
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

The ANSI C (Internal) Spline Version 3.0
Application Program Interface

R. Waters, D. Anderson, A. Greysukh, W. Lambert, H. Kozuka, B. Perlman, V. Phan, D.
Schwenke, S. Shipman, E. Suits, W. Yerazunis

TR97-11 December 1997

Abstract

This document describes the (Internal) Spline Version 3.0 Application Program Interface (API)
as exported to ANSI C. It documents each publicly available object class and function. In ad-
dition, it describes the facilities available to those that wish to modify the system core. This is
a machine generated document created from a database of information. It exists in both paper
and HTML form. Other documents describe the API exported to other programming language
environments.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1997
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

MERL { A MITSUBISHI ELECTRIC RESEARCH LABORATORY
http://www.merl.com

The ANSI C
(Internal) Spline Version 3.0
Application Program Interface

R. Waters, D. Anderson,

A. Greysukh, W. Lambert, H. Kozuka, B. Perlman, V. Phan,
D. Schwenke, S. Shipman, E. Suits, and W. Yerazunis

TR-97-11 December, 1997

Abstract

This document describes the (Internal) Spline Version 3.0 Application Program
Interface (API) as exported to ANSI C. It documents each publicly available
object class and function. In addition, it describes the facilities available to
those that wish to modify the system core.

This is a machine generated document created from a database of informa-
tion. It exists in both paper and HTML form. Other documents describe the
API exported to other programming language environments.

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to

copy in whole or in part without payment of fee is granted for nonpro�t educational and research purposes

provided that all such whole or partial copies include the following: a notice that such copying is by per-

mission of Mitsubishi Electric Information Technology Center America; an acknowledgment of the authors

and individual contributions to the work; and all applicable portions of the copyright notice. Copying,

reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi

Electric Information Technology Center America. All rights reserved.

Copyright c
 Mitsubishi Electric Information Technology Center America, 1997

201 Broadway, Cambridge, Massachusetts 02139

ii CONTENTS

Contents

1. Introduction 1
1.1 Reading This Document 2
1.2 System Overview 3
1.2.1 Scalability 4
1.2.2 Application Processes 6
1.2.3 The API 7
1.2.4 Rendering 8
1.2.5 Supporting Simulations 9
1.2.6 ISTP 10
1.2.7 User Servers 11
1.3 Atomic Data 11
1.4 Pointer Data 12
1.5 Shared Objects 13
1.5.1 Accessors 13
1.5.2 Referring To 16
1.5.3 Removal 17
1.5.4 Communication Patterns 18
1.5.5 Descriptions 19
1.5.6 In-Order Description Processing . 19
1.6 De�ning Shared Classes 20
1.6.1 Example 21
1.6.2 Shared Classes 21
1.6.3 Variables and Access Methods . . 21
1.6.4 Shared Variable Types 23
1.6.5 Methods In Shared Classes 23
1.6.6 Interfaces 24
1.6.7 Variables Available In C 27
1.6.8 Scalar C Types 28
1.6.9 Pointer C Types 29
1.6.10 Static Final Variables 30
1.6.11 Methods Available In C 30
1.7 Acknowledgments 31

2. spApp 32
2.1 Application Templates 32
2.2 Interaction With Rendering 33
2.3 User I/O 34
2.4 Multi-Threaded Applications 35
2.5 spAppChooseServer 35
2.6 spAppInit 35
2.7 spAppBody 36
2.8 spAppFinish 36

3. spVisual 36
3.1 spVisualInit 37
3.2 spVisualFinish 37

4. spAudio 38
4.1 spAudioInit 38
4.2 spAudioFinish 38

5. spWM 39
5.1 Me 40
5.2 MainOwner 40
5.3 SystemOwner 40
5.4 Error 41
5.5 LastError 41
5.6 Interval 42
5.7 DesiredInterval 42
5.8 Week 43
5.9 Msec 43
5.10 Window 44
5.11 DNSName 44
5.12 Port 44
5.13 MsgRejectionQueue 45
5.14 spWMNew 46
5.15 spWMRemove 46
5.16 spWMUpdate 46
5.17 spWMGenerateOwner 48
5.18 spWMReportError 49
5.19 spWMRegister 49
5.20 spWMDeregister 50

6. spFn 50
6.1 spFn Predicates 51
6.2 Old Values of Shared Variables . . . 52

7. spMask 54
7.1 Constants 55

8. spTransform 56
8.1 Constants 59
8.2 spTransformCopy 59
8.3 spTransformFromIdent 60
8.4 spTransformGetTranslation 60
8.5 spTransformSetTranslation 60
8.6 spTransformGetRotation 60
8.7 spTransformSetRotation 61
8.8 spTransformGetScale 61

CONTENTS iii

8.9 spTransformSetScale 61
8.10 spTransformGetScaleOrientation . . 61
8.11 spTransformSetScaleOrientation . . 61
8.12 spTransformGetCenter 62
8.13 spTransformSetCenter 62

9. spVector 62
9.1 Constants 64
9.2 spVectorCopy 64
9.3 spVectorSetFromScalar 64
9.4 spVectorEquals 65
9.5 spVectorEqualsDelta 65
9.6 spVectorAdd 65
9.7 spVectorSubtract 65
9.8 spVectorMultiplyByScalar 65
9.9 spVectorDivideByScalar 66
9.10 spVectorCrossProduct 66
9.11 spVectorDotProduct 66
9.12 spVectorComposeScales 66
9.13 spVectorLength 66
9.14 spVectorNormalize 67

10. spRotation 67
10.1 Rotation Ambiguity 68
10.2 Constants 70
10.3 spRotationCopy 71
10.4 spRotationFromIdent 71
10.5 spRotationGetAxis 71
10.6 spRotationSetAxis 71
10.7 spRotationGetAngle 71
10.8 spRotationSetAngle 72
10.9 spRotationToQuat 72
10.10 spRotationFromQuat 72
10.11 spRotationToAngles 72
10.12 spRotationFromAngles 73
10.13 spRotationMult 73
10.14 spRotationLookAt 73

11. spQuaternion 74
11.1 spQuaternionCopy 74
11.2 spQuaternionFromIdent 75
11.3 spQuaternionMult 75

12. spMatrix 76
12.1 spMatrixCopy 77
12.2 spMatrixFromIdent 77
12.3 spMatrixGetTranslation 77
12.4 spMatrixSetTranslation 78
12.5 spMatrixFromTransform 78
12.6 spMatrixToTransform 78
12.7 spMatrixInverse 78
12.8 spMatrixMult 79
12.9 spMatrixMultVector 79

13. spPath 80
13.1 spPathNew 80
13.2 spPathFree 80
13.3 spPathAppendTransform 81
13.4 spPathGetTransform 81
13.5 spPathCopy 81
13.6 spPathSave 81
13.7 spPathLoad 82
13.8 spPathChangeStartPoint 82
13.9 spPathThin 82

14. spFormat 83
14.1 Constants 83
14.2 spFormatDurationFromLength . . . 84
14.3 spFormatLengthFromDuration . . . 84

15. sp 85
15.1 C 86
15.2 DEGREES 86
15.3 LocalPtr 87
15.4 NextPtr 87
15.5 Marker 88
15.6 DescriptionLength 88
15.7 Counter 89
15.8 Name 89
15.9 Class 91
15.10 Owner 91
15.11 Locale 92
15.12 SharedBits 93
15.13 Parent 93
15.14 IsRemoved 94
15.15 ForceReliable 95
15.16 InhibitReliable 95
15.17 LocalBits 96

MERL-TR-97-11 December, 1997

iv CONTENTS

15.18 IsNew 96
15.19 AppData 97
15.20 MessageNeeded 97
15.21 Change 98
15.22 OldPtr 99
15.23 JavaPtr 99
15.24 Referrers 99
15.25 Alerters 100
15.26 Msgs 100
15.27 LastUpdateTime 101
15.28 spNew 101
15.29 spInitialization 102
15.30 spRemove 102
15.31 spExamineChildren 103
15.32 spExamineDescendants 103
15.33 spTopmost 103
15.34 spPrint 104
15.35 spLocallyOwned 104
15.36 spSetParent 104

16. spPositioning 105
16.1 Transform 106
16.2 Matrix 106
16.3 MatrixOK 107
16.4 MatrixInverse 107
16.5 MatrixInverseOK 107
16.6 spPositioningMatrix 108
16.7 spPositioningMatrixInverse 108
16.8 spPositioningLocalize 108
16.9 spPositioningRelativeMatrix 109
16.10 spPositioningRelativeVector 110
16.11 spPositioningDistance 110
16.12 spPositioningLookAt 110
16.13 spPositioningGoThru 111
16.14 spPositioningStopAt 111
16.15 spPositioningStop 112
16.16 spPositioningFollowPath 112
16.17 spPositioningMotionTimeLeft . . . 113
16.18 spPositioningGetMotionQueue . . . 113
16.19 spPositioningFlushMotionQueue . . 113
16.20 spPositioningSetTransform 114
16.21 spPositioningInitialization 114

17. spDisplaying 114
17.1 VisualDe�nition 115
17.2 InRadius 115
17.3 OutRadius 116
17.4 GraphicsNode 116

18. spLinking 117
18.1 URL 119
18.2 Checksum 120
18.3 FileName 120
18.4 Data 121
18.5 spLinkingNew 121
18.6 spLinkingURLAltered 122
18.7 spLinkingReadData 122

19. spMultilinking 123
19.1 Multipart 124
19.2 IndexName 125
19.3 spMultilinkingNew 125
19.4 spMultilinkingSelect 126

20. spBeaconing 126
20.1 Using Beacons 127
20.2 Tag 128
20.3 Suppress 129

21. spObserving 130
21.1 Audio 131
21.2 IgnoreNearby 131

22. spVisualParameters 132
22.1 FarClip 132
22.2 NearClip 133
22.3 Field 133
22.4 Interval 134

