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Abstract

The GLIDE system is an interactive constraint-based editor for drawing small- and medium-sized
graphs (50 nodes or fewer) that organizes the interaction in a more collaborative manner than in
previous systems. Its distinguishing features are a vocabulary of specialized constraints for graph
drawing, and a simple constraint-satisfaction mechanism that allows the user to manipulate the
drawing while the constraints are active. These features result in a graph-drawing editor that
is superior in many ways to those based on more general and powerful constraint-satisfaction
methods.
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The glide system is an interactive constraint-based editor for drawing small-
and medium-sized graphs (50 nodes or fewer) that organizes the interaction
in a more collaborative manner than in previous systems. Its distinguishing
features are a vocabulary of specialized constraints for graph drawing, and a
simple constraint-satisfaction mechanism that allows the user to manipulate
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OVERVIEW

The dominant metaphor in the design of human-computer interaction is the view of com-
puter as servitor. Although interfaces based on this view have proved useful in very many
settings, qualitative progress in the area of human-computer interaction may await the abil-
ity to interact with the computer as collaborator. We have built a system, called \glide"
(Graph Layout Interactive Diagram Editor), for interactive graph layout,1 that organizes the
interaction in a more collaborative manner than in previous graph-drawing systems. The
glide system is a constraint-based drawing editor designed speci�cally to enable users to
easily produce small and medium-sized diagrams. The user is responsible for an approxi-
mate layout of the nodes, and for specifying declaratively the overall visual organization of
the diagram. The computer converts these visual-organization requirements into a set of
constraints expressed in terms of a simple physical model, and calculates the positions of
graphical objects via physical simulation. Unlike traditional reactive interfaces in which the
user makes a request and waits for a response, glide is a fully interactive system in which
both user and computer can a�ect the state of the drawing simultaneously. The system does
not pause while the user adds or moves nodes and edges, or applies or deletes constraints.
Likewise, the user can intervene and continue to interact with the drawing as the system
adjusts node positions in an attempt to satisfy the various user-speci�ed constraints.

More speci�cally, glide incorporates a carefully chosen set of \macro" constraints, or
Visual Organization Features (VOFs), which are listed in Figure 1; the application of each
VOF is illustrated by before and after layouts.2 The user-speci�ed VOFs are applied by
converting them into a set of spring-like forces a�ecting the nodes in a graph drawing. Addi-
tional forces are introduced automatically to preserve syntactic correctness of the drawing.
The user may also apply force directly to a node by dragging it with the mouse. The nodes,
which are modeled as point masses, are moved into minimum-energy con�gurations by a
physical simulation based on a generalized force-directed algorithm [5], whose behavior is
easily appreciated and in
uenced by the user. The simulation of the physical model is an-
imated continuously, thus providing useful visual feedback to the user [1, 16]. Although a
weak mechanism for satisfying constraints, energy minimization through physical simulation
handles over-constrained systems gracefully, and provides an easily understood metaphor for
the user.

In glide, user manipulations are useful not only for exploring design alternatives but for
providing \advice" to the system when it �nds itself in a local optimum. Figure 2 is a simple
example. In Figure 2(a), we see three nodes, connected by two edges. The user has added
a single Alignment VOF to the set of nodes. The system attempts to satisfy this constraint

1By \graph" we mean the node-edge network diagrams widely used to visualize binary relations, and
not arbitrary informational graphics. There is a considerable literature on graph-drawing algorithms, but it
primarily concerns noninteractive techniques for automatic graph layout [2, 3, 11, 12, 15].

2These VOFs have been incorporated previously in two batch systems for graph layout [4, 9]. The present
system is the �rst to allow interactive speci�cation and manipulation of persistent high-level VOFs such as
these. In related work, Henry and Hudson have described an interactive graph-layout system that uses a
di�erent set of nonpersistent layout operators [7].
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Figure 1: Visual Organization Features (after [9]).
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Figure 2: User intervention is required to �nd a globally optimal solution.

by moving the three nodes toward an implicit horizontal line running through the vertical
centroid of the three nodes; meanwhile, the syntactic constraint prohibiting overlap provides
a repulsive force between nodes and edges. In Figure 2(b), glide has moved node A down,
and nodes B and C upwards. The three nodes cannot be aligned, however, due to the edge
between B and C. By manually moving A anywhere to the left of B (Figure 2(c)), the user
obtains an optimal arrangement (Figure 2(d)).

