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Abstract
This paper discusses a linked volumetric representation for graphical objects that enables physics-
based modeling of object interactions such as: collision detection, collision response, 3D object
deformation, and interactive object modification by carving, cutting, tearing, and joining.  Object
manipulation algorithms are presented along with implementation details and the results of timing
tests.

1 Introduction
In volume graphics, objects are represented as 3-dimensional arrays of sampled data elements.
Unlike surface-based graphics, where the surfaces of graphical objects are represented by
contiguous 2D polygons or curved 2D spline patches, volumetric models can represent both object
surfaces and object interiors.  A volumetric object representation is necessary for visualizing
complex internal structure and for physically accurate modeling of interactions between solid
objects with arbitrary shape and material composition.  In this paper, algorithms for manipulating
volumetric objects are presented.  These algorithms include collision detection, collision response
calculation, object deformation, and object modification by carving, cutting, tearing, and joining.
These algorithms use a linked-element object representation for efficient implementation.
Implementation details are presented along with the results of tests for algorithm timing and
efficacy.

2 Motivation
Volumetric object representations are necessary whenever the internal object structure is important
for the visual rendering of a graphical object or for the simulation of interactions between objects.
For example, volumetric image data of human anatomy can be used to effectively visualize internal
anatomical structure as illustrated in Figure 1.  

Because the physics of an arbitrary object cannot be determined from a hollow object model, the
representation of internal structure is important for physically realistic modeling as well as
visualization.  The cut plane of the image in Figure 1 illustrates the detailed interior structure of
human tissue.  In order to accurately model the mechanical behavior of such tissue, we require a
graphical representation that can incorporate this complex structure.  Both the deformation of
objects with complex geometry or heterogeneous material properties and the cutting or tearing of
solid tissues require some representation of object interiors.

Modeling the cutting or tearing of objects with complex structure is a challenging problem for
surface-based object models, since object cutting requires the generation of new object surfaces
along the cutting path.  The problem of clipping a surface-based or geometric object model by an
arbitrary 2D plane has been addressed in constructive solid geometry (CSG) (e.g. [32]) and
polygon rendering.  However, there has been little progress towards enabling cutting through
surface-based graphical objects along an arbitrary curved path.  Both determining the intersection
of the cutting path with the object and constructing the new surface along the object’s cut surface
are challenging problems.  Related work in CSG provides mathematical techniques for building
new surfaces of intersecting solids [25], [26].  However, applying these methods would require
constructing a surface or solid representing the knife path, limiting interactivity.  In addition, when
the cut is made through a surface-based object model that does not contain information about
interior structure, the color, texture, and other features of the cut surface must be fabricated in
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order to make the cut look realistic1.  In contrast to the complexity of cutting through surface-based
representations, it will be shown here that it is relatively straight forward to cut through a linked
volumetric object.  In addition, interior elements in the volumetric object can be used both to
influence the cut path (for example by providing variable resistance to cutting) and to determine the
appearance of the new cut surface.

Figure 1. Volume rendered image of a human head showing the complex interior structure
of human anatomy.  A graphical representation of this interior structure is important both
for visualizing the anatomy and for physically realistic modeling of complex tissue
interactions.  Image courtesy of University of Mannheim, VIRIM group.  Data from the
Visual Human Project, National Library of Medicine.

An increasing number of applications in computer graphics and animation such as surgical
simulation, computer games and system maintenance training, use physics-based graphics for
object manipulation.  In physics-based graphics, physical laws govern object motion and
interactions between graphical objects.  When non-rigid objects interact, collisions must be
detected, and the response to collisions must be modeled by energy and momentum transfer
between objects and by object deformation.  While finite element methods (FEM) use volumetric
object representations and provide sophisticated mathematical techniques for modeling the physical
behavior of solid deformable objects, FEM is computationally demanding and requires careful pre-
processing and object meshing for accurate modeling.  Because many computer graphics
applications require interactivity in addition to physical realism, it has proven difficult to
incorporate FEM into most real-time applications. The need to balance realism with the demands of
real-time object manipulation and user feedback may require the compromise of modeling
interactions that are physically plausible rather than strictly physically realistic.  This paper presents
a volumetric object representation that has been used to generate physically-plausible simulations of
object interactions including object collisions [14], object deformation [15], [16], haptic rendering
of graphical objects, and the cutting, tearing and joining of deformable objects.

                                                
1 One way to texture the new surface, when then the model is based on 3D image data, is to map the
volumetric data onto the cut surface, although thus can be costly when the cut path is not planar.  This
method uses a hybrid object model consisting of both the surface model and the volumetric image data.
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3 Background
3.1 Volume Graphics
Volumetric data are generated by a number of sources including: medical or industrial scanning
such as Magnetic Resonance Imaging, Computed Tomography (CT) or Industrial CT; scientific
computing in computational fluid dynamics, finite element analysis, or geometric modeling; and
scientific measurements from geological and meteorological surveys.  The volumetric data can be
sampled on regular or irregular grids or it can be scattered data.  The data can consist of both scalar
and vector quantities.  Since the late 1970’s, Volume Rendering techniques have been used to
visualize such volumetric data.  A variety of Volume Rendering algorithms have been developed
for rendering regular grids, irregular grids, and scattered data, for displaying scalar and vector
data, and for producing object surface shading, tissue classification, and other visual effects (e.g.
see [22]).  Because of the demanding computational and memory requirements of Volume
Rendering, a great deal of effort has gone into designing fast algorithms and special purpose
hardware to enable real-time volume rendering (e.g. see [27], [36]).

Kaufman, Cohen, and Yagel introduce the field of Volume Graphics in [23]. Volume Graphics
deals with the synthesis [21], modeling [46], manipulation [14], and rendering (e.g. [22]) of
volumetric objects.  Kaufman and his collaborators have shown that many of the visual effects
produced by conventional graphics, including object shading, anti-aliasing, inter-object reflectance,
and radiosity calculations, can also be performed on volumetric objects [38] and [39], and [47].
Recently, attention in Volume Graphics has been given to object manipulation, including haptic
interaction with volumetric objects [1] and [34], and physically realistic modeling of object
interactions [14], [15], [18].  