23. spAudioParameters 134
23.1 Focus 135
23.2 Live 135
23.3 Format 136

24. spVisualDe�nition 136
24.1 spVisualDe�nitionNew 138
24.2 spVisualDe�nitionReadData 138
24.3 spVisualDe�nitionSelect 138

MERL-TR-97-11 December, 1997

CONTENTS v

25. spSound 139
25.1 Duration 141
25.2 spSoundNew 141
25.3 spSoundPlay 141
25.4 spSoundSelect 142
25.5 spSoundReadData 142

26. spLocale 142
26.1 How Locales Work 143
26.2 Boundary 146
26.3 NumNeighbors 146
26.4 spLocaleNew 146
26.5 spLocaleChoose 147
26.6 spLocaleExportMatrix 147
26.7 spLocaleReadData 148

27. spBoundary 148
27.1 Volume 149
27.2 spBoundaryNew 149
27.3 spBoundaryBelow 149
27.4 spBoundaryAbove 150
27.5 spBoundaryInside 150
27.6 spBoundaryReadData 151

28. spTerrain 151
28.1 spTerrainNew 153
28.2 spTerrainBelow 153
28.3 spTerrainAbove 154
28.4 spTerrainInside 154
28.5 spTerrainReadData 154

29. spClass 154
29.1 ClassName 156
29.2 LoadData 157
29.3 ReadDataFn 157
29.4 SelectFn 158
29.5 Superclasses 158
29.6 NumSuperclasses 159
29.7 Size 159
29.8 Level 160
29.9 LocalO�set 160
29.10 SharedO�set 160
29.11 SharedBitNum 161
29.12 LocalBitNum 161
29.13 TimeStampO�sets 162
29.14 SendViaLocale 162

29.15 SendViaTCP 162
29.16 NumVariables 163
29.17 MethodTable 163
29.18 spClassNewObj 163
29.19 spClassNewLink 164
29.20 spClassNew 164
29.21 spClassEq 164
29.22 spClassLeq 165
29.23 spClassExamine 165
29.24 spClassMonitor 165
29.25 spClassReadData 166

30. spThing 166

31. spRoot 167

32. spAvatar 167
32.1 IsBot 168

33. spAudioSource 169
33.1 Duration 170
33.2 ExternalFormat 170
33.3 spAudioSourceSetup 171
33.4 spAudioSourceWrite 172
33.5 spAudioSourceRead 172

34. spBeacon 173
34.1 spBeaconNew 173

35. spPositionedBeacon 174

36. spSpeaking 174
36.1 spSpeakingNew 175

37. spHearing 175
37.1 spHearingNew 176

38. spSeeing 176
38.1 spSeeingNew 177

39. spSimulationObserver 177

40. spVisualObserver 178

41. spAudioObserver 178
41.1 spAudioObserverInitialization . . . 179

MERL-TR-97-11 December, 1997

vi CONTENTS

42. spIntervalCallback 180
42.1 Details of Callback processing . . . 180
42.2 Interval 182
42.3 F 183
42.4 FState 183
42.5 NextTriggerTime 184
42.6 IntNext 184
42.7 IntPrev 185
42.8 spIntervalCallbackNew 185

43. spAlerter 185
43.1 Details of alerter processing 187
43.2 P 189
43.3 PState 190
43.4 Mask 190
43.5 ChgNext 191
43.6 ChgPrev 191
43.7 spAlerterNew 191
43.8 spAlerterInitialization 192

44. spBeaconMonitor 192
44.1 Pattern 193
44.2 spBeaconMonitorNew 194

45. spBeaconGoto 195
45.1 Object 196
45.2 spBeaconGotoNew 196

46. spAction 197
46.1 Details of Action Processing 198
46.2 spActionFunction 198

47. spOwnershipRequest 200
47.1 Ownership Transfer 200
47.2 F 203
47.3 FState 203
47.4 Timeout 203
47.5 TimeAlive 204
47.6 spOwnershipRequestNew 204
47.7 spOwnershipRequestFunction . . . 205
47.8 spOwnershipRequestGrant 205

48. spDoSoundPlay 205
48.1 Sound 206
48.2 Loop 206
48.3 Gain 207

48.4 spDoSoundPlayFunction 207

49. spMover 207
49.1 X 208
49.2 T 208
49.3 Queue 208
49.4 spMoverFunction 208

A. Java Declaration File 209

B. Quick Function Reference 223

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 1

1 Introduction

This document describes the (Internal) Spline Version 3.0 Application Program Interface (API)
as exported to ANSI C. It documents each publicly available object class and function. In addition,
it describes the facilities available to those that wish to modify the system core.

This is a machine generated document created from a database of information. It exists in
both paper and HTML form. Other documents describe the API exported to other programming
language environments.

The following lists the classes described in this document. If a class is part of the external
API, then its name is printed in bold. If a class is fundamental in the sense that if could not have
been written by an application programmer, then its name is underlined. Note that many of the
classes are not fundamental. These classes are included for convenience, but do not require special
support from the system core. It is expected that application writers will write many more classes
like them.

The API includes the following generic and particular applications:

spApp - A standard application (Section 2).
spVisual - Visual renderer (Section 3).
spAudio - Audio renderer (Section 4).

The API includes the following ordinary data structures:

spWM - A world model (Section 5).
spFn - Operation that can be mapped (Section 6).
spMask - World model view mask (Section 7).
spTransform - Position, axis, angle, scale speci�cation (Section 8).
spVector - 3-element vector (Section 9).
spRotation - Rotation speci�ed using axis and angle (Section 10).
spQuaternion - A quaternion (Section 11).
spMatrix - 4x4 transformation matrix (Section 12).
spPath - Stored motion path (Section 13).
spFormat - Sound data format (Section 14).

The API includes the following abstract classes that are multiply inherited:

sp - Speci�es minimal sharable object (Section 15).
spPositioning - Speci�es position and orientation (Section 16).
spDisplaying - Speci�es visual appearance and extent (Section 17).
spLinking - Speci�es link to large slowly-changing data (Section 18).

spMultilinking - Link to index (Section 19).
spBeaconing - Speci�es content-addressable object (Section 20).
spObserving - Speci�es point of view (Section 21).
spVisualParameters - Speci�es visual rendering parameters (Section 22).
spAudioParameters - Speci�es audio rendering parameters (Section 23).

2 (Internal) Spline Version 3.0 API

The API includes the following shared object classes:

spVisualDe�nition - Link to graphic model (Section 24).
spSound - Link to stored sound (Section 25).
spLocale - Link to separate coordinate system (Section 26).
spBoundary - Link to bounding box (Section 27).

spTerrain - Link to e�cient 3D boundary description (Section 28).
spClass - Link to description of a shared class (Section 29).
spThing - Thing in the virtual world (Section 30).

spRoot - Root of recognized whole (Section 31).
spAvatar - Whole representing user or agent (Section 32).

spAudioSource - Source of sound. (Section 33).
spBeacon - Minimal Content-addressable object (Section 34).
spPositionedBeacon - Beacon specifying a position (Section 35).

spSpeaking - Connects to user's speech (Section 36).
spHearing - Connects to user's ears (Section 37).
spSeeing - Connects to user's eyes (Section 38).

spSimulationObserver - Observer of basic data (Section 39).
spVisualObserver - Observer of visual data (Section 40).
spAudioObserver - Observer of sound data (Section 41).
spIntervalCallback - Interval callback (Section 42).

spAlerter - Event detector (Section 43).
spBeaconMonitor - Inspect beacons (Section 44).

spBeaconGoto - Puts spThing beside beacon (Section 45).
spAction - Speci�es program triggered by system core (Section 46).

spOwnershipRequest - Requests getting ownership (Section 47).
spDoSoundPlay - Plays sound data (Section 48).
spMover - Supports smooth motion (Section 49).

1.1 Reading This Document

This document is a reference manual rather than a tutorial. In general, each topic is only
discussed once and therefore any order of reading the sections in this document will not be quite
right, because every section can be best understood only after having read many other sections.

The document is organized around the various classes enumerated above. At the top level,
there is a section for each class. Within these sections, there are subsections corresponding to each
instance variable and function.

There are two ways to look things up in this document. By using the table of contents, you
can look instance variables and functions up by the name of the class the are in. The functions
can be looked up alphabetically by using the quick reference index at the end of this document
(Appendix B).

There are several quite di�erent kinds of classes listed above: application templates, passive
data structures, abstract classes that embody the key capabilities of the system and are multiply
inherited, and shared objects that are the basis of communication between processes.

The application templates (e.g., spApp) show how simple applications can be written.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 3

The passive data structures (e.g., spTransform) are pieces of data that are stored in shared
objects or used in intermediate computations. In the C interface, these items are not objects, but
rather just simple vectors and structures.

The basic abstract classes encapsulate fundamental features that are used by shared classes. A
given shared class often makes use of several sets of features.

The shared objects consist of the remaining classes. These classes receive specialized treatment
by the system. In particular, instances of the shared classes are communicated between processes.
Applications can de�ne new shared classes using a Java interface supported by a special Java
preprocessor (Section 1.6).

Most of this document consists of descriptions of classes. The �rst line of s class section shows
the �rst line of the declaration used in the Java interface to de�ne the class. This is followed by a
brief discussion of the class and a listing of the shared instance variables and functions in the class.
Subsections of the section for a class describe each of its instance variables and functions in detail.

The �rst line of a subsection discussing an instance variable shows the declaration used in
the Java interface to de�ne the variable. This line includes both the type of the variable in Java
(in the middle) and the type in C (in a comment at the end of the line). From the perspective
of this document, only the C type is relevant. The variable declaration line is followed by a
general discussion of the instance variable and the various access functions for manipulating it
(Section 1.5.1).

The �rst line of a subsection discussing a function is the ANSI C signature of the function. This
is followed by a summary of what the function does.

