is, line segments) populating space
are labeled A through F . Let X denote an arbitrary box from this set, and
de�ne sz(X) as the size (in this case, length) of X . As a preprocessing step,
one chooses constants � and �, and a minimal sequence of tiling resolutions,
�1; : : : ; �n, such that

0 < � < 1

� � 1

�1 > �2 > : : : > �n > 0;

and so that for each box X there exists an integer 1 � k � n with

� � sz(X)

�k
� �: (2)

The minimum integer k satisfying (2) is called the resolution of box X , abbre-
viated res(X). In Figure 2, � = 0:5 and � = 1:0. This means that each box
X must have a length that is from 0.5 to 1.0 times the width of the cells at
resolution res(X). The constraints (2) are met by choosing four tiling resolu-
tions, as shown in the �gure, with res(A) = res(B) = res(D) = 4, res(E) = 3,

MERL-TR-97-23 December 1997

6

res(F) = 2, and res(C) = 1. The location of box X is hashed at tiling resolu-
tion res(X). In two (or three) dimensions, the idea is the same. The cells are
squares (or cubes) of side length �i, and the boxes to be stored are rectangles (or
rectangular prisms). For box X , sz(X) is the maximum distance between two
opposite edges (or faces) of the box. In what follows, d denotes the dimension
of the boxes and ambient space.

When a box is stored in the hash table, overlap with other boxes must be
checked, some of which may be stored at other resolutions. Assume the boxes
are hashed in order of increasing resolution. When boxX is hashed, all enclosing
cells at resolutions less than or equal to res(X) must be checked for other boxes.
In Figure 2, the cells that must be checked when box E is stored are shaded.
Since box C overlaps one of these cells, the boxes E and C are reported as
close, meaning the hash table is unable to verify that the boxes do not overlap.
Formally,

De�nition 1 Boxes X and Y are close if and only if they overlap a common
cell at resolution min(res(X); res(Y)).

When box D is stored in the hash table, it is found to be close to box C since
they overlap a common cell at resolution 1, but it is not close to box E since
they do not overlap a common cell at resolution 3. When boxes are close,
the corresponding objects can be passed directly to the narrow phase collision
detection algorithm, or a box-intersection test may be used �rst to check that
the boxes actually do overlap, since it is possible that non-intersecting boxes
share a hash bucket. We now analyze the storage requirements and relevant
time complexities for a hierarchical spatial hash table scheme, assuming perfect
hashing.

Lemma 1 Let szmin and szmax be the sizes of the smallest and largest boxes to
be stored in the hierarchical hash table. If n is the the number of resolutions
required,

n �
�
log �

�

szmax

szmin

�
:

Proof: Choose �1 = szmin=� and subsequent tile resolutions such that the
constraint

��i�1 = ��i (3)

is satis�ed for 2 � i � n. In this way, an appropriate k can be found to satisfy
(2) for any box dimension in the interval [szmin; ��n]; an n is needed such that
�n � szmax=�. From (3),

�n =

�
�

�

�n�1

�1:

Substituting szmin=� for �1, and using �n � szmax=�, yields

�
�

�

�n�1
szmin

�
� szmax

�
:

MERL-TR-97-23 December 1997

7

The lemma follows. 2

Lemma 1 gives an important theoretical bound, but it is not always tight.
For instance, if all boxes are one of three sizes (small, medium, or large), than
at most three resolutions are required for the hierarchical spatial hash table,
regardless of the ratio of the dimensions of the largest to smallest box.

Theorem 1 For a set of boxes to be stored in a hierarchical spatial hash table,
let R be the ratio of the largest to smallest box dimension. Then the total number
of hash buckets which must be checked for other boxes when storing a box in the
hash table is O(�d logR).

Proof: When box X is stored, cells at resolutions i � k, where k = res(X),
must be checked for other boxes. By (2), sz(X) � ��k , and so box X overlaps
at most (� + 1)d cells at resolution k. The number of cells overlapped at a
given resolution i < k can not be more than this, and since there are O(logR)
resolutions by Lemma 1, the number of overlapped cells is O(�d logR). Each
cell check corresponds to one bucket check in the hash table, and the theorem
follows. 2

Theorem 2 Treating �; �; and R as constants, a hierarchical hash table can
report all pairs of close boxes among n boxes in O(n + c) time, where c is the
number of close pairs.

Proof: By Theorem 1, a constant number of hash buckets must be examined
upon storing each box; the total number of buckets checked is O(n). The time
spent reporting closest pairs among these buckets is O(c). 2

A �nal theorem relates the resolution power of the hierarchical hash table
to the parameter �.