3.2 Physics-based Graphics
Physically realistic simulation of object interactions has recently become a focus for computer
graphics and animation research.  Much progress has been made towards fast detection of
collisions between complex polygonal models (e.g.[30], [8]) and several researchers have
developed methods for simulating the transfer of energy and momentum between rigid polygonal
graphical objects upon collision (e.g. [2], [33]). There has also been some work in physics-based
modeling of interactions between volumetric objects.  For example: Gibson [14] and He and
Kaufman [18] have investigated collision detection algorithms for volumetric objects; Greene [17]
used a discrete representation of occupied space for guiding the stochastic growth of graphical
plants; robotics researchers have used a discrete space representation for obstacle avoidance in path
planning (e.g. [29] ); and some researchers have investigated haptic rendering of volumetric
objects with force-feedback [1], [34].

3.3 Deformable-tissue Modeling
In many applications, realistic object modeling requires the deformation of soft tissues or objects.
As discussed above, volumetric representations have advantages over surface-based models
because the interior structure impacts the physics of object interactions.  However, because
volumetric objects consist of a large number of elements, most object deformation techniques are
computationally intensive, require careful set-up of the problem and significant pre-processing.

The two most common techniques that have been used for modeling the deformation of volumetric
objects are FEM and mass-spring systems.  In mass-spring systems, discrete elements with finite
mass are linked by springs.  When an element is perturbed, the resultant spring forces are used to
compute the system dynamics.  In a dynamic simulation, the mass-spring system can be
represented by a system of second order differential equations with dimensionality proportional to
the number of mass elements.  Given an initial object configuration and a disturbing force, the
dynamic deformation of the object is simulated by advancing the object configuration forward in
time using a variety of numerical integration techniques.  Mass spring systems have been used to
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animate graphical objects (e.g. [44], [7]), for facial animation (e.g. [43], [48], [28]) and in
surgical simulation (e.g. [24]).

In FEM, the object is treated as a continuum rather than a discrete array of mass points.  Objects
are divided into continuous elements that are connected at discrete node points.  During simulation
of object deformation, displacements of points between the nodes are calculated using a
reconstruction function that is a linear combination of displacements of the node points.  The
weights of the linear equations are determined using a discrete set of interpolating or “shape”
functions that are applied to the rest position of the desired point.  Both the partitioning of the
object into elements and the choice of the shape functions affect the accuracy of the FEM solution.
Hence, they are chosen according to the required accuracy and computation limits.   As in mass-
spring systems, a dynamic FEM simulation requires the solution of a large system of second order
differential equations with dimensionality proportional to the total number of element nodes.  FEM
methods are typically used in off-line scientific computing such as the analysis of mechanical
structures.  However, FEM have also been used in graphical applications for fabric modeling (e.g.
[9]), animation (e.g. [6], [11]) and surgical simulation (e.g. [20], [10], [5]).

In order to achieve interactivity, simulation of object deformation can be accelerated by a significant
reduction in the number of elements in the system [20] or data pre-processing. Bro-Nielsen [5]
solves for displacements of only surface elements and assumes a small number of externally
applied forces.  Pentland and Williams [37] pre-calculate the deformation modes of a given object
and calculate deformations for an arbitrary force as a superposition of these deformation modes.
Bro-Nielsen and Cotin [4], [10] pre-calculate responses to infinitesimal forces and deformations
for each node in the element and then approximate the global deformation as a linear superposition
of these pre-calculated responses.

Both finite element and mass-spring methods have a number of limitations because they are
computationally demanding and because they are inadequate for modeling the large, non-linear
deformations that are found, for example, in human tissues (see [16] for further discussion).  In
this paper we discuss a fast, 2-step algorithm that was presented in [15] for approximating the
deformation of volumetric objects.  We also present experimental results that suggest that this
algorithm will be useful for modeling human tissue.

3.4 Sculpting Graphical Objects
A number of researchers have investigated the sculpting of volumetric objects.  Galyean and
Hughes [13] represent object material as a 3D array of discrete element values between zero and
one, where 1 represents the presence of solid material, 0 represents the absence of material, and
values between 0 and 1 represent either partial voluming or reduced material density.  Additive
sculpting tools increase element values up to a value of 1 and subtractive tools reduce element
values.  Element values of the object and tools are filtered with a lowpass filter to reduce aliasing at
edges and surfaces.  The marching cubes algorithm [31] is used to generate a polygonal surface
model for object manipulation and visualization.  Wang and Kaufman [46] use a similar sculpting
technique but use Volume Rendering for visualization.  Avila and Sobierajski [1] added a haptic
input device to provide force feedback during sculpting and allow tools to modify 3 different
values for each element: material color, density, and an index for material classification.
Simulations of NC milling have used similar techniques to model the removal of material by a
milling machine (e.g. see [45] and [19]).

While these volumetric sculpting techniques have potential applications in volume editing and
geometric design, the resultant array of intensity values lacks the physical sense of being an object.
This means that pieces cut away from the rest of the volume can not be manipulated as individual
objects and that these approaches are not easily extended for sculpting deformable materials.
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Bro-Nielsen advocates the use of FEM models because in theory they could be used to simulate
physically realistic cutting and tearing behavior.  Terzopoulos and Fleischer use a FEM object
representation to model fracturing or tearing in an off-line simulation of a relatively small 2D
deformable mesh in [42].  When stresses at a given node exceed some limit, they zero material
property weighting functions at the mesh node to produce a discontinuity that represents the
fracture.  However, accurate modeling of arbitrary cutting through a FEM model would require
reworking the equations governing the system, repeating pre-processing steps, and remeshing of
the model in order to provide a higher resolution mesh at high stress points (such as at the knife
tip) with each intervention.