The names of C functions in the API are derived using the following scheme. If a class spK
contains a method M, then the corresponding C function has the name spKM. Since every shared
class name begins with the letters \sp", every C function in the API begins with the letters \sp".

At various places in this document, topics of interest are discussed at length in subsections.
One reason for gathering information into a separate subsection is so that it can be referred to from
many places in the document.

This copy of the documentation describes a number of object classes, instance variables, and
methods that are used by the system core, but are not intended to be used by application programs.
The titles of the sections that describe these features end in \(Internal)". From the perspective
of an application writer, reading these sections could be more confusing than helpful, since the
features described are not intended to be used by application programmers. Someone who is
interested merely in writing applications is probably better o� reading the external version of the
documentation, which omits these sections.

1.2 System Overview

Above all else, the system provides a convenient architecture for creating Distributed Virtual
Environments (DVEs) [see R.C. Waters and J.W. Barrus, \The Rise of Shared Virtual Environ-
ments," IEEE Spectrum, 34(3):20-25, March 1997]. This architecture is centered on a world model

that mediates all interaction. Figure 1 illustrates the application programming model. It shows
�ve applications interacting through the world model.

MERL-TR-97-11 December, 1997

4 (Internal) Spline Version 3.0 API

World Model

application
application

application

applicationapplication

Figure 1: The programming model.

Applications do not communicate directly with each other, but rather only with the world model.
This allows applications to be written without thinking about how communication is achieved. An
application does exactly the same things when it is interacting with an application running in
shared memory on the same machine as it does when interacting with an application connected via
the Internet.

The world model is not a scene graph, but rather an object-oriented database that does not
consider one kind of content to be any more important than another. In particular, we believe that
audio information and autonomous behavior are at least as important as visual information and
should not be limited by constraints inherited from visual rendering.

The world model speci�es what objects exist in the virtual world, where they are, what they look
like, and what sounds they are making. The world model does not contain historical information,
but rather is just a snapshot of what the virtual world is like at the current moment. As the virtual
world changes millisecond by millisecond, the world model changes.

The emphasis in the design of the world model is on the term database, not object oriented.
The objects have methods associated with them, but by far the dominant operations consist of
reading and writing data stored in the instance variables of world model objects.

Applications observe the virtual world by retrieving data from the world model. Applications
a�ect the virtual world by adding, removing, and modifying objects in the world model. To avoid
readers/writers con
icts, each object in the world model has one process as its owner and only the
owning process can modify it. However, the ownership of an object can be transferred from one
process to another (Section 47.1).

By itself, the system does not cause objects to persist over time. An object exists only so long
as the process that owns it runs. To have persistent objects, an application must provide persistent
processes that accept ownership of these objects. These processes could make use of a persistent �le
format for objects to provide e�cient long term support for infrequently visited parts of a virtual
world.

1.2.1 Scalability

Application programmers are encouraged to think in terms of Figure 1. However, it would not
work well to use a centralized architecture when actually implementing the system. Rather, the
system operates as shown in Figure 2. To provide low latency interaction with the world model, the
world model is replicated so that a copy resides in each application process. Messages sent over a
computer network linking the processes are used to propagate changes from one world model copy
to another.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 5

World Model World Model

World Model

World Model

application

application

World Model

application

application application

network

Figure 2: The communication model.

A central feature of the system is that it is designed to be scalable to a large number of users (e.g.,
thousands) interacting in real time. Two key features support this: providing only approximate
equality of local world model copies and dividing the world model into chunks each of which is
communicated only to the small group of users that are actually interested in it, rather than to all
the users of the world model.

Distributed databases typically require that all local copies of the database always agree exactly
on the information in the database. However, this requires object locking and handshaking that
is incompatible with real-time interaction if there are more than a very small number of users. In
contrast, the focus here is on real-time interaction at all costs, providing only approximate equality
between world model copies.

The primary way in which world model copies are only approximately equal is that di�erent
users observe things as occurring at slightly di�erent times. We call this a relativity model of
communication and is actually not unlike the real world. When you hear sounds from distant
sources, you do not hear the sound that is being made now, but rather the sound that was made
seconds ago. As a result, people in di�erent locations do not hear the same things at the same
time. How great the di�erences are depends on how far apart the sound sources and people are.

Similarly, when an application process �nds out about a world model change, it is not �nding
out about a change that is happening now, but rather about one that happened some time ago.
How long ago depends on the network distance between the two processes. In general, this distance
is not more than a couple hundred milliseconds and does not lead to world model di�erences that
are unduly large.

Having only approximate equality of world model copies allows real-time interaction, but does
not of itself prevent the computation required to maintain each local world model copy from growing
in proportion to the total number of simultaneous users of a virtual world. To prevent this, the
world model is broken up into many small chunks called locales (Section 26) and information about
a given locale is communicated only to the small number of users that are near enough to that
locale to be interested in it. Each locale is associated with a separate communication channel so
that processes that are not interested in a locale do not have to expend any processing ignoring it.
This allows the system to scale based solely on the maximum number of users that are gathered in
any one locale, rather than on the total number of users in the virtual world.

MERL-TR-97-11 December, 1997

6 (Internal) Spline Version 3.0 API

network

Application
interface

network
interface

application

inter-process communication

world model

application support

Figure 3: An application process.

Because the world model copy in an application process only contains information about the
objects in the locales the process is attending to, a mechanism is needed for locating far away objects
in the virtual world. This is done via specialized objects called beacons (Section 34). Speci�cally,
the system provides a name service that makes it possible to locate beacons based on associated
tags no matter where they are in the virtual world.

1.2.2 Application Processes

The structure of a single application process is shown in Figure 3. The dashed box at the top
of the �gure shows how the application itself �ts into the picture.

The foundation of the system is the inter-process communication module shown at the bottom
of Figure 3. It provides all the processing necessary to maintain approximate consistency between
the world model copies associated with a group of communicating processes, sending messages
describing changes in the world model caused by the local application and receiving messages from
other processes about changes made remotely. The network interface speci�es the format of these
messages. Any process that obeys this interface can interoperate.

The messages sent are of three kinds, corresponding to three kinds of data in the world model:
small rapidly changing objects, large slowly changing objects, and continuous streams of data.
An important feature of the system is that it includes an e�cient scheme for synchronizing these
di�erent kinds of data.

The most prevalent kind of object in the world model is small things that can change rapidly.
For example, an object representing something in the virtual world (e.g., a chair) requires only a
small description|i.e., to specify its position and orientation, whether it is contained in some other
object, and which appearance should be used when displaying it. The features of small objects can
be changed very rapidly.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 7

Messages describing changes in small objects are sent using User Datagram Protocol (UDP)
messages. This allows them to be communicated very rapidly. The objects must be small enough
so that a message describing one will �t in one UDP message.

Graphic models, recorded sounds, and behaviors are represented using large objects. These
objects are identi�ed by Universal Resource Locators (URLs) and communicated using standard
World Wide Web protocols. Standard formats are used (e.g., VRML for graphic models, WAVE
for sounds, and Java for behaviors) so that standard tools can be used. There is no limitation on
the size of the large objects, but several seconds can be required to communicate one. Fortunately,
since these objects change infrequently, this latency can generally be masked by preloading the
objects before they need to be used.

The �nal kind of object in the world model corresponds to continuous streams of data such
as sound captured by a microphone. These streams are communicated in small chunks using
UDP messages. At the moment, video streams are not supported. When they are, they will be
communicated in a similar fashion, but of necessity using larger messages.

A central feature of the system is that using the various messaging approaches above, every
kind of data in the world model can be communicated between processes. Therefore, applications
can modify and extend every aspect of a virtual world. Furthermore, while it is often advantageous
to prestore data for an application to use (i.e., by delivering it on a CD-ROM) this is not necessary.
Once started, an application can fetch everything it needs that has not been prestored.

1.2.3 The API

The Application Program Interface (API), which described in this document, consists primarily
of operations for creating/deleting objects in the world model and reading/writing instance variables
in these objects. The application support module (see Figure 3) contains various facilities that make
application writing easier. For the convenience of application writers, multiple APIs are provided|
the principle APIs being in ANSI C and Java.

An interesting application support tool consists of special support for the smooth motion of
objects (Section 16.13). The simplest way for an application to move an object along a trajectory
from one position and orientation to another is to repetitively set the object's position and orien-
tation to one spot after another along the trajectory. However, to get smooth appearing motion by
this method, the position and orientation must be speci�ed many times per second (i.e., 30 times
or more) which leads to high computation and communication costs. Interpolation-based facilities
are provided that allow smooth motion to be achieved while communicating at most a few positions
and orientations per second.

Another common problem experienced in virtual worlds is the need to move an avatar or other
object along the surface of the ground, while avoiding �xed obstacles. To support this, a general
terrain following facility (Section 28) is provided. Given any 3D point, this facility can determine
in only a few microseconds the height of the ground below a query point and whether a collision
with a �xed obstacle is occurring. This is done by sorting 2D projections of the polygons describing
the terrain in a virtual world into a grid for rapid access.

The API described in this document is fundamentally low level in nature. The focus in devel-
oping the system has been on providing a wide range of facilities that make many things possible,
rather than on the ease of use of any particular part of the API. In the long run, a much higher
level, easier to use API should be provided along with authoring tools that facilitate the creation
of DVE content.

MERL-TR-97-11 December, 1997

8 (Internal) Spline Version 3.0 API

audio renderervisual renderer

network

application

Figure 4: Typical con�guration supporting a user.

1.2.4 Rendering

Figure 4 shows the system being used to support an application that interacts with a human
user. The primary feature of the �gure is that three applications are used in this situation. The
main application (in the dashed box) presents an interface to the user.

Visual and audio rendering modules are provided; however rather than being combined into the
system, they are separate applications interfaced to the system. They use the same API as other
applications and do not have to be tightly coupled with the main application.