Theorem 3 The hierarchical spatial hash table can guarantee that two boxes X
and Y do not intersect if the distance between them exceeds

1

�

p
dmax[sz(X); sz(Y)]: (4)

Proof: Without loss of generality, assume sz(X) � sz(Y), so that res(X) �
res(Y). X and Y are reported as close if and only if they overlap a common cell
at resolution res(X). The maximum distance between any two points in this
cell is

p
d�resX , and so the distance D between boxes X and Y satis�es

D <

p
d�res(X)

sz(X)
sz(X): (5)

From (2),
�res(X)

sz(X)
� 1

�
; (6)

MERL-TR-97-23 December 1997

8

1

2

3

4

A B C D E F

A

A

A

B B

B

B

C

D

D E E

E F F

FA B C D E

D E
r

e
s

o
l u

 t
i o

 n

ρ
1

4
ρ

Figure 3: In a variant of the hierarchical hash table scheme, the labels of each
box are stored in every bucket that is checked for other boxes.

and the theorem follows. 2

The tradeo�s involved in choosing the parameters � and � are now apparent.
Recall that 0 < � < 1 and � � 1. By Theorem 1, the closer � is to the minimum
value of 1, the fewer cells must be checked when storing boxes. By Theorem 3,
the closer � is to the upper bound 1, the better the resolving power of the
hash table. Finally, Lemma 1 implies that the larger the ratio �=�, the fewer
resolutions are required to store all of the boxes.

2.2 Coherence and the tiling scheme

In motion planning applications, a slight variant of the hierarchical hash table
scheme can improve performance by taking advantage of coherence between
problem instances. Instead of storing box X 's label in buckets at res(X), and
only checking the appropriate buckets at lower resolutions, the label is stored
in all buckets that are checked. Using the example of Figure 2, the labels are
stored as shown in Figure 3. Boxes X and Y are reported as close if and only if
their labels appear in a common hash bucket at resolution min(res(X); res(Y));
the close pairs returned by the algorithm are exactly the same as with the
original version. A two-dimensional array of close counters tracks which boxes
are close. Each time X is stored into a hash bucket at resolution i that already
contains Y , if i = min(res(X); res(Y)), then the counter corresponding to the
pair (X;Y) is incremented. When X is removed from such a bucket, the counter
is decremented. Pairs of boxes for which the corresponding counter is zero are
not close, and narrow phase collision checking is not performed between the
corresponding objects. When a counter is incremented from zero to one, the
pair enters the set of pairs on which narrow phase collision checking is performed.

This scheme retains the state of the boxes between invocations. If a box
intersects the same cells that it did on the last call, no additional work needs
to be done to store that box on the current call. If the box has moved into new

MERL-TR-97-23 December 1997

9

cells or left old ones, only buckets corresponding to these cells must be changed.
Boxes corresponding to �xed objects need only be stored into the hash table
once. The disadvantage of this scheme is that more processing is sometimes
required to store a box's label into a bucket. In Figure 3, even though D and
E are veri�ed as not close at resolution 3, they must be stored in common
buckets at resolutions 2 and 1, requiring extra processing and adjustment of
close counters. For this reason, the claim of Theorem 2 is not valid (or at least
not readily apparent) for this variant on the algorithm. However this variant is
quite e�cient in practice, as shown in Table 1.

Table 1: Comparison of hashing schemes. The table shows the number of cycles
spent on broad phase collision detection for four example rigid-body simula-
tions, using both the standard hashing algorithm and the coherence hashing
algorithm. The simulations themselves are described in detail in [19]. The
coherence hashing algorithm is signi�cantly better, consistently running six or
more times faster than the standard hashing algorithm.

millions of cycles
standard coherence

example hashing hashing ratio
coins 361 58 6.2
bowling 2188 314 7.0
rattleback top 641 107 6.0
part feeder chute 409 57 7.2

The bounding boxes are chosen to enclose the swept volumes of moving
objects, thus their sizes depend on the current velocities of the objects. Often
these are not known ahead of time, and so the tiling resolutions can not be
chosen as described in Lemma 1. In practice, this is not such a problem. The
tiling resolutions can be based simply upon the maximum radii of the objects.
Unless the objects are moving at extremely fast speeds, the number of tiles
intersected by the various boxes remains small. Figure 4 shows the reduction in
narrow phase collision detection due to the hierarchical hashing scheme.

2.3 Coordinate sorting

There are alternatives to hierarchical spatial hashing for �nding intersections
of axes-aligned bounding boxes. One such algorithm is based on sorting the
coordinates of the boundaries of the bounding boxes along each of the three
coordinate axes; it is used in the I-Collide system [7] and also in [3]. The
algorithm works as follows. The minimum and maximum x-coordinates of each
axes-aligned box are maintained in a sorted list. The same is done for the y
and z coordinates. Two boxes overlap if and only if their coordinates overlap
in each of the three coordinate directions. A two-dimensional example is shown
in Figure 5. For example, since x01, the maximum x-coordinate of box B1 is
less than x2, the minimum x-coordinate of box B2, these boxes can not overlap.