4 Linked Volumetric Object Representations
Elements in a volumetric object encode information about visual and/or physical properties of the
object. As illustrated in Figure 2, each element can be represented by a single sampled value, such
as image intensity, or a more complex data structure that encodes information such as color,
transparency, edge strength, material properties, and connections to neighboring elements.  By
encoding many attributes for each element, we are able to model complex materials, structures and
behaviors.  However, since volumetric objects can consist of thousands to millions of elements,
(an MRI image of size 256 x 256 x 256 contains 16 million data points) this representation can
pose significant challenges for rendering, data storage and retrieval, and tissue modeling.

struct SimpleElementStruct {
char intensity; /* image intensity from data source */

} SimpleElement;

struct LinkedElementStruct {
char r, g, b, a; /* color and transparency for rendering */
char type; /* index into material properties */
float x, y, z; /* element position */
struct LinkedElement *top, *bottom, *right, *left, *front, *back;

/* pointers to neighboring elements */
} LinkedElement;

Figure 2.  Sample data structures.  SimpleElement is a data structure for a volumetric object
with a single value per element.  LinkedElement is a more complex data structure that stores
the element’s color and transparency, an index to material properties, the element position,
and linking pointers to neighboring elements.

If a volumetric object is represented by a static array of regularly spaced elements, element
positions are implicitly stored in the data organization and are determined by the array indices.  In
irregular arrays, such as deformable object models, the position of each element must be explicitly
stored in the element data structure.  In general, when object elements lie in a grid with fixed
topology, connections to neighboring elements are implicit from the data organization and
neighbors can be located at a predictable index offset.  However, when the object is not sampled
on a grid or when the object topology changes because elements are added, removed, or the object
is cut, then an explicit representation of connections between neighbors is required.  Figure 2b
presents a data structure that stores pointers to neighbors when a link exists and a NULL pointer
when a neighbor is absent.

As well as providing a means for modeling changes in object topology, an explicit representation
of neighboring links can foster fast propagation of information or forces due to object interactions.
This feature is used in the deformation algorithm discussed in section 5.4.  In addition, unlike an
explicit representation of neighbor connections, implicit representations require the storage of
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empty elements when an object does not fill the entire volumetric array.  For this reason, an explicit
representation may make more efficient use of memory.

5 Physics-Based Modeling
5.1 Collision Detection
Detecting object collisions is a fundamental requirement for a physics-based graphics simulation.
Efficient algorithms are essential because collision detection is generally performed more frequently
than all other operations.  Because of the large number of elements in a volumetric object,
techniques developed for surface-based graphics can not be directly applied.  However, collisions
can be simply and efficiently detected for relatively large objects using an algorithm presented in
[14] and illustrated in Figure 3.

Figure 3.  In a straight-forward collision detection algorithm for volumetric objects, all
object elements are mapped into a regular grid of occupancy map cells that span the
interaction space.  A collision is detected if an object element is mapped into a cell that is
already occupied by another object.

In this algorithm, each object is stored in its own volumetric array.  An additional volumetric array,
called the occupancy map, represents the entire object interaction space at the desired resolution for
collision detection.  Each cell of the occupancy map contains either a pointer to an object element or
a null pointer.  For each object in the system, object elements are mapped into the occupancy map
by writing the element’s address into the appropriate occupancy map cell.  When an object moves,
the occupancy map is updated by removing and then re-mapping element pointers of the moving
object.  If an element is mapped into an occupancy map cell that is already occupied by a pointer to
another object, a collision between the two objects is detected.  Because element pointers are stored
in the occupancy map, the colliding elements can be easily identified for calculating the collision
response.

This method can be used for both regularly spaced and irregularly spaced volumes as long as the
element spacing is comparable to the occupancy map cell size.  Self intersections can be detected by
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noting when an occupancy map cell is already occupied by an element from the same object.  In
case adjacent object elements map into the same occupancy map cell, neighbor pointers in the
element data structure are used to screen potential self intersections for this possibility.

There are a number of straight-forward improvements that can enhance the speed of this collision
detection algorithm.  First, since collisions occur at object surfaces, it is only necessary to map
surface elements or a shell of elements near the surface into the occupancy map.  Second, instead
of maintaining a large occupancy map to represent the entire object interaction space, this collision
detection algorithm can be applied in smaller, temporary occupancy maps that span only the
volumes of potential overlap between objects in the system.  These volumes of potential overlap
can be determined quickly using boxes bounding the volumetric objects and exploiting techniques
developed for surface-based graphics for fast collision detection between bounding boxes.
Finally, hierarchical data structures can be used to quickly determine which sub-volumes of
potentially colliding objects should be written into the occupancy map.  He and Kaufman [18] used
hierarchical data representations without an occupancy map representation of the interaction space
to detect the overlap of volumetric objects.  They found that an octree-based representation of
static, regularly spaced data yields efficient collision detection for reasonably sized objects.

5.2 Collision Response
Once a collision between graphical objects is detected, the next step is to determine the response to
the collision.  Believable simulations require physics-based collision responses.  In a system where
objects are moved interactively but do not have energy or momentum, the desired effect is usually
the prevention of object interpenetration.  In systems of rigid objects, collisions result in an
exchange of energy and momentum according to physical laws.  In systems of non-rigid objects,
collisions result in energy exchange, energy dissipation, and energy storage in the form of object
deformations.  Under some circumstances, graphical objects may be expected to break, tear or
fracture upon impact.

When the goal is to prevent object interpenetration, a standard back-tracking algorithm is used to
find the point of collision.  If object penetration is detected for a proposed new object position, the
object is not moved to that position.  Instead, the step size of the moving object is reduced.  If a
penetration is detected using this new step size, the step size is again reduced.  Otherwise, the step
size is increased slightly and the new position is investigated.  This process is repeated until the
maximum allowable step increment is determined.  With this back-tracking approach, step sizes
must be small enough to prevent objects from appearing to leap-frog over one another.

There are two basic methods that have been used in computer graphics for calculating collision
responses for rigid objects.  These are penalty-based methods (e.g. [40]), where restoring forces
are introduced to separate penetrating objects, and analytic methods (e.g. [2] and [33]), where
contact forces are determined analytically from constraints that prevent object inter-penetration and
guarantee physically realistic dynamics.  While analytic methods are more accurate and numerically
stable than penalty-based methods, penalty methods have the following advantages for volumetric
objects.  First, penalty-based methods have been successfully applied to deformable object models
while current analytic approaches are limited to rigid bodies2.  Second, a tractable solution of an
analytic method relies on a relatively small number of contact points.  In surface-based graphics,
contact points can be generalized to occur at polygon vertices or edges [2], and hence the number
of contact points is relatively small for object models represented by a reasonable number of
surface polygons.  In a volumetric model of the same object, the number of contact points could be
several orders of magnitude larger, making an analytic solution less tractable.