One advantage of the loose coupling of renderers is that the renderers interacting with a person
can run in separate processes from the main application. This allows them to operate on separate
machines in situations where maximum performance is required. However, the primary mode of
operation is for them to run in the same process with the main application, sharing a single copy
of the world model as shown in Figure 4.

The greatest advantage of the loose coupling between rendering and the system core is that
the system is not tied to any one renderer. Rather, the system is designed to be easily interfaced
to almost any renderer. Default renderers are supplied with the system, but it is expected that
demanding applications will switch to renderers that are tuned to the task at hand.

Consider visual rendering as an example. In the world model, objects can have positions, orien-
tations, and appearances. The visual renderer creates a scene graph by combining the appearances
associated with the objects that are near enough to be seen and renders the scene graph from the
vantage point speci�ed by the application. The system itself does nothing with the graphic models
that describe the appearances of objects. The only thing that matters is that the visual renderer
being used can load them.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 9

simulation

network

Figure 5: Typical con�guration supporting a simulation.

Audio rendering is supported in a similar fashion. The world model contains objects representing
sources of sounds. These objects specify the places where the sounds are located. They can either be
point sources or di�use ambient sources. Sound to be played through these objects can be captured
live from a microphone or prestored in recorded sound objects. The audio renderer creates an audio

scene graph by combining the sounds associated with sound source objects that are near enough to
be heard and renderers this from the vantage point speci�ed by the application. The system itself
does nothing with sound encodings. The only thing that matters is that the audio renderer being
used can decode them.

1.2.5 Supporting Simulations

From the earliest days of work on the system, we paid close attention to supporting interaction
with computer simulations as well as people. The way this is done is shown in Figure 5.

A simulation operates just like any other application using the same API to interact with the
world model. However, no visual or audio rendering is needed, because there is no person to see or
hear anything. Complex simulations, intelligent agents, and large persistent databases can all be
directly connected to a virtual world. Large powerful computers without support for graphics or
sound can be used to manage shared content.

It is important to note that it is a great deal easier to say that a simulation interacts with
the world model just like any other application than it is to make it possible for a simulation to
e�ectively interact with the world model. The reason for this is that applications supporting a user
have a human being in the loop and simulations do not.

For example, it is typically easy for a person to look at an avatar and determine which way
the avatar is facing, based on a rendered image. However, it verges on impossible for a program
to tell where the face of an avatar is by looking at a list of polygons. To deal with this kind of
problem, the system has been designed to make information such as which way an avatar is facing
easily accessible to programs. Speci�cally, the world model contains an object class spAvatar that
is used to identify avatars as opposed to other kinds of objects and by convention, the center of
the coordinate system for an object is at the center of the object, the Y axis is up, and the object
faces down the negative Z axis

MERL-TR-97-11 December, 1997

10 (Internal) Spline Version 3.0 API

1.2.6 ISTP

The network communication interface in Figure 3 is called the Interactive Sharing Transfer pro-
tocol (ISTP) [Waters R.C., Anderson D.B., and Schwenke D.L., \Design of the Interactive Sharing
Transfer Protocol", Postproc. WET ICE '97 { IEEE Sixth Workshops on Enabling Technologies:

Infrastructure for Collaborative Enterprises, (MIT, June 1997), IEEE Computer Society Press, Los
Alamitos CA, 1997] . ISTP is a hybrid protocol that uses three di�erent kinds of communication
for three di�erent purposes.

The WWW Layer of ISTP uses HTTP to communicate large chunks of data such as graphical
models, prerecorded sounds, and object class descriptors. This data corresponds to various kinds
of spLinking objects (Section 18).

The peer-to-peer layer of ISTP uses multicasting to communicate world model changes and real
time data streams as rapidly as possible directly from one process to another.

The control layer of ISTP uses TCP messages between ISTP processes to control the peer-to-
peer layer and obtain various services that are provided by ISTP processes.

An essential feature of Figure 2 is that it does not contain any central server processes. To
minimize latency, prevent bottlenecks, and maximize scalability, ISTP communication is peer-to-
peer rather than passing through centralized processes.

Like the world wide web, the ISTP world is a single implicit entity spanning the globe. To
enter this world, all one has to do is run an ISTP process. In particular, just as all the web servers
in existence are implicitly combined into a single world wide web, all the ISTP processes that are
running at any given moment are capable of interacting with each other. Running a web browser
and knowing a Uniform Resource Locator (URL) (or running a web server and advertising a URL)
are the only things that are necessary to participate in the world wide web. Similarly, running an
ISTP process and knowing (or advertising) a beacon tag are the only things that are necessary to
enter the ISTP world.

While there are no centralized servers in ISTP, there are nevertheless two key services that are
provided in a distributed way. Which processes are providing these services at any given moment
is determined dynamically. In particular, the number of processes providing a service can be
dynamically increased in order to scale to larger numbers of users.

An ISTP process providing Locale-Based Communication service maintains a record of every-
thing in a given locale. When the locus of attention of a user process enters a new locale, the
appropriate locale server is queried to obtain initial information about the state of objects in the
locale. After this initial download, the user process obtains further incremental information by
peer-to-peer communication. Responsibility for locales is parceled out among many ISTP pro-
cesses, so that no one process is responsible for a larger piece of the virtual world than it can easily
handle.

An ISTP process providing Content-Based Communication service supports part of a distributed
name service that allows ISTP processes to locate beacons based on their tags. When a user
process wants to locate a particular beacon object, it consults the appropriate Content-Based
Communication server to �nd the beacon. As with locales, responsibility for beacons is parceled
out among a many ISTP processes, so that no one process is responsible for more beacons than it
can easily handle.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 11

World Model World Model

World Model

World Model

application

World Model

application

network

server

World Model

application

World Model

application

server

World Model

application

World Model

application

application

Figure 6: User servers.

1.2.7 User Servers

ISTP processes require relatively high bandwidth network connections. To accommodate pro-
cesses with weaker network connections, ISTP utilizes user servers. as illustrated in Figure 6.

The purpose of a user server is to support users with slow network connections (e.g., modems)
that do not allow them to operate as �rst class ISTP peers. A user server intercepts all communica-
tion to and from a given user. The message tra�c to the user is then compressed to take maximum
advantage of the bandwidth available. As part of this, audio streams are combined and localized
before sending them to the user. Servers are replicated as needed so that no one server has to
support more users than it can handle. Two user servers are shown in Figure 6.

1.3 Atomic Data

Much of the data used in the API is simple atomic data of 64 bits or less in length such as
boolean values, integers, and
oating point numbers. This data is copied whenever it is passed to
or returned from a function.

The following paragraphs brie
y describe each kind of atomic data used in the API. Some of
these types of data are described at greater length in other sections.

Boolean values represented using the type spBoolean. These are used to indicate True and
False values.

16-bit integers represented using the type short. These are used when low range integers are
adequate.

32-bit integers represented using the type long. These are used for representing most integer
values.

32-bit
oating point numbers represented using the type
oat. In keeping with standard
graphics practice, these are used to represent most non-integer values. They have limited precision,
but are compact.

32-bit unique names represented using the type spName. These are a compressed form of
longer GUIDs that are used for uniquely identifying objects when they are communicated between
machines. The same name space is also used to identify the the processes that own objects. A
compressed form is used to simplify operation on individual machines.

MERL-TR-97-11 December, 1997

12 (Internal) Spline Version 3.0 API

IP address/port pairs represented using the type spAddress. These are used to represent
network addresses. They contain two pieces of information, a 32-bit IP host address and a 16-bit
port number. In C an spAddress is a struct containing the host address, followed by the port
number.

32-bit time durations in milliseconds represented using the type spDuration. Whenever
an API function takes a time duration as an argument, this argument is in terms of milliseconds.
For compactness, 32-bit integers are used. This allows a range of approximately plus or minus two
weeks. (This does not impose any limitation on the lifetime of a session in the virtual world, but
rather only limits the maximum di�erence between two times that can be represented.)

32-bit time stamps in milliseconds represented using the type spTimeStamp. Internally,
the system uses absolute timestamps. At heart, these timestamps represent the time in milliseconds
modulo one week (604,800,000 milliseconds). However, as discussed in [Waters R.C., Time Synchro-
nization In Spline, MERL TR 96-09, April 1996] timestamps are manipulated in a non-standard
way that allows very e�cient comparison between timestamps

World model view masks represented using the type spMask (Section 7). These bit masks
are used to control the visibility of shared objects in the world model.

Audio formats represented using the type spFormat (Section 14). These values are used to
represent audio encodings and sample rates.

1.4 Pointer Data

In addition to atomic data, the API makes use of several di�erent kinds of pointer data. As
discussed at length in the next section, the most important kind of pointer data is pointers to
shared objects. However, several other kinds of pointer data are used as well.

A key feature of the API is that pointer data is always passed into and returned from functions
by reference rather than copying. This promotes e�ciency, but means you must pay close attention
to the following.

1- The system never alters data that is passed to it via a pointer unless this document explicitly
states otherwise. This means you can depend on the value remaining the same unless you change
it yourself.

2- The system never retains a pointer passed to it beyond the time the function that was given
the pointer returns. (If the system needs to keep data, it copies it.)

3- When a pointer is passed to you, you must never alter the data pointed to unless it is explicitly
stated that you should, because the system depends on the data not being altered. In particular,
you must never free something referred to by a pointer unless you yourself allocated the storage.

4- It is allowed that you retain pointers returned by an API function, but only until the next
time spWMUpdate is called. The reason for this is that the system assumes that during calls on
spWMUpdate, it can free any storage it has allocated. The only exception to this is certain shared
objects (Section 1.5.3). If you want to save data across a call on spWMUpdate, you must copy it.

The following paragraphs brie
y describe each kind of pointer data used by the system. Many
of these types of data are described at greater length in other sections.