MERL-TR-97-23 December 1997

10

Figure 4: Snapshots taken during the simulation of eight coins tossed onto a
at surface. The lines indicate the tracking of closest points between objects
(including the oor). Each line corresponds to a pair of objects subject to
narrow phase collision detection. The left and right �gures show the situation
with and without broad phase culling, respectively.

x’1 x’3x’4 2x’x1

y’1

y1

x2

y2

y’2

x3

y3

y’3

x4

y4

y’4

1

2

3

4

Figure 5: Finding intersections of two-dimensional boxes using coordinate sort-
ing. Two boxes overlap if and only if their projections onto the x- and y-axes
overlap.

MERL-TR-97-23 December 1997

11

x

y

1 2 3
4 5

Figure 6: A bad case for coordinate sorting. The dense clustering of box extrema
along the y-axis results in O(n2) exchanges for each new sort of the coordinates.

On the other hand, x3 < x01 < x03, and y1 < y3 < y01. Thus, boxes B1 and B3

overlap in both the x and y coordinates, and therefore the boxes themselves
overlap. Cohen, et. al. discuss the relative merits of using a �xed size, cubical
box that can accommodate an object at any orientation versus tighter �tting
boxes that change in shape as the object rotates [7].

Coherence is exploited by updating previously sorted lists to obtain new
sorted lists. In this way, the number of exchanges needed to obtain the new
sorted list is expected to be O(n). It can, however, be O(n2). Consider the
situation depicted in Figure 6. The maximum and minimum y-coordinates
of all the boxes are clustered closely together. Even with very small motions
from one time step to the next, O(n2) exchanges result in resorting the y-
coordinates; coherence breaks down. This example is not contrived. Imagine
modeling the dropping of a group of small parts onto a at horizontal surface in
order to singulate them. As they come to rest, their bounding boxes will cluster
along the vertical coordinate. Since coordinate sorting is based on dimension
reduction, the coordinates may be clustered even when the original boxes are
not; the clustering becomes worse in higher dimensions. One way of handling the
clustering problem is to perform a less drastic dimension reduction, projecting
the three-dimensional boxes �rst into two-dimensional rectangles in the plane,
and reporting intersections among the rectangles in O(n logn+ k) time, where
k is the number of intersections [9]. Another alternative is to skew the axes to
which the bounding boxes are aligned, so that all three coordinates vary along
surfaces like table tops. This may cause the boxes to be much larger than in the
unskewed system. Hashing schemes do not su�er from the clustering problem.
Coherence always results in e�cient updating of the hash table, unless the

MERL-TR-97-23 December 1997

12

number of box overlaps in three dimensions is large.
Coordinate sorting does have one advantage over hashing: no hashing scheme

culls as many object pairs as coordinate sorting. Cohen, et. al. claim that choos-
ing a near-optimal cell size is di�cult, and failing to do so results in large mem-
ory usage and computational ine�ciency. These claims are largely mitigated
with a hierarchical hash table based on multiple cell sizes. In passing, we note
that Rapid is a very e�cient collision detection algorithm based on oriented
bounding boxes, that is, boxes boxes that are not axes aligned. See [11] for
details.

3 Narrow phase collision detection

Narrow phase collision detectors more carefully analyze the pairs of objects
that are not culled by the broad phase detector. They employ more re�ned but
slower algorithms to determine with certainty whether objects are penetrating
or disjoint, or to determine the distance between them. Some narrow phase
detectors return only a boolean value indicating if penetration is occurring or
not. These are sometimes called interference detectors. This boolean function
alone is enough to isolate the time of collision. When penetration is detected, a
binary search method can be used to localize the time of the transition from the
disjoint state to the penetration state, within a desired tolerance. Narrow phase
detectors that return the distance between disjoint objects are more useful. The
distance information can be used to more quickly localize the time of collision,
or to determine how soon the collision check should be repeated. Some detectors
also return the distance of penetration when objects penetrate, which can be
used to compute contact forces using a penalty method.

This section focuses primarily on the Lin-Canny closest features algorithm
as a basis for narrow phase collision detection. The algorithm operates on rigid,
convex polyhedra, speci�ed by a boundary representation. It is among the
fastest algorithms known for tracking the closest features between such objects
in a setting where coherence can be exploited. The algorithm's output can
easily be used to compute the distance between the polyhedra, which serves as
a basis for collision detection. The I-Collide collision detection package for large
environments uses the Lin-Canny algorithm for its narrow phase detection [7].
Lin-Canny has some drawbacks. The two most limiting are that it does not
terminate when presented with penetrating polyhedra,2 and that it sometimes
exhibits poor convergence in degenerate situations. Despite these drawbacks, it
can be a useful tool for motion planning. Some alternatives to this algorithm
are discussed in Section 3.3.

2In practice, one can detect when the algorithm is caught in an in�nite cycle, force termi-
nation, and report that the polyhedra are penetrating. Unfortunately, this is not an e�cient
solution.

MERL-TR-97-23 December 1997

13

e1

3v

4e

e3
e2

v2

v1
v4

V()v1

V()e3

Figure 7: A polygon and its Voronoi regions.