                                                
2 One exception being the work of Baraff and Witkin [Baraff and Witkin, 1992] who used analytic methods
for simulating collisions between flexible bodies with a limited deformation model.
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Penalty-based methods apply a restoring force to object vertices that are found to penetrate another
object.  The restoring force acts to separate the interpenetrating objects during a dynamic
simulation.  The strength of the restoring force is generally a function of the depth of penetration
and the object stiffness.  A large stiffness puts a higher penalty on object penetration, but also
requires small integration time steps for numerical stability.  Figure 4 illustrates in 2D the
calculation of restoring forces of interpenetrating polygonal and volumetric objects.

V

V

F1
F2

F3

Fr = - k (Σ dist(vi)) V

                 = - k Σ Fi

= - k (F1 + F2 + F3)
Fr = - k (dist(v1) + dist(v2) + dist(v3)) V

A

B

Figure 4.  In penalty-based methods, collision forces are calculated as a function of the
distance that an object has penetrated another object. For polygonal object models, the
response force can be calculated from the depths of penetrating vertices.  For most
polygonal object models, the number of penetrating vertices is relatively small (tens or
hundreds of contact points).  However, for volumetric objects, the force is summed over
all penetrating volumetric elements and the number of such elements may be quite large
(possibly thousands or more penetrating elements).

In the volumetric approach, forces for each penetrating element are summed together to determine
the restoring force.  In order in increase the speed of the collision response calculation, the distance
of the element from the nearest surface is encoded into each element structure.  The approach for
calculating collision responses is summarized as follows:
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At each time step:
1) detect all penetrating object elements
2) use the object material stiffness and the distance-to-surface value of each element to

calculate restoring force contributions for each element
3) sum the restoring forces and torques and adjust the state of the dynamic system

5.3 Object Deformation with Linked Volumes
For applications such as surgical simulation, physically plausible deformation must be achieved at
interactive rates for objects with complex geometry and internal structure.  While FEM and mass-
spring methods have been used for reasonably complex objects3, they require significant
preprocessing.  Here we discuss an algorithm from [15] for deforming volumetric objects that
exploits the fact that complex system behavior can result when a large number of elements each
follow simple rules.  The deformation algorithm consists of two processes that are applied
relatively independently.  Both processes maintain relationships between local elements.  Forces
applied to the object affect local elements and are propagated to other parts of the volume by local
interactions.

The first process, 3D ChainMail, responds to applied forces by quickly approximating the
deformed object shape.  The approximate shape is guaranteed to satisfy local inequality constraints
between neighboring elements but it may not produce a configuration of the volumetric elements in
which element spacings are optimal.  The second process, an elastic relaxation, adjusts element
positions to reduce the local system energy, which is a function of distances between neighboring
elements.  Optimal distances between elements result in a system of low energy.  Distances that are
too large or too small result in a higher energy system.  If the system has a single optimal
configuration and if the forces used to move elements towards this configuration are a linear
function of differences from the optimal element spacing, then the system behaves like a linear
elastic system.  The elastic relaxation process tends to relax the shape of the object,  smoothing out
the approximate shape produced by 3D ChainMail.  The result is that when an object is directly
manipulated, it assumes an approximate shape very quickly and then relaxes to a more natural
shape as the simulation proceeds.

Although inertia and damping are not explicitly modeled in the deformation algorithm, objects
modeled with these two procedures behave like a system with inertial properties and a damped
behavior.  The inertial behavior results from the fact that in 3D ChainMail, elements do not move
unless they violate constraints with their local neighbors.  If constraints are violated, an element
moves a minimum distance to satisfy the constraints.  The system exhibits damped behavior
because the elastic relaxation procedure is a closed, negative feedback system that adjusts an
element position by a partial step towards the optimal position.  When the step towards the optimal
position is small, the system is more damped.  As the step size -- the gain of the closed feedback
system -- increases, the system becomes critically damped and eventually under-damped.

5.3.1 3D ChainMail
In the 3D ChainMail algorithm, each element is linked to its top, bottom, left, right, front and back
neighbors.  After an element is displaced by an applied force, distances between the moved element
and its neighbors may violate a maximum or minimum distance constraint.  If this occurs, the
affected neighbors are moved until their constraints are again satisfied.  Neighbors of these points
may also have to be moved to satisfy additional constraints.  When an element is displaced, the
algorithm propagates the deformation through the object in a single time step.  This provides fast
response to user input, even though the shape assumed by the object may not minimize the system
energy.  3D ChainMail is particularly fast for tissues with homogeneous (though possibly
                                                
3 Stephan Cotin reports an FEM system that provides interactive manipulation of an 8000 node liver
model.  However, the model requires many hours of preprocessing to achieve interactivity.  Personal
communication from Stephan Cotin, INRIA, Sopia Antipolis, France, April, 1997.
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anisotropic) materials because disturbances can be propagated through the volume by considering
each volume element at most once and by comparing each element to at most one neighbor.

Figure 5 illustrates the deformation of a 2D mesh of points using 2D ChainMail.  In the following,
the discussion will focus on 2D objects.  However, the extension to 3D is straightforward and both
2D and 3D versions of this algorithm have been implemented (see Section 6.2).

A B C D

E F G H
Figure 5 illustrates the deformation of a 2D object made up of linked elements.  A single
element is manipulated and other elements move to satisfy minimum and maximum distance
constraints.  In the top row, the object is represented by a point at each element.  In the
bottom row the links between elements are drawn.

Two types of lists are maintained in 2D ChainMail: 1) a list of pointers to moved elements and their
previous positions; and 2) lists of elements than are candidates for movement.  The four movement
candidate lists are classified according to whether list elements are the top, left, bottom, or right
neighbors of their sponsoring element.  Each candidate element is processed in turn, starting from
the element where the force is applied and then proceeding in order through the right, left, top, and
bottom candidate lists. When processing an element, the distance between the element and its
sponsoring element is checked.  If constraints on this distance are violated, the element is moved a
minimum distance until the constraints are satisfied.  When an element is moved -- either under
direct control of the user or indirectly in response to a neighbor's movement -- the element
becomes a sponsor to its neighbors that have not been moved and these neighbors are appended to
their respective movement candidate lists.