A UTF8 ASCII string represented using the type char *. This is a null-terminated string.
If the characters are all 7-bit ASCII characters, then this is an entirely ordinary string. If extended
characters are used, then special escape sequences are present.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 13

An immutable spFixedAscii string containing no more than 500 characters repre-
sented using the type spFixedAscii. This is the same as the above, but is limited in length so that
it can �t into a single UDP message. It is used for most shared character data in shared objects.
This data must be speci�ed when the object is initially created and cannot be altered afterward.

An ASCII string containing no more than 31 characters represented using the type
spAscii32. This is the same as the above, but is limited in length so that it can �t in 32 bytes.

A 17-element position, orientation, and scaling vector represented using the type sp-
Transform (Section 8). This structure is used as the primary representation of the position and
orientation of objects.

A 3-element vector represented using the type spVector (Section 9). Vectors containing three
values are used for several di�erent purposes.

A 4-element quaternion represented using the type spQuaternion (Section 11). Quaternions
are one way of representing rotations.

A 4x4 transformation matrix represented using the type spMatrix (Section 12). Following
standard graphics practice, the position, orientation, and scaling of objects can be represented
using a 4x4 matrix.

A sequence of spTransforms and times represented using the class spPath (Section 13).
These are used to represent recorded motions.

A locally de�ned operation represented using the class spFn (Section 6). The API makes
heavy use of callback functions and the mapping of functions over objects. For convenience, a single
type is used to represent functional arguments in all these situations.

An interaction window represented using the type spWindow. Exactly what type this is
depends on the execution environment.

An opaque pointer represented using the type void *. In a number of places, the system
records pointers that are not part of the external interface and are not intended to be manipulated
by applications.

1.5 Shared Objects

The central kind of data in the API consists of shared objects. These objects are stored in
the world model and shared between the participants in a session. (Other data is shared only if
it is stored in a shared variable of a shared object.) The key feature of shared objects is instance
variables. They can have methods associated with them as well; however, the system makes rel-
atively little use of these methods. Rather, shared objects are essentially passive, principally just
representing a database of information.

1.5.1 Accessors

All interaction with instance variables in shared objects is via access functions, rather than via
direct access to instance variables or structure �elds. In the external API, the number of access
functions available depends on the visibility of the instance variable in the API. However, in the
internal API, a full range of accessors is available for each variable. The following discusses the
accessors in detail for an instance variable V in a shared class spK containing data of type T.

T spKGetV(sp Object)

Object - The object from which the value is to be obtained.
Return value - The value of the instance variable V.

MERL-TR-97-11 December, 1997

14 (Internal) Spline Version 3.0 API

The above accessor obtains the value of the instance variable V for an object. It is part of the
API if and only if V is part of the external API. It reports an error (Section 5.18) if the object
from which the data is being obtained is not an instance of (a subclass of) the class spK.

void spKSetV(sp Object, T Value)

Object - The object whose V value is to be set.
Value - New value for V.

Return value - There is no return value.

The above accessor sets the value of V. It is part of the API only if the external API allows
V to be set. It reports an error if the object to be modi�ed is not an instance of (a subclass
of) the class spK, if the object has been removed from the world model, or if Value is a shared
object that has been removed. If V is an instance variable that is shared between the processes
in a session, then spKSetV reports an error if the owner of the object is not equal to the current
value of spWMGetMe. In addition, spKSetV sets the MessageNeeded bit (Section 15.20) and the
Change bit (Section 15.21). However, if spKSetV is executed in the Function of an spAction, then
unless the object being modi�ed is the action object itself, the MessageNeeded bit is not set. This
is needed for the proper functioning of actions that run in both locale and remote processes.

T spKGetOldV(sp Object)

Object - The object from which the old value is obtained.
Return value - The old value of the variable V.

The above accessor obtains the value that V had at the end of the last call on spWMUpdate. It
is part of the API if and only if V is part of the external API, V is a shared variable and the external
API allows the value of V to change (in particular, V must not have the C type spFixedAscii).
spKGetOldV reports an error if the object from which the data is being obtained is not an instance
of (a subclass of) the class spK. Obtaining an old value can take substantially more time than
obtaining the corresponding current value. (The primary intended use of spKGetOldV accessors is
in alerter tests (Section 6.1).)

As noted, a given instance variable may not have all the accessors described above. If (and only
if) a given accessor spKGetV (or spKSetV or spKGetOldV) is not included in the API, then an
internal accessor with the name spKiGetV (or spKiSetV or spKiGetOldV, respectively) is typically
included in the internal API. These internal accessors operate in exactly the same way as the
external accessors described above. They are included in the internal API so that they can be used
in the system core and so that they are available to those that wish to go beyond what can be done
using the external API.

T spKiGetV(sp Object)

Object - The object from which the value is to be obtained.
Return value - The value of the instance variable V.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 15

The above accessor obtains the value of the instance variable V for an object. It is part of the
API if and only if V is not part of the external API. It reports an error (Section 5.18) if the object
from which the data is being obtained is not an instance of (a subclass of) the class spK.

void spKiSetV(sp Object, T Value)

Object - The object whose V value is to be set.
Value - New value for V.

Return value - There is no return value.

The above accessor sets the value of V. It is part of the API only if the external API does
not allow V to be set. It reports an error if the object to be modi�ed is not an instance of (a
subclass of) the class spK, if the object has been removed from the world model, or if the value
being stored is a shared object that has been removed. If V is an instance variable that is shared
between the processes in a session, then spKiSetV reports an error if the owner of the object is
not equal to the current value of spWMGetMe. In addition, spKiSetV sets the MessageNeeded
bit (Section 15.20) and the Change bit (Section 15.21). However, if spKiSetV is executed in the
Function of an spAction, then unless the object being modi�ed is the action object itself, the
MessageNeeded bit is not set. This is needed for the proper functioning of actions that run in both
locale and remote processes.

T spKiGetOldV(sp Object)

Object - The object from which the old value is obtained.
Return value - The old value of the variable V.

The above accessor obtains the value that V had at the end of the last call on spWMUpdate. It
is part of the API if and only if V is a shared variable and does not have the C type spFixedAscii.
spKiGetOldV reports an error if the object from which the data is being obtained is not an instance
of (a subclass of) the class spK. Obtaining an old value can take substantially more time than
obtaining the corresponding current value.

The internal C API has a further set of accessors for a given instance variable V. These accessors
are much faster than the external API accessors but do no error checking and perform fewer
collateral operations. They exist purely for implementing the core of the system itself and should
never be used in application programs. They follow the same basic pattern as the accessors above,
but are distinguished from them by having names that start with the letters \sq" instead of \sp".

T sqKGetV(sp Object)

Object - The object from which the value is to be obtained.
Return value - The value of the variable V.

The above accessor obtains the value of the instance variable V for an object. No validity checks
are performed.

void sqKSetV(sp object, T value)

Object - The object whose V value is to be set.
Value - New value for V.

Return value - There is no return value.

MERL-TR-97-11 December, 1997

16 (Internal) Spline Version 3.0 API

The above accessor sets the value of V for an object. No validity checks are performed. The
message needed bit (Section 15.20) and change bit (Section 15.21) are not set.

T sqKGetOldV(sp Object)

Object - The object from which the old value is obtained.
Return value - The old value of the variable V.

The above accessor obtains the value that V had at the end of the last call on spWMUpdate. It
is part of the API if and only if V is a shared variable and does not have the C type spFixedAscii.
No validity checks are performed. Just as with the external accessors, obtaining an old value often
takes substantially more time than obtaining the corresponding current value.

In the interest of saving space in this document, the discussions of individual instance variables
in shared objects merely list which accessors are available with reference to this section for greater
details.

It should be noted that for a given class spK, the accessors above are available not just for the
variables directly de�ned in the class, but also for the variables that are inherited. For example,
if spK inherits a variable V from a superclass spJ and the accessor spJSetV is available, then the
accessor spKSetV is also available. In the interest of brevity, these inherited accessors are not
explicitly listed in this documentation.

1.5.2 Referring To

Instance variables that point to shared objects are handled specially in a number of ways. This
is necessary due to the partial and asynchronous way that the world model is copied between
processes.

A very important feature of the API is that the local world model copy in a given process does
not contain everything in the entire virtual world, but rather only a subset of the objects that are
of local interest. As discussed elsewhere, the determination of subsets is based primarily on locales
(Section 26).

Because only some of the objects in the world model are in the local world model copy at a
given moment, it is entirely possible that the local world model might contain an object A that
refers to an object B (e.g., A's Parent might be B) and yet the local world model might not contain
the object B.

Communication is arranged so that if two objects refer to each other, then in general they are
both communicated in the same locale. As a result, the kind of inconsistency described above
seldom exists for long. However, it is very common for this kind of inconsistency to exist brie
y
for a variety of reasons.

(1) When the focus of interest moves into a new locale, a process inevitably hears about some
objects before others. (Because there are places where circularity of references is required, nothing
can avoid the fact that this can cause temporary dangling references.)

(2) When new objects are created, a process inevitably hears about some objects before others.
(3) When objects are removed, a process may hear that an object is gone before hearing that

other objects have stopped referring to it.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 17

The above situations are handled by essentially putting the burden of a sanitized version of
the problem on the application. When an instance variable contains a shared object, the access
function that obtains the value (e.g., spGetParent) returns the object referred to only if the object
is in the local world model copy. Otherwise it returns Null.

Suppose again that there is an object A in the local world model copy. If spGetParent returns
non-Null when applied to A, then the return value is the Parent of A. However, if spGetParent
returns Null, then this could mean either that A has no Parent or merely that the Parent of A does
not yet exist in the local world model copy. (There is no way to tell the di�erence between these
two things without inspecting details of A that are below the level of even the internal API.)

Suppose that A does indeed have a Parent B and suppose further that A appears in the local
world model before B. When B later appears, this registers in all respects just the same as if the
Parent of A changed from Null to B. In particular, if there is an alerter (Section 43) watching for
such a change, it will be triggered.