3.1 The Lin-Canny closest features algorithm

The Lin-Canny closest features algorithm [17, 18] is an extremely fast method
for tracking the closest features (faces, edges, or vertices) between a pair of
convex polyhedra moving through space. The principle behind the algorithm is
best described with a two-dimensional example. A fundamental concept in the
Lin-Canny algorithm is that of a Voronoi region. Consider the polygon shown
in Figure 7. The polygon has eight features: four vertices and four edges. For
each feature F , the set of points closer to F than to any other feature of the
polygon is called the Voronoi region of F , and denoted V (F). The shapes of
the Voronoi regions are easily deduced for polygonal objects. From each vertex,
extend two rays outward from the polygon, each perpendicular to one of the
edges incident to the vertex. These rays form boundaries between the Voronoi
regions. The Voronoi region of a vertex is the in�nite cone lying between the two
rays emanating from that vertex. The Voronoi region of an edge is the semi-
in�nite rectangle lying between two parallel rays passing through the edge's
endpoints. Collectively, the Voronoi regions partition the space outside the
polygon.

Theorem 4 Given non-intersecting polygons A and B, let a and b be the clos-
est points between feature Fa of A, and feature Fb of B, respectively. If a and

MERL-TR-97-23 December 1997

14

a

b

polygon A

polygon B a

by
v

polygon B

polygon A

e

Figure 8: Left: Theorem 5 implies a and b are the closest points between A and
B. Right: a 62 V (Fb), and so a and b are no longer closest points. The closest
feature on B will be updated from vertex v to edge e.

b are the closest points between A and B, then a 2 V (Fb) and b 2 V (Fa).
3

Proof: Suppose a =2 V (Fb). Then a is in some other Voronoi region, say V (Fc),
and a is closer to Fc than to any other feature on B. Since b 2 Fb, b =2 Fc,
and so a and b can not be closest points. A similar results holds if b =2 V (Fa). 2

The fundamental basis of the Lin-Canny algorithm is the converse of Theo-
rem 5, which is true for convex objects (see [17] for the proof).

Theorem 5 Given non-intersecting convex polygons A and B, let a and b be
the closest points between feature Fa of A, and feature Fb of B, respectively. If
a 2 V (Fb) and b 2 V (Fa), then a and b are the closest points between A and
B.

Theorem 5 suggests an algorithm for �nding the closest points between convex
polygons. The steps are:

1. Compute the closest points between the current pair of features.

2. If each point lies within the Voronoi region of the other feature, return the
current features as the closest points between the polyhedra. (The points
computed in Step 1 are the closest ones between the polyhedra.)

3. Update one or both of the current features, go to Step 1.

This process can continue for many iterations, however, it is guaranteed to
eventually terminate. The heart of the algorithm is in selecting the proper
feature(s) to update to in Step 3. Consider the example on the left of Figure 8.
Here, closest point candidates a and b each lie in the Voronoi region of the
other's containing feature. By Theorem 5, they are the closest points. Suppose
polygon A moves so that the situation is as depicted on the right of Figure 8, and
Lin-Canny is called again. Now b is still in the Voronoi region of Fa, however,

3For simplicity, degenerate cases where the points are on the boundary of Voronoi regions
are ignored here. See [17] for more details.

MERL-TR-97-23 December 1997

15

new closest feature

old closest feature

closest point

voronoi plane

Figure 9: Tracking closest features of polyhedra with the Lin-Canny algorithm.

a is no longer in the Voronoi region of Fb. Speci�cally, a lies on the wrong
side of ray y. In this case, the Lin-Canny algorithm speci�es that feature Fb
should be updated to the feature on the other side of ray y, namely the edge
e. After the update, the closest points between the new features are computed,
and the Voronoi check is made again. The three-dimensional version of the
algorithm is a natural extension of the two-dimensional case. The objects in
question are polyhedra, the features are vertices, edges, and faces, the Voronoi
regions are in�nite regions of space bounded by constraint planes rather than
rays (Figure 9). The basic algorithm remains the same. For details, see [17, 18].

Although designed to track the closest features, the Lin-Canny algorithm is
easily extended to a collision detection algorithm. The distance between two
polyhedra is computable from simple geometric formulae, given the closest fea-
tures. The closest points are obtained as a by-product of these calculations.
With �nite precision arithmetic, a collision epsilon "c must be used. The colli-
sion detection system reports a collision when the inter-polyhedral distance falls
below "c. The particular value of "c is not critical; a value is chosen based on
how large a gap is tolerable.

MERL-TR-97-23 December 1997

16

3.2 Lin-Canny and coherence

For e�cient collision detection, coherence must be exploited. In Lin-Canny,
coherence means that the closest features between a given pair of objects usually
change infrequently. Even if the features are changing upon every invocation
of the algorithm, due to highly discretized polyhedral models or large motions
between invocations, the pair of closest features from the last invocation of the
algorithm is a good starting point for the search for the current pair of closest
features. By caching these features from one invocation to the next, signi�cant
speedup is obtained. Figure 10 illustrates the e�ect of coherence on tracking
the closest features.