The constraints on distances between elements are defined as follows: each element must lie within
a horizontal range of ∂xmin  and ∂xmax  from its left and right neighbors and within a vertical range of
∂ymin  and ∂ymax  from its top and bottom neighbors as illustrated in Figure 6a.  These constraints
limit the stretching and compression of the material.  In addition, each element must lie within
±∂y horiz_ max, from its horizontal (left and right) neighbors and within ±∂x vert_ max , from its
vertical (top and bottom) neighbors as illustrated in Figure 6b.  These constraints limit the material
shear.
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Figure 6 illustrates the constraints on the distances between an element and its top and right
neighbors.  In 6a, the constraints that limit stretching and contraction are illustrated.  The y-
value of the top element must lie within the distance range of ∂ymin  to ∂ymax  from the y-
value of the central element.  Similarly, the x-value of the right element must lie within a
range of ∂xmin  to  ∂xmax  from the x-value of the central element.  In 6b, the constraints that
limit shear are illustrated.

The 2D ChainMail algorithm is summarized as follows:
1) When a force is applied to an element: i) the element is moved; ii) a pointer to the element and its
old position are stored in the list of moved elements; and iii) its four neighbors are added to the
appropriate movement candidate lists.

2) Each candidate list is processed in order until all of the candidate lists are exhausted or a
collision is detected, in which case moved elements are returned to their previous positions using
the moved candidate list, and a smaller step towards the desired position is attempted.  The
candidate lists are processed in the following order: right, left, top, bottom.  

3) The right candidate list is processed in the following manner.  Beginning with the first element
in the list, the maximum and minimum distance constraints between the neighbor and its
sponsoring (left) neighbor are checked. If the distance constraints are violated, the element is
moved by a minimum distance until the constraints are satisfied.  For example, if an element is too
close to its sponsoring left neighbor, it is moved to the right until the two elements are separated by
∂xmin .  Considering both stretch and shear constraints, the new element position can be calculated
as follows:

if x x x x x xleft left      ( − ) < = +∂ ∂min min,

else if x x x x x xleft left       ( − ) > = +∂ ∂max max, .

if y y y horiz y y y horizleft left      ( − ) < − = −∂ ∂_ , _max max

else if y y y horiz y y y horizleft left        ( − ) > = +∂ ∂_ , _ .max max

If a right candidate is moved, its top, right and bottom neighbors are added to the appropriate
candidate lists.  Each right candidate is processed in turn until no right candidates remain.

4) The left list is processed in a similar way except that left elements are sponsored by their right
neighbors and movement of a left element causes its bottom, left, and top neighbors to be added to
the candidate lists.
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5) The top and bottom lists are also processed in a similar manner except that the top and bottom
elements are sponsored by their bottom and top elements respectively and movement of a top (or
bottom) element causes only a top (or bottom) element to be added to the appropriate candidate list.

This algorithm must be modified slightly for non-convex objects.  In non-convex objects, if the
right or left neighbor of a moved top (or bottom) element does not have a bottom (top) element, it
should be added to the appropriate candidate list.  This may require that candidate lists be visited
more than once to exhaust all elements from the candidate lists.

The algorithm is especially fast for three reasons: 1) no element is considered more than once for
each deformation, 2) the deformation is propagated outwards from the selected point until
constraints are no longer violated so that the propagation is terminated as soon as possible and 3)
each element is compared to only one neighbor (its sponsoring neighbor) for determining its
movement.  The first two properties result from sequence in which elements are added to candidate
lists.  The last property is valid for objects with homogeneous material properties and is proven in
Appendix A.

5.3.2 Elastic Relaxation
The approximate object shape produced by 3D ChainMail does not necessarily have an optimal
energy configuration.  Hence, an elastic relaxation is applied to locally adjust relative object
positions and reduce the system energy.  The system energy depends on the distances between
object elements.  If these distances fall within an optimal range, the system energy is low.  When
the distances are outside of this range, the system energy is higher.  During elastic relaxation,
forces are applied to each element sequentially, in an iterative, closed feedback system that adjusts
element positions to reduce the system energy.  

The nature of the forces that govern the element position adjustments determines the tissue
response to applied deformations.  For example, if the relaxation forces are a linear function of
element displacements from their optimal positions, then the stress vs. strain response of the
simulated material is linear.  Experimental results presented in Section 6.2 illustrate that non-linear
relaxation force functions can produce non-linear tissue behavior.  In addition, the force function
also determines the elasticity of the tissue.  If the force function relaxes the system towards a single
optimal configuration, then the object behaves elastically.  However, if the system has a range of
optimal configurations, then the object may assume a configuration that is different from the
original shape and the object behaves plastically.

Elastic relaxation is applied between applications of 3D ChainMail and whenever processing time is
available.  The time constant and damping of the simulated tissue response can be modified by
adjusting the magnitude of relaxation forces and how frequently this process is applied.

5.4 Cutting, Tearing, and Connecting Linked Volumes
Applications such as surgical simulation require the modeling of cutting, tearing, and connecting
objects.  Current volumetric sculpting methods assume that the object is a static 3D array of density
values.  These density values are increased or decreased to represent addition or removal of
material but there is no way to physically simulate the actions of cutting, tearing, or joining.
However, using a linked volumetric model, cutting and tearing are performed by breaking
connections between neighbors while objects are connected by forming new links between object
surface elements.
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cut path

A B
Figure 7.  When cutting volumetric objects, links between elements that lie along the
cutting path are broken by removing the connections between appropriate neighbors.