The above approach works well because it does not matter to the typical application whether
the Parent of A has changed or has merely just become known. An application has to be able to
deal with arbitrary changes made by other processes, and doing this properly typically leads to
a solution that operates properly in the presence of evolving partial knowledge as well. However,
it is important to keep clearly in mind that a process's knowledge of the world model is always
partial and therefore it is never justi�ed to draw more than merely provisional conclusions from the
absence of something in the world model, since anything can appear during a call on spWMUpdate.

1.5.3 Removal

A key issue is asynchronous changes in the world model. In particular, objects owned by other
processes can appear, change, and disappear from the world model any time spWMUpdate is called.
In addition, if there are multiple threads in the local process, then from the perspective of a given
thread, other threads can asynchronously create, modify, and remove locally owned objects.

A particularly good example of the problems related to asynchronous changes is what must be
done to properly handle the asynchronous removal of objects. To start with, it is important to
understand what happens when an object is removed.

First, the IsRemoved bit is set on in the object R being removed and all connections between
R and other objects are broken. Speci�cally, any instance variable in any other object that refers
to R is set to Null. In addition, any instance variable of R that refers to any other shared object
is set to Null. (One result of this is that having an object's Parent removed is treated very much
the same as if the object's Parent was simply changed to Null.)

After the �rst stage of removal above, one can still consult all the instance variables of R, with
the proviso that the variables that point to other objects have all become Null. (For variables that
are shared with other processes, you can consult the old values of the instance variables to �nd out
what they used to point to.)

Second, some time later (exactly how much time later is discussed in detail below) the storage
corresponding to object R is freed. After that time, one can no longer access any of the instance
variables of R, and it can be disastrous to try. A key purpose of the �rst step of removal is to
ensure that no other shared object can retain a pointer to a freed object. Applications must be
sure that they don't either. There is a separation in time between the �rst and second stages of
removal so that applications have time to notice when objects have been removed.

MERL-TR-97-11 December, 1997

18 (Internal) Spline Version 3.0 API

To deal with asynchronous object removal, an application must check on a regular basis whether
any objects it is interested in have been removed and respond appropriately before the objects are
freed. The system has carefully designed rules about when objects can be removed and freed in
order to reduce the number of times an application has to check for an object's continued existence.

Between calls on spWMUpdate, objects are never removed unless they are explicitly removed
by the local process. The basic result of this is that it is su�cient for a process to check for the
continued existence of an object it is keeping track of once each time after spWMUpdate returns.
This checking is done using the accessor spGetIsRemoved. Once an object has been removed, the
local process should drop all pointers to it immediately, because they will very soon be invalid. (A
particularly good way to do the checking above is to use an spJustRemoved (Section 6.1) alerter
on the object in question.)

Objects are never freed except during calls on spWMUpdate. In addition, if an object is
removed after the beginning of a call on spWMUpdate it is not freed until the very end of the
next call on spWMUpdate. This means that for every object, there will be at least one period
between spWMUpdate calls where the object has been removed and not yet freed. This gives the
application an opportunity to detect this fact and do something about it. (It also guarantees that
the object stays around long enough for any spJustRemoved alerters to get triggered.)

As a result of the above, C applications need not worry much about objects being asynchronously
freed as long as they check that the objects are still in the world model once after each call to
spWMUpdate (e.g., with alerters).

In the Java interface, garbage collection and �nalize methods ensure that shared objects are
not freed as long as any pointers to them remain. In the C interface the function spWMRegister
(Section 5.19) is used to obtain a somewhat similar level of protection. This can be used to make
sure that the object pointed to from a given variable will never be freed and therefore it will always
be valid to check whether the object has been removed.

An important special case is worthy of note. If the local process owns an object, then it can rely
on the fact that the object will not get removed unless the local process removes it. This obviates
the need for a signi�cant amount of spGetIsRemoved checking in typical applications.

If the local process has multiple threads, then several problems arise. First, the other threads
in the process can remove anything and so no object access can be considered entirely safe. Second,
it is likely that some of the threads will not be synchronized with calls on spWMUpdate. It is
di�cult for such threads to know when they should check that objects still exist.

The most robust way to avoid problems with threads is to avoid having asynchronous threads
manipulate shared objects directly, but rather have them communicate in some other way with the
main thread in a process. Barring this, spJustRemoved alerters are the best way to ensure safety.

1.5.4 Communication Patterns

Shared objects are typically communicated to all (and only) the processes that are paying
attention to the locales the objects are in. However, certain classes of objects are communicated in
special ways.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 19

spLocale objects themselves are communicated directly to Content- and Locale-Based Com-
munication servers, and only via them to other processes. spClass objects, spBeaconing objects,
and their subclasses are communicated via these special channels and using ordinary communica-
tion as well. spIntervalCallback objects (and subclasses) are not communicated to other processes.
However, spBeaconMonitor objects (and subclasses) are communicated to Content-Based Commu-
nication servers as requests.

1.5.5 Descriptions

Information about the shared variables in an object are communicated between processes using
messages containing object descriptions. There are two basic kinds of descriptions: full and di�er-
ential. Di�erential descriptions specify only what has changed since the previous state or since any
of several previous states.

An important question is exactly when full descriptions have to be used. In short, the answer
is that a full description must be sent whenever in the normal course of events the recipient would
not be able to understand a di�erential description. In particular, full descriptions must be sent in
the following situations:

A - When an object is initially created, a full description must be sent.
B - Whenever an object changes locales, a full description must be sent to the new locale.

The message to the old locale can use a di�erential description.
C - When servers send object descriptions, they must in general use full ones, because there

are very few situations where they can validly assume that the recipient already knows
about the object.

C1 - When a Locale-Based Communication server informs a process of the state of a locale,
all the descriptions must be full ones.

C2 - When a Content-based Communication server sends information about beacons, it must
send full information.

1.5.6 In-Order Description Processing

The descriptions received about an object are handled in a mostly in-order fashion. This is
supported by the Msgs variable (Section 15.26) in shared objects and the MsgRejectionQueue
(Section 5.13) world model variable.

When spWMUpdate runs, it �rst takes all incoming object descriptions, discards those that are
blocked by the MsgRejectionQueue, and puts the rest on the appropriate object Msgs queues in
proper order. descriptions with counters smaller than the Counter of the object and descriptions
that are duplicates are ignored. Any objects with non-empty Msgs queues are then inspected for
possible description processing.

When processing a Msgs queue, the following searching is done. A scan is made from lowest
numbered description to highest to �nd the highest numbered description that can be processed
without processing any other description �rst. If any such description it found, it is processed
and it is removed from the queue along with any lower numbered descriptions. The search is then
resumed to see if any other description can be processed.

MERL-TR-97-11 December, 1997

20 (Internal) Spline Version 3.0 API

The processibility of descriptions is determined as follows:

A - A di�erential description cannot be processed unless the prior state it depends on has
already been reached.

B - No description can be processed unless it was sent by the process that owns the object
as currently shown in the recipient's local world model copy.

C - Except for (B) which imposes some ordering, a full description is always processible.

It happens from time to time that a process gets a description about an object that is not yet
known to it. If the description is di�erential, it is shunted aside for possible future consideration.
If the description is a full description, it is processed and the object created.

The above scheme guarantees to always reject late arriving and duplicate descriptions because
(1) ISTP prevents such descriptions cannot appear more than abounded number of msecs late and
(2) there is always something to guard against them either in the world model or the MsgRejec-
tionQueue for at least this long.

1.6 De�ning Shared Classes

No matter what API language is being used, shared object classes are de�ned using Java and
a preprocessor called SPOT. (The following discussion assumes a basic understanding of Java.) In
general, SPOT takes in a Java �le containing a shared class de�nition and produces:

1 - A new Java �le in which instance variables are manipulated via access methods instead
of directly as variables. This �le is used to add the shared class to the Java API.

2 - A class descriptor �le that is used by the system core when communicating instances of
the class between processes.

In addition, SPOT is capable of producing the following outputs that allow a class to be ac-
cessible from C. These outputs are produced based on comments provided as part of the Java
input.

3 - A Java stub �le that links the methods in the Java class to a C implementation.
4 - A �le of automatically generated C functions (along with an appropriate .h �le) that

adds the shared class to the C API.

SPOT operates in 2 basic modes: Java-only and dual.
In Java-only mode, SPOT operates purely to extend the Java API. The input need not contain

any comments describing linkages to C. Things are arranged so that the class can be used from
Java without having to link anything into the system core. Only outputs (1) and (2) are produced,
outputs (3) and (4) being unnecessary.

In dual mode, and all four outputs are produced so that the class can be used to maximum
e�ect in both C and Java. In Java-only mode, there is very little reason to apply SPOT to anything
other than a shared class. However, this can be useful in mixed mode to make non-shared classes
available in C.

The classes described in this document are de�ned solely using native methods and are processed
using the dual mode of SPOT so that they are available fully in both the Java and C APIs. An
appendix (Appendix A) contains the SPOT input corresponding to the API described in this
document.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 21

1.6.1 Example

The following example is used in the explanation below. It is contrived to illustrate many
di�erent features in a small space.

public class spExample extends spThing {
public float[] Orientation;
public spAction Agent; //* readonly
public transient int Timeout; //* internal
public static float[] StandardOrientation;
public static final DefaultTimeout = 1000;

public spExample(int Timeout) {...};
public final void Setup(float [] Orientation) {...};
public void Print() {...};

}

Syntactically, the class de�nition above is standard Java. The information that is used by
SPOT is indicated using standard Java keywords (e.g., transient) and data supplied in comments.
comments are needed. (spThing and spAction are shared object classes.)

1.6.2 Shared Classes

A class is a shared class if and only if it is the root shared class sp or extends another shared
class. (In the case above, spExample extends the shared class spThing. In contrast, the class
spWM (Section 5) is not a shared class.) The key feature of a shared class is that the objects that
are created as instances of the class are shared between the processes participating in a session.