The Lin-Canny algorithm and others like it have been described as taking
\expected constant" time to report a pair of closest features. This claim stems
from coherence; often the closest features do not change between successive
calls, and the algorithm veri�es this fact in constant time. This is a bit mis-
leading. Consider tracking closest features between a small satellite orbiting the
Earth, over its equator. If the Earth is modeled as a tessellated sphere with N
facets, then during one orbit of the satellite, tracking on the Earth must progress
through O(

p
N) features. As the resolution of the Earth model increases, more

work is clearly being done to track the closest feature as it circumnavigates the
planet, even if the satellite speed remains constant. In this case, the Lin-Canny
algorithm is O(

p
N). Figure 10 and Graph 2 in Cohen, et. al. [7] also illustrate

that the running time of the Lin-Canny algorithm depends on the number of
features. One di�culty of assigning a complexity to the algorithm is that it
is very dependent on how the objects are moving. If the satellite mentioned
above falls straight down toward Earth, the algorithm is again constant time.
The claim of \expected constant" time raises more questions than it answers,
however, and perhaps almost constant time is a better description. In the satel-
lite example, the coe�cient on

p
N is probably extremely small compared to

the constant term. In experiments with the Impulse simulation system, slow-
down is negligible when when polyhedral models of spheres with a few hundred
facets are replaced with polyhedral models with over 20,000 facets (over 60,000
features).

3.3 Alternative narrow-phase collision detection algorithms

The extension of the basic Lin-Canny algorithm to curved objects has been
studied by Lin and Manocha [16]. Curved objects are approximated with a
polyhedral mesh, and closest points are tracked between these meshes. The
closest points on the meshes are projected onto the actual curved surfaces,
and a numerical root �nding method uses these points as a starting point to
locate the true closest points. A general form of this algorithm has not been
implemented.

There are several alternatives to Lin-Canny that use coherence to obtain
almost constant time performance when the objects move continuously through
space. For dynamic simulation applications, Bara� uses an algorithm based

MERL-TR-97-23 December 1997

17

5

10

15

20

25

30

35

40

45

50

55

0

0 5 10 15 20
rotation between calls (degrees)

av
er

ag
e

tim
e

pe
r

ca
ll

(m
ic

ro
se

co
nd

s)
Running Time of Lin−Canny Algorithm

80 faces
242 features

320 faces
962 features

1280 faces
3842 features

Figure 10: This graph shows the e�ect of coherence on the performance of the
Lin-Canny algorithm. The algorithm was used to track the closest features be-
tween a �xed cube and a polyhedral model of a sphere as the sphere rotated
on an axis parallel to the nearest surface of the cube. The amount of sphere
rotation between successive calls to the algorithm was varied from one to 20
degrees, in one degree steps. This experiment was performed for three di�erent
discretization resolutions for the sphere, as indicated above. Note the di�erence
in execution times between the left side of the graph, where coherence is high,
and the right side of the graph, where coherence is low. Also note the insensi-
tivity of the algorithm to polyhedron complexity, when coherence is high. At
a rotational speed of one degree between calls, a 16-fold increase in complexity
results in only a 15% increase in execution time. (Execution times from an
R4400 SGI Indigo II.)

MERL-TR-97-23 December 1997

18

on the following observation. Two convex polyhedra are disjoint if and only if
there exists a separating plane that either embeds one of the faces of one of the
polyhedra, or that embeds an edge from each polyhedra. This separating plane
is cached along with points from each polyhedron that are closest to it. Given
the plane and the closest point to it, one can verify disjointness in constant
time [2]. This algorithm is simpler in principle than Lin-Canny, and might be
suitable in some applications. Bara� does not describe the update step that
must occur when the current pair of witnesses fails to verify disjointness.

Rather than focusing on polyhedral features, some algorithms treat a poly-
hedron as the convex hull of a point set, and perform operations on simplices
de�ned by subsets of these points. An algorithm designed by Gilbert, Johnson
and Keerthi (GJK) was one of the earliest examples of this type [10]. Given two
polyhedra, GJK searches for a simplex, de�ned by vertices of the Minkowski dif-
ference polyhedron, that either encloses or is nearest to the origin. If the origin
is not enclosed, the distance between the origin and the nearest simplex of the
di�erence polyhedron is equal to the distance between the original polyhedra.
If the origin is enclosed, the polyhedra are penetrating, and a measure of the
penetration is available.

Rabbitz advanced the original GJK algorithm by making better use of co-
herence [25]. Q-Collide is a collision detection library spawned from I-Collide,
which replaces Lin-Canny with Rabbitz's algorithm for the low-level distance
computation [6]. It shares I-Collide's broad phase detection scheme. Cameron
has recently developed the fastest descendent of GJK: it includes mechanisms to
exploit coherence, and also uses topological vertex information to more carefully
choose new simplices when the current simplices fail to satisfy the termination
criteria. With these improvements, the algorithm attains the same almost con-
stant time complexity as Lin-Canny [4].