Figure 7 illustrates cutting, where connections are broken along the path of a knife instrument as it
is passed through the virtual object.  Intersections between the knife path and the object are
detected by moving the knife volume through the occupancy map and checking for collisions.  The
occupancy map is modified slightly so that cells corresponding to object elements contain element
pointers while cells between linked elements that do not fall into adjacent occupancy map cells
contain pointers to both of the linked elements.  If the knife path encounters a cell occupied by an
element, the element is removed and appropriate neighbor connections are removed.  If the knife
passes through a cell indicating a link between two elements, the connection between those two
elements is broken.  This algorithm is illustrated in Figure 8.

object

cut path

occupancy map

object

cut path

occupancy mapA B

edge point

interior point

edge line

Figure 8.  To model tissue cutting, both object elements and the links between elements are
mapped into the occupancy map.  When the cut path intersects a cell containing an element,
the element and its links to neighbors are removed.  When the cut path intersects a link
between two elements, then the connection between the two elements is removed.  In
practice, only links between elements on the object surface need to be mapped into the
occupancy map as shown here.
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Tearing occurs when the distance between two elements is stretched beyond an allowable limit, for
example, when two parts of an object are pulled in opposite directions.  When a limit violation
between two elements cannot be resolved by moving neighboring elements, the connection
between the elements is broken.
For joining objects together, occupancy map cells in the vicinity of the joining instrument are
searched for object elements that have missing neighbor connections.  Elements with
complementary missing neighbors are paired and joined.  This process is illustrated in Figure 9.

A B

C D

glue stroke

Figure 9.  To join two elements together, occupancy map cells in an area or volume
surrounding the joining instrument are searched for elements with missing neighbors.
Those elements that have corresponding missing elements are paired.  For example, an
element missing a right neighbor is paired with an element missing a left element.  Finally,
paired elements are joined by setting the appropriate neighbor links.

We have implemented the 2D system shown in Figure 10 where objects can be moved (resulting in
object translation), cut, grasped and moved (resulting in object deformation), tacked into place,
glued together, and erased interactively using the computer mouse.  Pointing and clicking on the
buttons on the right side of the user interface switches between these modes.  The system was
implemented in C, Tcl/Tk, and OpenGl and runs on an SGI platform.
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Figure 10.  A 2D system where objects consist of an array of linked elements.  By selecting
a tool on the right side of the user interface and manipulating the tool with the computer
mouse, objects can be moved, cut arbitrarily, deformed, tacked into place, glued together,
and erased interactively.

6 Experimental Results
6.1 Object Collisions
6.1.1 Implementation details
Volumetric collision detection has been implemented in a number of 2D and 3D systems ranging
from computer-based jigsaw puzzles and 2D drawing tools to 3D object manipulation.  Most of the
systems have been implemented using the algorithm described in Section 5.1, where a single
occupancy map representing the entire interaction volume is maintained and updated as objects
move about.  All systems have been implemented in C on either SGI or HP platforms.  Many of
the systems prevent object interpenetration and self intersection of deforming objects by
backtracking the object when a collision is detected as described in Section 5.1.

A number of the methods have been implemented for improving the speed of the collision detection
algorithm.  For example, significant speedups are obtained when only surface elements are mapped
into the occupancy map.  In addition, by suspending the mapping of object elements into the
occupancy map as soon as a collision is detected in order to begin backtracking, the speed of
interactive systems that prevent object interpenetration has been significantly increased.

6.1.2 Timing experiments
A number of timing tests were made in order to demonstrate the performance of the collision
detection algorithm.  The tests involved two objects: a stationary sphere with a radius of 30 voxels
located at the center of the interaction space; and a cube, initially located at the side of the
interaction space.  During the test, the cube was moved in steps of size 5 voxels along a path
through the center of the interaction space.  Two sets of experiments were performed.  In the first,
the cube was permitted to penetrate the sphere and collisions were observed by recording all of the
overlapping elements of the two objects for each step.  In the second, objects were prevented from
penetrating each other by combining collision detection and backtracking.  Two sizes of cubes
were used in the tests, a cube with dimensions 31x31x31 and a cube with dimensions 15x15x15.
The collision detection was performed for two versions of the collision detection algorithm, the
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first mapping all of the cube elements into the occupancy map and the second mapping only surface
elements into the occupancy map.

The results from these tests are presented in Table 1.  Times are reported in milliseconds.  The
system was integrated in C on an SGI Indigo2 without particular efforts to optimize the code.  The
reported times are for all operations in each step except rendering.  Since collision detection timing
depends on the degree of overlap between objects, timing has been reported, in the collision
detection test: for the cube in free space; and fully inside the sphere; and, in the system for
preventing object interpenetration: for the cube in free space; in initial contact with the sphere; and
when touching the sphere.  When objects are prevented from interpenetrating, the object elements
are mapped into the occupancy map only until a collision is detected, and then backtracking is used
to reduce the step size.  Hence, in tests of this process, object element ordering will affect the
timing.  For this reason, in the object penetration tests, the cube was placed at the center of each of
the 6 faces of the interaction space and moved from left to right, right to left, top to bottom, etc.
through the sphere at the center of the interaction space.  The times reported in Table 1 are the
timing results from left to right and the average times (in brackets) for the 6 directions of motion.

object (no. of elements) collision detection
free space    collision

                no penetration
free space    impact (avg)   touching (avg)

large cube (29791 els)      134      156      133 153  (238) 34.8  (96.9)
small cube (3375 els)      13.7      15.5      13.8 14.3  (42.5) 0.32  (9.94)
large cube surface (5402 els)      19.7      23.7      19.6 24.7  (25.4) 8.85  (10.6)
small cube surface (1178 els)      3.76       4.42      3.79 4.11  (4.74) 0.32  (1.05)

Table 1. Timing for volumetric collision detection.  Times, measured in milliseconds, are
for moving or attempting to move the cube with a step size of 5 voxels.  Collision detection
times are the times required to detect and record all of the overlapping points (or surface
points) in the objects as the cube is passed through the center of a large sphere.  No
penetration times are the times for each step when the objects are prevented from
penetrating each other.  See the text for more detail.

These timing tests show that collisions can be detected and object interpenetration can be prevented
at interactive rates between reasonably large objects using a simple collision detection algorithm
(even the worst case of collisions using all element points for a 31x31x31 volume can be
performed at more than 6 frames per second without optimization).  The use of surface element
mapping, data hierarchies, bounding boxes, and other techniques developed for surface-based
graphics can greatly improve the speed of the collision detection.