An instance variable is shared if and only if (1) it is in a shared class, (2) it is not transient,
and (3) it is not static. The transient keyword is used to explicitly state that a variable is not
shared. Static (and therefore static �nal) variables cannot be shared. When a shared variable is
set in one process, the change is automatically re
ected in all other processes. In contrast, non-
shared variables exist in each process, but the values of non-shared variables are set separately by
each process, with no e�ect on their values in any other processes. In this document, non-shared
variables are typically referred to as local.

1.6.3 Variables and Access Methods

For the most part classes processed by SPOT can contain any variable declarations they like.
However, two things are important to note. First, SPOT generates a static �nal variable called C
(Section 15.1) for each class is processes. At run time, this variable contains the spClass descriptor
for the class. In order to avoid con
ict, a class de�nition cannot contain a variable named C.

Second, SPOT generates instance variable access methods (Section 1.5.1) so that the instance
variables of a class are accessed via methods rather than directly as variables. For instance, when
using an instance X of the class spExample, one cannot write X.Agent anywhere.

The only exception to the above is that static �nal variables are treated as variables. For
instance, when using an instance X of the class spExample, one can write X.DefaultTimeout.

The access methods created by SPOT (Section 1.5.1) are given the same access control keyword
as the variable that led to them. In the API described here, this keyword is always public.

MERL-TR-97-11 December, 1997

22 (Internal) Spline Version 3.0 API

The semicolon ending an instance variable declaration in a class processed by SPOT can be
followed by a comment beginning with `//*'. This comment can be used to control the names of
the accessors created by SPOT. In particular, the comment can contain the keywords \readonly"
and \internal". If the keyword \internal" is used then all accessors start with the letter `i'. If the
keyword \readonly" is used then the Set accessor begins with `i'. For instance, the Agent instance
variable of spExample has the accessors GetAgent, GetOldAgent, and iSetAgent. This indicates
that reading the Agent variable is part of the external API, but setting it is not.

If access methods are generated for a static (but not �nal) variable, then the access methods are
also static. The only class in the API that uses static (but not �nal) variables is the class spWM
(Section 5).

SPOT does not generate access methods for static �nal variables. Rather, they just act as
constants as in Java in general.

The code below illustrates the access-method-introduction transformations performed by SPOT.
In Java-only mode, the methods introduced are de�ned solely in Java. In mixed mode, the methods
introduced are native and accessible from both Java and C.

public class spExample extends spThing {
public static final spClass C = ...;

protected float[] Orientation;
protected float[] OldOrientation;
protected spAction Agent;
protected spAction OldAgent;
protected int Timeout;
protected static float[] StandardOrientation;
public static final DefaultTimeout = 1000;

public spTransform GetOrientation() {...}
public spTransform GetOldOrientation() {...}
public void SetOrientation(float[] y) {...}

public spAction GetAgent() {...};
public spAction GetOldAgent() {...};
public void iSetAgent(spAction x) {...};

public int iGetTimeout();
public void iSetTimeout(int Timeout) {...};

public static float[] GetStandardOrientation() {...};
public static void SetStandardOrientation(float[] y) {...};
...

}

Access methods are introduced in order to support the easy sharing of objects and other features
of the API. In particular, for many kinds of data, special processing must be performed when values
are read or written. SPOT inserts function calls in the access methods it creates that perform this
processing. Even from methods de�ned within a class processed by SPOT, instance variables should
never be referred to directly, but rather only via access methods.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 23

Note that ISTP speci�es the position in descriptions of a few key shared object �elds. When
generating information about how to construct messages and perhaps when deciding how �elds are
arranged in memory, SPOT has to pay head to this.

It is possible for a programmer to override an accessor method that would have been created by
SPOT by providing his own de�nition of a method with the same name. In that case, SPOT will
not generate the method in question, relying on the programmer's de�nition instead. This feature
is used a couple of times as part of the de�nition of the system core. It would be very dangerous
for an application programmer to use this feature, because it would be all to easy to omit essential
processing that had to occur for the type of data stored in the variable.

1.6.4 Shared Variable Types

If a variable is shared, then the data stored in the variable must be one of only a few permitted
types. These types fall into two groups: scalar types and pointer types.

A shared variable can have as its type any of Java's eight primitive scalar data types (byte,
short, int, long,
oat, double, char, and boolean). In addition, a shared variable can have one of
the following pointer types.

A - The variable can have as its type a shared class. These classes include the basic shared
class hierarchy described in this document (i.e., spThing and everything else descended
from the base shared object class sp) as well as any new shared classes that are de�ned.

B - The variable can have as its type the special class spFn.
C - The variable can have as its type String.
D - The variable can be an array whose elements are one of Java's eight primitive scalar

data types.

You can de�ne any kind of Java object you want and have these objects refer to shared objects,
but this new Java object can be used as the value of a shared instance variable only if the new
object is itself an instance of a shared class.

The total memory size of all the shared instance variables of a class must �t in a single UDP
message (i.e., be less than 600 bytes or so). A warning is issued if this restriction is violated.

1.6.5 Methods In Shared Classes

The de�nition of a shared class processed by SPOT can contain methods de�ned in any way that
is acceptable to Java. In general, these methods are not altered by SPOT and are not utilized by
the system. (An application can use them in any way it likes.) However, application programmers
should be aware that a few methods are handled in special ways by SPOT and/or the system core.
(Note that for all these methods, there can be at most one method with the indicated name in a
given shared class de�nition.)

Initialization - You can de�ne a method called Initialization (Section 15.29) that initializes some
or all of the variables in a class. This is similar to using initialization expressions except that an
Initialization method can be used to initialize inherited variables in addition to variables that are
de�ned as part of the class itself. If no Initialization method is provided, SPOT de�nes one that
does nothing. The Initialization method is recorded in the spClass object for a class (or interface)
so that it can be called by the system core when a new object is created.

MERL-TR-97-11 December, 1997

24 (Internal) Spline Version 3.0 API

Initialization methods are also similar to initializing variables in an object constructor method
except for two things. First, When the system core creates an object instance it calls the Initializa-
tion methods for the object's class and every class it inherits from in order from the most general to
the most speci�c. As a result, the Initialization method for a class can override the actions of the
initialization methods for the classes it inherits from, but does not have to duplicate the actions it
agrees with. This contrasts with object constructors which trigger more abstract constructors only
if they call them explicitly.

Second, when an object is created due to the receipt of an object description from a remote
process, the system core creates the object by calling spClassNewObj for the appropriate class which
calls the initialize methods. In particular, the system core does not call Java object constructors
that are written by application programmers. Therefore, initializations that need to always occur
when remote objects appear need to be included in Initialization methods, not object constructors.

Object constructors - A class de�nition can contain the de�nition of one or more object con-
structors. SPOT modi�es these by adding a call on spClassNewObj as the �rst line, if one is not
already present. This properly initializes the system core when the constructor is called and calls
the Initialization methods. If there is no object constructor speci�ed, then SPOT creates one with
no arguments that merely calls spClassNewObj.

The code below illustrates the transformations of methods performed by SPOT. In Java-only
mode, the methods introduced are de�ned solely in Java. In mixed mode, the methods introduced
are native and accessible from both Java and C.

public class spExample extends spThing {
...
protected Initialization() {};
public spExample(int Timeout) {...spExample.C.NewObj(); ...};
public final void Setup(float [] Orientation) {...};
public void Print() {...};

}

1.6.6 Interfaces

In Java there is a big distinction between interfaces, which must be almost completely abstract,
but can be multiply inherited and ordinary classes which can be concrete, but cannot be multiply
inherited. (Note interfaces in Java allow multiple inheritance from the perspective of variable types,
but do not allow anything of concrete to actually be inherited; rather everything must be explicitly
implemented in each class that implements an interface.) This is awkward because it makes it
di�cult to make full use of multiple inheritance in an API.

By means of appropriate preprocessing, SPOT reduces the di�erence between interfaces and
classes, allowing interfaces for shared objects to be concrete. This allows the API presented here
to make much fuller use of multiple inheritance.

SPOT allows everything that Java allows in an interface and does not modify any of that
information. In addition, if an interface is a shared interface, SPOT allows the inclusion of method
implementations and variables that are not static �nal.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 25

An interface is a shared interface if and only if it is the root shared interface sp or extends
another shared interface. A shared interface is allowed to contain instance variables that follow
exactly the restrictions for variables in shared classes. However, like everything else in an interface,
these variables are required to be public.

SPOT removes all the information about variables that are not both static and �nal, saving it
for future reference, and replaces it by abstract signatures of the corresponding access methods.

Note that in Java the syntax of interfaces speci�es that every variable is public, static, and �nal
by default. In particular, even if these keywords are omitted, they are considered to be implicitly
present. SPOT continues the requirement that every variable and method be public, but allows
the omission of the keywords static and/or �nal to have meaning.

A shared interface can contain non-static implemented methods. These can be native or have
bodies. SPOT saves the method implementations aside for future reference and converts them to
abstract signatures.

As in ordinary classes, note that there can be an Initialization method that gives initial values
for variables. If there isn't an Initialization method, SPOT generates an Initialization method that
does nothing. Since an interface is, per force, abstract, it cannot have a constructor method.

From the perspective of the API, interfaces are the same as ordinary classes except that they
are abstract. SPOT creates an spClass object for interfaces just like it does for shared classes. The
spClass object speci�es the Initialization method and Spline makes sure that this method is called
at the right time.

As an example of the way SPOT handles interfaces consider that the following:

public interface spOrienting extends sp {
public float[] Orientation;
public transient spAction Agent; //* readonly
public void Setup(float [] Orientation) {...};

}

is transformed by SPOT into:

public interface spOrienting extends sp {
public static final spClass C = ...;
public float[] GetOrientation();
public float[] GetOldOrientation();
public void SetOrientation(float [] Orientation);
public spAction GetAgent();
public spAction GetOldAgent();
public void iSetAgent(spAction agent);
public void Setup(float [] Orientation);

}

The result is a standard Java interface that is entirely abstract. SPOT maintains a record of
the information that was removed so that it can be used to cause proper inheritance when the
interface is used.