The Voronoi-clip, or V-Clip, algorithm is a polyhedral collision detection
algorithm, derived from similar principles as the Lin-Canny algorithm. It over-
comes the principle limitations of Lin-Canny. In particular,

1. V-Clip handles the penetration case.

2. V-Clip is robust in the presence of degenerate con�gurations.

3. The code for V-Clip is signi�cantly simpler than that of Lin-Canny.

Enhanced GJK also exhibits many of these advantages but usually at the cost
of 50{100% more oating point operations [20].

3.4 Nonconvex objects

Algorithms for convex polyhedra can be adapted to nonconvex polyhedra by con-
vex decomposition. If object A is decomposed intom convex pieces, A1; : : : ; Am,
and object B is decomposed into n convex pieces, B1; : : : ; Bn, then the distance

MERL-TR-97-23 December 1997

19

between A and B can be computed as

d(A;B) = min
1�i�m

1�j�n

d(Ai; Bj) (7)

Signi�cant improvement over this naive scheme is possible by computing the
convex hulls of each of the nonconvex objects, and approximating the distance
between the objects by the distance between their hulls. In cases where the hulls
are disjoint, the nm invocations in (7) are replaced with a single invocation that
gives a lower bound on the true distance between objects. If the hulls are not
disjoint, the objects are \unwrapped" and treated as collections of convex pieces.
For complex objects, this scheme can be applied recursively to obtain an entire
convex hierarchy for a nonconvex object. The inner nodes of the tree correspond
to convex hulls of various subsets of the entire object. The leaves of the tree
correspond to the the underlying convex pieces in the object's decomposition.
The root corresponds to the convex hull of the entire object. The collision
detection algorithm proceeds only as far down the tree as necessary to verify
disjointness: if the distance to a hull polyhedron is positive, checking stops at
the corresponding node, otherwise it proceeds to the node's children. Details
of this scheme may be found in Ponamgi, et. al. [24]. Facilities for performing
collision detection between these convex hierarchies are provided in the V-Clip
package [20].

The strategy described above works well when a convex decomposition is
available with a moderate number of pieces, and a hierarchy not more than a
few levels deep; it breaks down for utterly nonconvex objects. Other types of
collision detection algorithms are then more suitable, such as those based on oc-
trees [1], binary space partitioning trees [22], sphere hierarchies [15], or oriented
bounding boxes (OBBs). These algorithms also often provide robustness in the
presence of modeling errors, such as improperly oriented or missing facets. For
example, the Rapid collision detection library, based on the OBB algorithm by
Gottschalk, et. al., adeptly handles \polygon soup" [11]. Algorithms like Rapid
are the best choice in applications such as complex walk through environments.
The convex polyhedra algorithms are faster and preferable when the models are
well-behaved, of moderate size, and not exceedingly nonconvex.

4 Scheduling collision checks

The typical paradigm for performing collision detection is at �xed-length time
intervals. That is, the system state is advanced forward in time by some amount
�t, and then collision detection is performed among all pairs of objects. This
process continues until a collision is detected, initiating collision processing.
In computer graphics, the value of �t is often the screen refresh period, 1/30
second.

One problem with this paradigm is that the system might miss collisions. A
pathological example is a bullet speeding toward a thin wall; no matter what

MERL-TR-97-23 December 1997

20

the minimum sampling period of the collision detection system (the minimum
temporal resolution [15]), one can choose a bullet speed and wall thickness such
that the bullet passes completely through the wall between collision checks.
One solution is to apply detection algorithms to the four-dimensional hyper-
polyhedra swept out in space-time [5]. This method is slow and has not seen wide
practical use. Most simulation systems simply ignore the problem [8, 21, 12, 2].

There is an alternative paradigm for performing collision checks that can
reduce the number of collision checks performed, and also prevent missed colli-
sions. It relies on computing a lower bound on the time of impact (TOI) between
a pair of objects. If the objects obey the laws of Newtonian dynamics, one can
derive lower bounds on the TOI, based on the current positions and velocities
of the objects, and some assumptions about the types of forces acting on them
[19]. Bounds on robot joint accelerations are also useful for computing lower
bounds on the TOI.

The basic idea is to schedule collision checks in a priority queue. Each
element in the queue corresponds to a particular pair of objects currently subject
to narrow phase collision detection. Pairs that are culled by the broad phase
are not represented in the queue. The elements are sorted on the estimated
TOI that is computed for each pair, so that the pair with the earliest TOI is
�rst. After advancing the state of the system to the TOI at the front of the
collision check queue, narrow phase collision checking is invoked only on the
pair at the front of the queue. If penetration is detected, collision processing
begins. Otherwise, a new TOI is computed for the pair, and its position in the
priority queue is adjusted. It may drop back in the queue, or it may remain at
the front, depending on how close to collision the objects are. As this process is
repeated, the system is advanced in time while all necessary collision checks are
performed in a timely manner. The Impulse simulation system used this scheme
to determine the integration step size to use between successive collision checks,
as shown in Figure 11. Since each computed TOI for a pair of objects is a lower
bound on the true TOI for the pair, no pair can collide any sooner than the
TOI at the front of the queue. The conservative bounds force the algorithm to
detect collisions in the order they occur, and prevent the system from missing
a collision.