These interactions occur as the simulation is running, and allow the computer and system
together to collaborate in �nding better global solutions to the implicit constraint-satisfaction
problem. Such advice is especially useful in cases of over- or underconstrained designs. If a set
of VOFs generates an overconstrained layout, glidewill �nd the nearest stable con�guration,
which may satisfy di�erent VOFs to varying degrees. The user, who controls the design
process at a global level (the choice of VOFs and the gross placement of nodes in the diagram),
can easily guide the computer to �nd more satisfactory solutions and acceptable layouts
by moving nodes or adjusting VOFs. In case of underconstrained layouts with multiple
solutions, the user can also provide advice to explore alternatives.

In the next section we illustrate the use of glide by describing a typical interaction from a
user's perspective. We then describe the underlying constraint-speci�cation and -satisfaction
mechanisms in detail.

1 EXAMPLE INTERACTION

Figures 3 to 7 show snapshots of various intermediate stages in the process of drawing a
given graph. Figure 3 depicts the complete system interface; other �gures show only the
canvas area.

For simplicity of exposition, the example interaction depicted here is based on a task
in which the user attempts to create a particular layout already envisioned, rather than
exploring alternative layouts. The user places a set of nodes in approximately the desired
layout using standard direct-manipulation techniques. Even at this stage, however, the
system is helping out by automatically enforcing prohibitions of overlapping nodes; nodes
too close together will be repelled from each other.3

3As is standard in drawing tools, the user has control over a variety of graphical properties of the nodes,
including shape, font, background color, foreground color, border color, and dimensions. These are derived
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Figure 3: Initial layout, with labeled nodes and edges, shown in the context of the glide
interface.
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Figure 4: User adds an Alignment VOF to each row.

Edges, directed or undirected, linear or orthogonal, can be added between nodes. Figure 3
shows the layout after an initial node- and edge-placement phase. Note the orthogonal edge
between the \ParticleDistribution" and \Electron" nodes. The system will maintain the
orthogonality constraint (comprising two alignment constraints and a phantom node { see
below) throughout the design process.

To add a VOF to the layout, the user �rst selects a set of nodes using standard mouse
techniques such as clicking or region-dragging. The user may then apply one or more VOFs
to the set by pressing the appropriate push buttons, located on the right of the window in
Figure 3. In Figure 4, the user has applied a horizontal Alignment VOF to the second, third,
and fourth rows of nodes. As VOFs are applied to the nascent diagram, graphical indicators
of the constraints are added. In the implemented system, the graphical VOF indicators are
shown visually by a dynamic highlighting mechanism that cannot be replicated in static
images. We therefore use shades of gray to indicate di�erent VOFs in the �gure; the grey
rectangles in Figure 4 serve as a graphical indicator of the Alignment VOFs.

The system satis�es these constraints via the simulation algorithm described in more
detail below. Indeed, movement of the nodes to satisfy the constraints would typically
proceed while the user is adding more VOFs.4 Figure 5 shows the stable con�guration that
ensues after the three Alignment VOFs have been satis�ed, along with three more VOFs the
user has added. On the right, the user has added a Hub Shape VOF, indicated as a light

from system defaults, which can be set by the user, and modi�ed at any time via a dialog box. Each node
is automatically sized to accommodate its label; if a node's label is changed, the system will automatically
enlarge a node to accommodate its new label. These capabilities are not shown in the �gures.

4The glide system is written in Tcl/Tk, with the simulationwritten in C. The simulation runs continually,
polling for user input using the update facility during screen updates. In this manner, user input can be
immediately re
ected in the physical simulation.
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Figure 5: User adds three more VOFs: Symmetry, Alignment and Hub Shape.
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Figure 6: User adds three text labels, and three VOFs: Clustering, Even Spacing and
Alignment.
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Figure 7: The �nished layout.

gray circle. The center two nodes (dark gray) are to be vertically aligned. Finally, the four
nodes on the left have had a Symmetry VOF applied to them.