6.2 Object Deformation
6.2.1 Implementation details
The combination of 3D ChainMail with an elastic relaxation process has been implemented in a
number of 2D and 3D applications.  One example application is a 3D system for manipulating
volumetric, deformable objects with continuous control of object mechanical properties so that
materials ranging from rigid to deformable and elastic to plastic can be modeled.  A second
application is a 2D drawing tool that allows objects to be input from a library or drawn by hand and
then interactively deformed and manipulated.  In this application, the deformation technique is
combined with collision detection so that objects are prevented from interpenetrating.  All of the
applications have been implemented in C on an SGI platform.  Objects are interactively
manipulated with a computer mouse or 3D input device.  User interfaces were implemented with
Tcl/Tk and deforming objects are visualized rendering all elements for 2D objects and surface
points of 3D objects using OpenGL.  We have attained interactive deformation of objects with as
many as 50x50x50, or 125,000 elements, on an SGI Indy.



19

6.2.2 Timing experiments
Because all interactions are local, and because elements are moved at most once with each
application of both 3D ChainMail and the elastic relaxation step, the time taken to deform an object
will vary at worst linearly with the number of elements in the system.  Figure 11 show the result of
timing tests for 3D ChainMail applied to a 2D system where the number of elements, the object
deformability, and the amount of displacement of a control element were varied.  Five square
objects were used of the following sizes: 10x10, 50x50, 100x100, 150x150, 200x200.  In
separate experiments, the deformability of the object was set to rigid, moderately deformable
(medium), and very deformable (loose) by increasing the range of allowable distances between
neighbors.  In each experiment, a control element located at the center of the object was moved at a
constant rate, 100 times around a square with dimensions: 10x10, 50x50, and 100x100.  The
figure reports the results of movement around the squares of dimensions 50x50 (small
deformation), and 100x100 (large deformation).  Rigid objects show the worst response because
all elements in the object are considered and moved for each displacement of the control element4.
However, even in this worst-case scenario, the time required to “deform” the object increases only
linearly with the number of elements in the object.  For deformable objects, the response time is
better than linear because the deformation often does not have to be communicated to all of the
object elements.  In a very deformable object, a small deformation is communicated to a small
number of local neighbors and the deformation is very fast.

2D Deformation Timing
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Figure 11.  Results of timing experiments for a 2D system.  Objects with 100, 2500,
10000, 22500, and 40000 elements were deformed by moving a control element at the
center of the object at a constant rate 100 times around a square of size 50x50 (small
deformation) and 100x100 (large deformation).  The results for objects with deformability
set to rigid, moderately deformable (medium), and very deformable (loose) are presented.

                                                
4 While it is important for a deformation algorithm to be well behaved for objects that lie in the continuum
between rigid and deformable, in practice it is probably not advisable to use a deformable modeling
technique to manipulate rigid objects.  However, these experimental results for rigid objects can be used to
compare this approach with other volumetric deformation techniques, such as mass-spring methods, which
behave badly for stiff objects.
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6.2.3 Tissue response measurements
The volumetric deformation approach presented in this paper was originally developed for
simulating human tissue.  Human tissue has a number of complex behaviors that have been
reported in the biomechanics literature (e.g. see [12]).  One of these behaviors is that the stress in a
system loaded at a constant rate of deformation varies non-linearly with the amount of deformation.
A second behavior is hysteresis during loading and unloading: the internal forces (or stress) of the
material increases at a different rate when a load is applied than it decreases when the load is
removed.  A third behavior, a process known as relaxation, is that when living tissue is deformed
with a constant rate to a given length and then held at that length, the internal stress decreases with
time towards a lower stress level.  In order to test the material properties of the combination of
ChainMail and elastic relaxation, a 1D deformable system has been implemented.  One end of the
1D chain was fixed and the other end could be displaced at a constant rate along the direction of the
chain.  As described below, the tests show that the combination of ChainMail and elastic relaxation
is capable of modeling all three behaviors and hence that it is a good candidate for modeling living
tissues.

This paper has described an approach for modeling deformable objects that is very general.  3D
ChainMail ensures that an object with even complex geometric structure will at least assume a
shape that satisfies minimal constraints and the elastic relaxation process determines the
characteristic behavior of the tissue.  A variety of force functions can be used by the elastic
relaxation to determine the internal system energy and calculate local adjustments of element
positions.  If the relaxation force is a linear function of the difference between the distances
between elements and the optimal element spacing, then the internal force, or stress, of the material
varies linearly with deformation.  If the function used to determine stress and adjust element
positions is quadratic or more complex, then the stress vs. deformation curve is non-linear.  Figure
12 shows the result of several tests on the 1D chain described above.  Two of the curves resulted
from applying a linear force function in the elastic relaxation step and three curves resulted from a
quadratic force function.  In practice, a wide variety of both analytic and measured force functions
could be applied by the elastic relaxation process by using lookup tables to determine forces for a
given element separation.  By setting maximum and minimum separations between elements, 3D
ChainMail limits the extent of influence of the force functions.

Because the inequality constraints of the 3D ChainMail algorithm have different effects when the
object is stretched or compressed, like living tissue, an object modeled with 3D ChainMail will
behave differently when it is loaded and unloaded.  In order to test this hypothesis, 3D ChainMail
and a quadratic elastic relaxation function were applied to the 1D chain.  The chain was stretched at
a constant rate to a given length and then compressed at the same rate while recording the total
internal force.  As illustrated in Figure 13, the resultant behavior showed hysteresis in the stress
vs. deformation curves that is similar to the hysteresis that has been measured in human and animal
tissue [12].