Other systems have also adopted the scheduling paradigm for collision check-
ing. Von Herzen, et. al. [13] present an algorithm that uses Lipschitz bounds
to derive limits on how far parts of a parametric surfaces can move over a time
interval; their system is guaranteed to catch all collisions. The bounds must
be supplied by the user when the surface is de�ned. The algorithm of Snyder,
et. al. uses an interval version of Newton's root �nding method to achieve the
same goal: guaranteeing that the very next collision will be detected [26]. Here,
Lipschitz bounds are not needed since the exact trajectories of the surfaces over
time are input data for the problem.

The scheduling scheme can still be used if the computed TOI is not a lower
bound on the true TOI but simply an estimate of it. In this case, however,
the system might detect a collision at time t after the system state has been
advanced to some time later than t. This necessitates a rollback to bring the

MERL-TR-97-23 December 1997

21

dynamic state

collision heap

TOI
estimator

−
+

Lin−
Canny

1 2 3 4

2−4

1−2

3−4

1−3

1−4
2−3

0

integration
step, t∆

TOI

closest points

current time, t

Figure 11: Collision checks are scheduled in a priority queue, implemented as
a heap with modi�able keys, based on estimated times of impact. The TOI at
the front of the queue determines the size of the next integration step. Numbers
designate the indices of the di�erent objects.

state of the system back to the point of collision, and of course some of the
previous computation is wasted.

In the �xed interval approach to collision detection, collision checks occur
between all pairs of objects at the same rate. Often this rate must be quite
high to avoid missing too many collisions. The scheduling scheme reduces the
number of collision checks by allowing their rate to vary, both in time and
among di�erent pairs of objects. When two objects are far apart or moving
slowly, collision checks between them occur less often; at the same time, checks
between other pairs in danger of colliding can occur frequently.

5 Summary

E�cient collision detection is crucial to many applications, including robot mo-
tion planning. While no algorithm is the best solution for all problems, there
are important guiding principles that should be used wherever possible. Ex-
ploiting coherence results in much faster algorithms. Using a broad phase to
reduce the number of pairs processed by the narrow phase is bene�cial. A broad
phase method that has proven e�ective is one based on axes-aligned bounding
boxes, stored coherently in a hierarchical hash table. For the narrow phase,
many options are available. The Lin-Canny closest features algorithm is one
of the fastest ways to compute the distance between disjoint objects. When
possible, it is better to independently schedule collision checks between pairs of
objects instead of checking all pairs at �xed intervals. This further reduces the
computational cost of collision detection.

MERL-TR-97-23 December 1997

22

5.1 Downloadable software

This article discusses several collision detection algorithms that have publicly
available implementations. Web addresses for downloading this software are
given below (as of November 1997). All packages are written in C or C++.

� Narrow phase collision detectors

1. Lin-Canny closest features algorithm. A feature-based algorithm for
tracking closest features between convex polyhedra. Available from:
www.cs.berkeley.edu/~mirtich/collDet.html.

2. Enhanced Gilbert-Johnson-Keerthi algorithm. An enhanced version
of the GJK simplex-based algorithm for computing distance between
convex polyhedra. Available from:
www.comlab.ox.ac.uk/oucl/users/stephen.cameron/distances.html.

3. V-Clip algorithm. A Voronoi-style closest feature algorithm, with
facilities for nonconvex polyhedral hierarchies. Available from:
www.merl.com/people/mirtich/vclip.html.

4. Rapid. A robust interference detector based on oriented bounding
boxes. Good for highly nonconvex objects and polygon soup. Avail-
able from:
www.cs.unc.edu/~geom/OBB/OBBT.html.

� Full collision detection packages (narrow & broad phases)

1. I-Collide, a package using the Lin-Canny closest features algorithm
for narrow phase detection. Available from:
www.cs.unc.edu/~geom/I COLLIDE.html.

2. V-Collide, a package using the Rapid algorithm for narrow phase
detection. Available from:
www.cs.unc.edu/~geom/V COLLIDE.

3. Q-Collide, a derivative of I-Collide, with the Lin-Canny algorithm
replaced by a simplex-based algorithm for narrow phase detection.
Available from:
www.cs.hku.hk/~tlchung/collision library.html.

Acknowledgments

The author thanks Sarah Gibson for many helpful comments on this article.

References
[1] D. Ayala, P. Brunet, R. Juan, and I. Navazo. Object representation by means of nonminimal

division quadtrees and octrees. ACM Transactions on Graphics, 4(1):41{59, January 1985.

[2] David Bara�. Curved surfaces and coherence for non-penetrating rigid body simulation. Com-
puter Graphics, 24(4):19{28, August 1990. SIGGRAPH Conference Proceedings, 1990.