Once again, the system attempts to satisfy all of the constraints, both old and new, in
determining each node's placement. Figure 6 shows the updated node positions. Each row
is still aligned, and the new VOFs have been satis�ed as well. In addition, the user adds
three text labels to the layout. Text labels are simply a specialized node type. The user has
applied three more VOFs, which will better position each of the text labels. The light-gray
nodes on the left are subject to a Cluster VOF. The dark-gray nodes on the bottom are
to be horizontally aligned. The middle three nodes, shaded medium gray, are to be evenly
spaced. Figure 7 shows the �nal layout generated by the full set of nine VOFs.

IMPLEMENTATION

From a user's perspective, glide is a simple high-level interface for adding and deleting nodes
and edges, and for applying and removing various VOFs, thereby inducing new drawings.
This facade is maintained by the underlying system, which is continually translating user
actions into low-level constraints that it then tries to satisfy. In this section, we describe the
relationship between the high-level VOFs and the low-level constraint mechanisms, and how
the constraints are satis�ed by physical simulation. In addition, we also describe how the
constraints and constraint-satisfaction process are made apparent to the user.
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Constraint Formulation

The fundamental low-level constraint mechanism is essentially a spring that obeys Hooke's
Law; graph nodes move according to the spring-like forces attached to them.5 A mass-spring
model for graph drawing was �rst proposed by Eades [5], but in his and most subsequent
systems, the spring forces correspond to topological or geometric properties of the graph. In
the glide system (as in [4]), a more general notion of spring force is used.

Constraints on graphs fall into two main classes, syntactic and semantic. Syntactic
constraints are universal requirements necessary for a diagram to be well-formed. The glide
system respects two such constraints (see Figure 8):

� Node-node overlap: Two nodes should not overlap. This constraint is enforced by
placing a spring between each pair of nodes. The spring's rest length is the required
minimum distance between nodes, but it also has the property that its spring constant
reduces to zero when stretched beyond its rest length. The spring therefore only ap-
plies force when the two nodes overlap, compressing the spring. Overlapping is thus
prevented, but movement apart is not penalized. This is one of several ways in which
the simulation is rendered nonphysical by generalizing the notion of a spring.

� Node-edge overlap: A similar spring is placed between each node-edge pair. Nodes are
the only objects to which force can be applied, so the goal of applying a force to an
edge is actually accomplished by applying half the force to each of the two nodes at
the edge's endpoints. This disassociation between the spring's conceptual endpoints
and the points of application of the spring's force is another example of how our model
di�ers from more physically faithful mass-spring systems.

Applying these two syntactic constraints alone, the system enforces the well-formedness
of diagrams. Semantic constraints, expressed as VOFs, enhance the visual form and com-
municative power of the drawing. Glide supports the following VOFs, implemented with
sets of generalized springs as described (see Figure 8):

� Alignment (horizontal, vertical, either): The set of nodes should be collinear and axis-
aligned. A spring with rest length zero is attached between each node and a virtual
axis-aligned line through the centroid of the nodes. Note that forces are applied only to
the nodes, and not to the virtual axis. In the case of a horizontal or vertical Alignment
VOF, the axis alignment is to the respective axis. The third case uses the axis to which
the nodes are already most closely aligned.

� Equal Spacing (horizontal, vertical): The nodes should be spaced evenly along the
given axis. Spacing along the orthogonal axis is unconstrained. Adjacent pairs of
nodes are connected with springs whose rest length is the computed average distance

5Hooke's Law states that strain, the ratio of the change in length to the original length, is proportional
to the stress that produces it. (\Ut tensio, sic vis.") In addition to spring-like forces, all nodes are subject
to a global damping force for stability.
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Figure 8: Reduction of some sample VOFs to systems of generalized springs.
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between adjacent nodes.

� Sequence (horizontal, vertical): The nodes should be ordered in the current sequence
along the given axis. Springs with a very short rest length and with asymmetric spring
constant (zero if nodes are in proper sequence, positive otherwise) are placed between
adjacent nodes in the sequence to keep them in order.

� Cluster: The set of nodes should be clustered together. Springs with a short rest length
are placed pairwise among the nodes.

� Zone: The bounding box of the nodes should contain no other nodes. The bounding
box is treated as a \super-node," the node-node overlap method is applied, and the
resulting forces are applied equally to the nodes comprising the zone.