Because of the damped behavior of the deformation system due to using a small gain in the elastic
relaxation feedback loop, the system exhibits a behavior similar to tissue relaxation, in which,
when living tissue is stretched at a constant rate to a given length and then held fixed at that length,
the internal stress in the tissue decreases with time towards a lower value.  Figure 14 shows the
result of a test that demonstrates relaxation in the deformation algorithm.  A 1D chain was stretched
to half of its maximum length and then its length was fixed while the internal force was measured
as a function of time.  A quadratic force function was used to calculate internal forces and to adjust
element positions in the elastic relaxation.
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Figure 12.  Measured internal force as a function of deformation for loading at a constant
rate.  The two linear curves resulted from using a linear function to calculate internal forces
and adjust element positions during elastic relaxation.  The three non-linear curves resulted
from using a quadratic function to calculate stress and adjust element positions.
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Figure 13.  Stress vs. constant loading and unloading in a 1D chain.  The object length is
stretched to given point at a constant rate of deformation and then reduced at the same
length.  As in living tissues, the loading and unloading curves exhibit hysteresis.
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Figure 14.  The result of an experiment in which a 1D chain was stretched to half its
maximum length, the length was fixed, and the stress was measured as a function of time.
Like living tissue, the material exhibits relaxation: the stress decreases as a function of time
to a lower value.

6.2.4 Parameter assignment
The experiments that have been presented here were designed to test tissue behaviors, rather than
to validate the approach for specific materials.  For this reason, parameters were not chosen to
correspond to the mechanical properties of specific materials or tissues and the measured internal
forces are based on heuristic functions (i.e. linear and quadratic curves) rather than known or
measured relationships.  In general, there are 3 ways to chose material parameters for specific
tissues: 1) choose parameters to match the output of this system to predictions of a more rigorous
mathematical model such as non-linear, large deformation FEM; 2) choose parameters to match
measured tissue responses; and 3) allow surgeons or other specialists to interactively tune the
parameters until they are satisfied with the tissue behavior.  Once the tissue parameters are set,
similar techniques could be used to validate the tissue model as long as the parameter setting
technique and the validation technique are independent.

7 Discussion and Future Work
Volumetric methods provide a powerful tool for modeling, visualizing, and interacting with
graphical objects.  This paper has presented a linked volumetric structure and a set of algorithms to
model physics-based interactions between objects such as: collision detection, object deformation,
and the arbitrary cutting and joining of objects.  Many of these phenomena are particularly difficult
to model with surface-based graphics.  These algorithms have been implemented in C and have
been shown to be effective and interactive for reasonably sized volumetric objects.  

The results of a number of experiments for testing timing and the material properties resulting from
these algorithms have been presented.  For example, it has been shown that the 3D ChainMail and
elastic relaxation algorithms result in deformation where: the system dynamics exhibit inertial and
damping behavior; tissue characteristics can range from rigid to deformable, and elastic to plastic;
tissues with non linear stress-deformation curves can be modeled; and, similar to living tissues,
materials can exhibit relaxation and hysteresis between loading and unloading.
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Although the work that has been presented in this paper has demonstrated the potential and the
feasibility of volumetric methods, there are many areas that require further investigation.  Some
examples of these areas are listed here.  First, improvements can be made to algorithms that have
been presented here by implementing changes in the collision detection algorithm, developing a
more general extension to 3D ChainMail that is less axis dependent and can handle heterogeneous
materials, and developing more efficient data structures for visualization, physics-based modeling,
and haptic rendering.  Second, additional physics-based algorithms for volumetric objects, such as
algorithms that model collision responses or that handle liquids as well as solids [41], need to be
developed.  Third, an important step for practical applications will be the experimental verification
of simulated material properties by comparing predicted results to experimental data and the output
of rigorous mathematical computation as discussed in 6.2.4.  Fourth, because rendering is often a
bottleneck for real-time interaction with volumetric objects, efforts must be made to produce real-
time, high quality visual and haptic rendering of deforming volumes and to provide realistic, high
quality rendering of object surfaces.  Finally, hybrid graphics systems that combine both surface-
based and volumetric models in rendering and physical modeling are needed so that objects can be
represented in an optimal format.
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Appendix A: Proof of 2D ChainMail Comparison Theorem
Theorem:
In 2D ChainMail, each element can be compared to a single neighbor when the object has constant
deformation limits throughout its volume.  
Proof:
Because the starting position for each element already satisfies local constraints for neighbors that
have not moved, an element must only be compared against those neighbors that have already
moved.  If the candidate is moved to satisfy constraints with respect to the moved neighbors, then
the unmoved neighbors will be added to movement consideration lists and constraints between the
element and these neighbors will be satisfied later.

For elements in the left (or right) candidate lists, only the sponsoring right (left) neighbor has been
moved prior to movement consideration.  Hence, for left and right candidates only one neighbor
must be considered.

For top (or bottom) neighbors, it is possible that two neighbors, the sponsoring bottom (or top)
neighbor and its left (or right) neighbor, were moved prior to consideration.  However, it is shown
here that when an element from the top candidate list satisfies deformation constraints relative to its
sponsoring bottom neighbor, then it automatically satisfies the constraints of its left neighbor as
long as the left neighbor was previously placed to satisfy its own bottom neighbor.
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Figure A1. Grid configuration to show the spatial relationship between the point A, and its right
neighbor, B, its top neighbor, D, and its right/top diagonal neighbor, C.

For the point, A, if the top and right neighbors, D and B respectively, satisfy the deformation
constraints with respect to A (see Figure A1), then:

( , ) , , _ , _[ ] [ ]min max max max   x y x x x x y y horiz y y horizB B A A A A∈ + + − +( )∂ ∂ ∂ ∂
≡ ( )[ ] [ ]min max min max/ / / /

, , ,x x y y
B A B A B A B A
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In the above expression, x

P Amin /
 means the minimum x value for the point P given the position of

A, and   x x x∈ [ , ]0 1  implies that the value of x lies between x0 and x1 .

In addition, C, the top neighbor of B, satisfies the deformation constraints with respect to B:
     x y x x vert x x vert y y y yC C B A B A B A B A
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Hence, in addition to satisfying the distance constraints with respect to its bottom neighbor B, (xC,
yC)  also satisfies the deformation constraints with respect to the left neighbor, D.  Therefor, when
an element of a top candidate list is moved to satisfy constraints with respect to its bottom
neighbor, it automatically satisfies constraints with respect to its previously considered left
neighbor.  Hence, for elements of the top candidate list, only one neighbor must be considered to
satisfy both sets of constraints. A similar argument can be made for elements of the bottom
candidate list.
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