MERL-TR-97-23 December 1997

23

[3] David Bara�. Dynamic Simulation of Non-Penetrating Rigid Bodies. PhD thesis, Department
of Computer Science, Cornell University, March 1992.

[4] Stephen Cameron. Enhancing GJK: Computing minimum penetration distances between con-
vex polyhedra. In Proceedings of International Conference on Robotics and Automation.
IEEE, April 1997.

[5] John Canny. Collision detection for moving polyhedra. Technical Report MIT A.I. Lab Memo
806, Massachusetts Institute of Technology, October 1984.

[6] Kelvin Chung. An e�cient collision detection algorithm for polytopes in virtual environments.
Master's thesis, University of Hong Kong, September 1996.

[7] Jonathan D. Cohen, Ming C. Lin, Dinesh Manocha, and Madhav K. Ponamgi. I-collide: An
interactive and exact collision detection system for large-scaled environments. In Symposium
on Interactive 3D Graphics, pages 189{196. ACM Siggraph, ACM Siggraph, April 1995.

[8] James F. Cremer and A. James Stewart. The architecture of newton, a general-purpose dy-
namics simulator. In Proceedings of International Conference on Robotics and Automation,
pages 1806{1811. IEEE, May 1989.

[9] H. Edelsbrunner. A new approach to rectangle intersections, part i. International Journal of
Computational Mathematics, 13:209{219, 1983.

[10] Elmer G. Gilbert, Daniel W. Johnson, and S. Sathiya Keerthi. A fast procedure for computing
the distance between complex objects in three-dimensional space. IEEE Journal of Robotics
and Automation, 4(2):193{203, April 1988.

[11] S. Gottschalk, M. C. Lin, and D. Manocha. Obb-tree: A hierarchical structure for rapid inter-
ference detection. In Computer Graphics Proceedings, Annual Conference Series, Proceedings
of SIGGRAPH 96. ACM SIGGRAPH, 1996.

[12] James K. Hahn. Realistic animation of rigid bodies. Computer Graphics, 22(4):299{308,
August 1988.

[13] Brian Von Herzen, Alan H. Barr, and Harold R. Zatz. Geometric collisions for time-dependent
parametric surfaces. In Computer Graphics Proceedings, Annual Conference Series, Pro-
ceedings of SIGGRAPH 90, pages 39{48. ACM SIGGRAPH, 1990.

[14] Philip M. Hubbard. Collision Detection for Interactive Graphics Applications. PhD thesis,
Department of Computer Science, Brown University, October 1994.

[15] Philip M. Hubbard. Approximating polyhedra with spheres for time-critical collision detection.
ACM Transactions on Graphics, 15(3), July 1996.

[16] M.C. Lin and Dinesh Manocha. Interference detection between curved objects for computer
animation. InModels and Techniques in Computer Animation, pages 431{57. Springer-Verlag,
1993.

[17] Ming C. Lin. E�cient Collision Detection for Animation and Robotics. PhD thesis, Univer-
sity of California, Berkeley, December 1993.

[18] Ming C. Lin and John F. Canny. A fast algorithm for incremental distance calculation. In Pro-
ceedings of International Conference on Robotics and Automation, pages 1008{1014. IEEE,
May 1991.

[19] Brian Mirtich. Impulse-based Dynamic Simulation of Rigid Body Systems. PhD thesis,
University of California, Berkeley, December 1996.

[20] Brian Mirtich. V-Clip: fast and robust polyhedral collision detection. Technical Report TR97-
05, Mitsubishi Electric Research Lab, Cambridge, MA, July 1997.

[21] Matthew Moore and Jane Wilhems. Collision detection and response for computer animation.
Computer Graphics, 22(4):289{298, August 1988.

[22] Bruce F. Naylor. Interactive solid modeling via partitioning trees. In Graphics Interface,
pages 11{18, May 1992.

MERL-TR-97-23 December 1997

24

[23] M. Overmars. Point location in fat subdivisions. Information Processing Letters, 44:261{265,
1992.

[24] Madhav K. Ponamgi, Dinesh Manocha, and Ming C. Lin. Incremental algorithms for collision
detection between solid models. In Proceedings of Third ACM Symposium on Solid Modeling
and Applications, pages 293{304, New York, May 1995. ACM Press.

[25] Rich Rabbitz. Fast collision detection of moving convex polyhedra. In Paul S. Heckbert, editor,
Graphics Gems IV, pages 83{109, Cambridge, 1994. Academic Press, Inc.

[26] John M. Snyder, Adam R. Woodbury, Kurt Fleischer, Bena Currin, and Alan H. Barr. Inter-
val methods for multi-point collisions between time-dependent curved surfaces. In Computer
Graphics Proceedings, Annual Conference Series, Proceedings of SIGGRAPH 93, pages 321{
333. ACM SIGGRAPH, 1993.

MERL-TR-97-23 December 1997