� Symmetry (horizontal, vertical): The nodes should be symmetric about the given axis.
Each node is paired with the node closest to its re
ection about the horizontal or ver-
tical line through the centroid of all the nodes. (A node may be paired with itself if
it is closest to its own re
ection.) Equal and opposite forces are then applied to the
nodes in each pair to make them symmetric about the line of re
ection.

� T-Shape: The nodes should form a T-shape, as in a tree diagram. The user speci�es
which of the nodes is the parent. The T-shape VOF can be enforced as a combination
of Alignment and Equal Spacing VOFs for the children and an Equal Spacing VOFs
for the leftmost and rightmost children and parent.

� Hub Shape: The nodes should be placed radially equidistant on a circle. A central node
may optionally be speci�ed by the user; if none is speci�ed, a phantom node (described
below) is added at the center. Springs are placed between neighbors on the perimeter
and between the center node and each perimeter node with rest length equal to the
calculated average radius.

In addition, the following VOF can be used to gain absolute control over the �ne-grained
position of nodes:

� Anchor: A node should be located at the current position regardless of what other
forces in the physical simulation may be acting on it. The Anchor VOF is implemented
by calculating all forces, but then not updating the positions of anchored nodes. This
is conceptually equivalent to giving anchored nodes an in�nite mass.
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Although the system cannot move anchored nodes, the user may still move them via
the mouse. A useful technique is for a user to anchor two nodes to further constrain a
second VOF. Under a Hub Shape VOF, for example, the radius of the hub is determined by
calculating the average distance between the center node and each node along the periphery.
To obtain a speci�c radius, the user could anchor the center node along with one node on
the periphery. The user can then resize the hub by moving either of the anchored nodes.

Finally, glide provides a single diacritical VOF. A diacritical VOF does not provide
any constraint on the diagram, but merely augments the diagram with additional graphic
elements tied to aspects of the diagram layout. The diacritical VOF implemented at present
is the Frame VOF:

� Frame: The bounding box of the set of nodes is demarcated with a drawn frame.
As the nodes participating in a Frame VOF move, the frame repositions and resizes
itself accordingly. The user controls such properties of the frame as its color, padding
(distance added to the bounding box before being drawn), and whether the frame is
drawn as an outline or �lled rectangle. The Zone VOF example in Figure 1 is illustrated
using Frame VOFs.

Constraint Satisfaction

The constraint formulation above results in a physical system consisting of a set of nodes fnig
and a set of generalized springs fsjg at any given time t.6 Nodes are positioned on a canvas
of typical size 1024 � 780, and node masses are uniformly set to 1 for ease of calculation.
The spring constants kj are 1.2 or 0.0 for syntactic constraints, 0.4 for semantic constraints
other than Clustering, and 0.08 for Clustering. The spring rest lengths rj are determined
by the VOF conversion, as described above. The magnitude of spring sj's force is kj(lj � rj)
by Hooke's Law, where lj is the actual length of the spring at time t. Node ni is therefore

subject to a total force ~Fi =
P

j2S(i)
~f (i; j; kj; rj; lj) at time t, where S(i) is the set of springs

a�ecting node ni, and ~f(i; j; kj; rj ; lj), the force vector resulting from the action of spring sj
on node ni, is determined by the relevant VOF conversion scheme.

Given this setup, Euler's method is used to compute the position ~xi(t) and momentum
~pi(t) of each node ni over time:

t = 0
for all nodes ni

~pi(t) = 0 ;
repeat
f

t = t+�t ;
for all nodes ni

~Fi =
P

j2S(i)
~f (i; j; kj; rj; lj) ;

6For notational simplicity we only indicate dependency on t explicitly when a distinction must be made
between di�erent times, e.g., t and t ��t. Because nodes and VOFs change asynchronously in response to
the user's actions and to the simulation, all the variables in the simulation are time dependent.
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 = 2
q
max(kj) ;

for each node ni
f

~pi(t) = ~pi(t��t)

+(~Fi � 
~pi(t��t))�t ;
if ni is unanchored

then ~xi(t) = ~xi(t��t) + ~pi(t)�t
else ~xi(t) = ~xi(t��t) ;

g
if last screen update was more than �T ago

then update screen to re
ect positions ~xi(t)
g
until

P
i ~pi(t)

2=2 < Kmin ;

The damping constant 
 for each node should ideally be the critical-damping constant
for that node, but for computational simplicity, we approximate this by the critical-damping
constant for the strongest spring in the system. In practice, this admittedly gross approxima-
tion has worked quite well, eliminating oscillations in almost all cases. The time increment
�t is 0.01, and screen updates occur every �T = 0:1 time units. When the kinetic energy
goes below an arbitrary valueKmin = 0:01�jfnigj, the simulation suspends itself temporarily
until the next user action.

Visual Presentation

By generalizing the visual appearance of graph nodes, other aspects of graph drawing can also
be expressed with VOFs. For instance, text labels in diagrams can be implemented without
additional infrastructure. A text label is merely a node with a transparent background
and border. Labels can then be attached to graphical objects using a Clustering VOF for
example, as in Figure 7. Similarly, a node with neither border, background, nor text is a
kind of phantom node that can be useful as a control point for other objects, such as edges or
Frame VOFs.7 In particular, an orthogonal edge can be e�ected by interpolating a phantom
node on the edge between two connected nodes and aligning the phantom node with each of
the original nodes via orthogonal Alignment VOFs.

In addition to the graphical components of the diagram itself | the nodes, edges, and
frames | the interface uses visual means to present to the user the current set of VOFs that
are being applied to the diagram elements. Each VOF instance is indicated by a graphical
indicator in the display; the shape of the VOF indicator is similar to the bitmap on the
corresponding push button for that VOF, as shown in Figure 3.8 As the user moves the
mouse over a particular VOF indicator on the canvas, glide highlights all participating

7The use of hidden objects to control constraint-based layout has been proposed previously. See, for
instance, the discussion of alignment objects by Gleicher and Witkin [6].

8Exaggerated forms of the VOF indicators are shown in Figures 4 through 6. In the actual system, the
indicators are depicted with more visual subtlety.
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nodes. Conversely, placing the mouse over a node will highlight the VOF indicators for VOF
instances in which that node participates. Finally, placing the mouse over a VOF push button
will highlight all VOF indicators of that particular VOF type. These mechanisms enable a
user to easily determine the extent and impact of a particular set of layout constraints. The
VOF graphics are intended solely to provide visual feedback to users; they are not, of course,
included in the �nal output drawing.

Glide's animation is also an integral part of its visual feedback. Both user and system
actions are animated as the layout is displayed in the canvas area of the system. The physical
simulation continually updates the position of the nodes in the layout. Although they are not
represented graphically, the forces on a node become apparent to users through observation
and manipulation.

CONCLUSIONS

Constraint-based techniques have been utilized in numerous drawing editors, e.g., [6, 8,
10, 13, 14], but they have so far enjoyed only limited success in this role. One reason
for this apparent failure is the generality and complexity of most constraint-based drawing
editors: the constraint vocabularies have often been chosen for orthogonality, coverage, and
tractability, but may not be especially convenient or e�ective for particular kinds of drawing
tasks. In addition, users often have di�culty understanding how a constraint-based system
works, and therefore how best to utilize it. In particular, when presented with under- or
over-constrained drawings, many systems behave in ways that are opaque to the user. Glide
improves on general constraint-based systems by providing a specialized set of constraints,
simple mechanisms for a user to add and delete constraints, and an intuitive method for
solving the constraints. In addition, by incorporating animation into the process, glide
assists the user in understanding how to achieve a desired layout.

The use of a constraint-satisfaction scheme (physical simulation) that is intuitive and
predictable, rather than one that is better at �nding global solutions, is deliberate. Glide is
not intended to be good at globally satisfying constraints by itself. Rather, it is intended to
provide an interface that allows a useful collaboration between user and computer in solving
the layout problem. For this purpose predictability, simplicity, and the compelling nature
of the animation are far more important than achieving global optimality automatically.
Finally, the basic concept underlying the glide interface | tight collaborative interaction
between user and computer to solve an optimization problem, with the computer performing
local optimization and the user responsible for global control | may be applicable to other
layout, drawing, and design tasks.
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