MERL-TR-97-11 December, 1997

26 (Internal) Spline Version 3.0 API

As an example of how an interface class can be used in conjunction with SPOT, consider that the
interface spOrienting could be used when de�ning spExample above as follows. In this de�nition,
the variables Orientation and Agent, and the method Setup are inherited from spOrienting instead
of being de�ned as part of the class itself.

public class spExample2 extends spThing implements spOrienting {
public transient int Timeout; //* internal
public static float[] StandardOrientation;
public static final DefaultTimeout = 1000;

public spExample(int Timeout) {...};
public void Print() {...};

}

SPOT allows the use of the \implements" keyword when de�ning shared classes, but only if the
interface is also shared. (This is the only situation where SPOT does anything special with the
\implements" keyword.) It is further required that when a shared interface is used, there never be
any variable or method name clashes.

SPOT supports multiple inheritance of interfaces by simply leaving the keyword clause un-
changed for the bene�t of the Java compiler and then including macro-style all the information
that was saved from the interface de�nition itself. (Note that this does not include Initialization
methods, which are handled correctly via spClass objects.)

If the same interface is inherited via two paths, then only one copy is inserted. In general, if a
variable or method is inherited twice, only one copy is retained and an error is reported if the two
copies are not identical.

After methods speci�ed by interfaces have been inserted into a class de�nition, then SPOT
processing continues, with the creation of appropriate access methods, etc.

Note that even when doing all the above, SPOT has the critical feature that it only has to run
on the de�nition of a class. The class is used in completely standard Java ways. This means that
while SPOT has to be used to de�ne new shared classes, it does not have to be used in conjunction
with programs that merely use these classes.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 27

For example, the when spot processes the de�nition of spExample2 above, it creates the follow-
ing, which is identical to what is created when processing spExample.

public class spExample2 extends spThing {
public static final spClass C = ...;

protected float[] Orientation;
protected float[] OldOrientation;
protected spAction Agent;
protected spAction OldAgent;
protected int Timeout;
protected static float[] StandardOrientation;
public static final DefaultTimeout = 1000;

public spTransform GetOrientation() {...}
public spTransform GetOldOrientation() {...}
public void SetOrientation(float[] y) {...}

public spAction GetAgent() {...};
public spAction GetOldAgent() {...};
public void iSetAgent(spAction x) {...};

public int iGetTimeout();
public void iSetTimeout(int Timeout) {...};

public static float[] GetStandardOrientation() {...};
public static void SetStandardOrientation(float[] y) {...};

protected Initialization() {};
public spExample(int Timeout) {...spExample.C.NewObj(); ...};
public final void Setup(float [] Orientation) {...};
public void Print() {...};

}

1.6.7 Variables Available In C

When used in mixed mode, SPOT can make instance variables of classes and interfaces that are
speci�ed in the Java input accessible from C programs. In order for this to be possible, a number
of restrictions must be obeyed and a C type has to be speci�ed for the variable.

Variables that are made available in C must follow the restrictions on types presented above
(Section 1.6.4) whether or not the variables are shared. Note that a variable can be shared without
being available in C and a variable that is not shared can be available in C.

Variables that are made available in C cannot rede�ne any variable in the class being extended.
(This is because, for e�ciency, the system assumes that such instance variables cannot have their
de�nitions changed.)

Variables that are made available in C, are not allowed to have an initialization expressions.
Rather, one uses an Initialization method (Section 15.29). The only exception to this is that static
�nal variables (Section 1.6.10) must have initializations.

MERL-TR-97-11 December, 1997

28 (Internal) Spline Version 3.0 API

The semicolon ending an instance variable declaration in a class processed by SPOT can be
followed by a comment beginning with `//*' that speci�es a type to use for the variable in the C.
This speci�cation has the form [type] where the type is a C type (de�ned separately in a C �le).
SPOT makes the variable available in C if, and only if, such a comment is speci�ed.

The following shows how comments could be added to the example above to make several of the
variables available in C. The following sections discuss the contents of these comments in detail.

public class spExample extends spThing {
public float[] Orientation; //* [spTransform:17]
public spAction Agent; //* [sp] readonly
public transient int Timeout; //* [spDuration] internal
public static float[] StandardOrientation;
public static final DefaultTimeout = 1000; //* [spDuration]
...

}

A shared class can contain instance variables that are neither shared nor available in C. Such a
variable can be speci�ed in any way that is acceptable to Java.

1.6.8 Scalar C Types

The only restriction on the C type speci�ed for a variable that has one of Java's eight basic
scalar types is that the C type occupy the same amount of storage as the Java type. For instance,
an int in Java is represented using 32 bits. Any 32-bit C type can be used in conjunction with it.
The following table shows the basic correspondence between Java and C types. Many other types
(e.g. user de�ned ones) can be used.

Scalar Java type - Default C type
boolean - spBoolean

byte - char
short - short
char - unsigned short
int - long

long - double

oat -
oat

double - double

In general, SPOT does nothing special with individual scalar types. It merely needs to know
what types to use in Java and in C and what their sizes are. However, one scalar type gets special
treatment.

If the C type of a shared or native instance variable is spBoolean, then the value is stored in
a single bit using special internal variables of the class sp (Section 15.12). However, once the bits
reserved in these variables have been exhausted, then a whole byte is used for an spBoolean value.

Whenever they are passed as arguments to functions or passed between C and Java, scalar
values are copied.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 29

1.6.9 Pointer C Types

If a variable made available in C has an object class as its Java type, then the corresponding C
type must be a pointer. The following table shows some typical mappings. Note that as discussed
above, there are only a few Java classes that can be used as the types of variables made available
in C.

Permitted Java type - C type
shared object - sp

spFn - spFn
String - char *
arrays - scalarType *

In C, all shared objects are referred to by pointers of type sp and no other C type can be
speci�ed. All functional arguments are referred to by pointers of type spFn and no other C type
can be speci�ed.

For strings and arrays, the C type must be a pointer. In addition, for these types, the comment
specifying the C type must also specify the memory size of the data pointed to. This is done by
using a comment of the form [type:size] where type must be a C type that is a pointer (e.g.,
oat*)
and where size speci�es how many elements there are in the string or array. For instance, in the
spExample class, the C type spTransform points to a vector of 17
oats.

When pointer types are passed as arguments to functions, they are passed whenever possible
by reference via a pointer. However, when pointer types are passed between C and Java, the data
is typically copied so that appropriate data structures can be maintained separately in C and Java.

As with scalar types, SPOT typically does nothing special with individual pointer types. It
merely needs to know what types to use in Java and in C and what the memory size in C is. (For
ease of allocation and communication, strings and arrays are stored in-line in the C representation
for an object.) However, several pointer types get special treatment.

The shared object types and the type spFn get special treatment so that appropriate objects
will be available e�ciently in both Java and C. In addition, Strings get special treatment.

A di�erence between Java and C is that Strings in Java use Unicode characters while strings
in C use ASCII characters. To accommodate this, Java strings are encoded as null terminated
UTF8 strings when communicated to C. This means that if all the characters in a Java string are
merely ASCII characters, then there is a trivial one-to-one correspondence between the Java and C
strings. If the Java string has special characters in it, then the C string has multi-character codes
embedded in it signaled by special pre�x characters.

The C type spFixedAscii speci�es a string of variable length that can only be set at the moment
when a shared object is being created and cannot be changed later. To minimize the memory used
for spFixedAscii values, they are placed in a special variable-sized part of an object. (A consequence
of this is that it is not possible to obtain the old value of an spFixedAscii variable.)

The type spFixedAscii can only be used for shared variables. Unlike other array-like types, no
explicit size can be speci�ed when using the type spFixedAscii.

As noted above, the total size (in C) of all the shared instance variables must �t in a single
UDP message (i.e., be less than 600 bytes or so).

MERL-TR-97-11 December, 1997

30 (Internal) Spline Version 3.0 API

1.6.10 Static Final Variables

A variable made available in C has an initializer expression if and only if it is a static �nal
variable. If the initialization of the value in C needs to be di�erent from the initialization in Java
(e.g., because it is not just a numeric constant) then the C initialization can be speci�ed after an
`=' sign in the //* comment that speci�es the C type of the variable. For example the de�nition
of spDEGREES (Section 15.2) could be:

native static final public float DEGREES = Math.PI/180.0; //* [float=M_PI/180.0]

1.6.11 Methods Available In C

When used in mixed mode, SPOT can make methods of classes and interfaces that are speci�ed
in the Java input simultaneously accessible from Java and C programs. In order for this to be
possible, a number of restrictions must be obeyed and a C type signature has to be speci�ed for
the method.

A method that is made available in C API must be `native'. That is to say, the application
writer has to do the hard part of making the method available in C. SPOT merely creates proper
stubs and interfaces.

A particular complexity here is that Java does not allow object constructors to be `native'.
Therefore, special e�ort has to be taken to de�ne a constructor that is available in both the C
and Java APIs. Speci�cally, a separate method has to be de�ned that contains everything you
want in the constructor, and that can be native. By convention, this is done by de�ning a method
called New. If there is only one method named New and no construction method then, SPOT
automatically generates a constructor with the same arguments as the New method that calls the
New method. It is expected that only programmers that are extending the system core will de�ne
constructors that are available in both the C and Java APIs.

When the above conditions are satis�ed, the speci�cation of a native method can be followed
by a //* comment containing the signature of the C function that implements the method. When
such a comment is present, SPOT generates appropriate C .h �les and stub �les linking the Java
and C API's.

The following shows how the example class could be altered to make the constructor and the
method Setup available in C.

public class spExample extends spThing {
...
native public static int New(int Timeout);
//* [sp spExampleNew(spDuration Timeout)]}
native public final void Setup(float [] Orientation);
//* [void spExampleSetup(sp ExampleObj, spTransform:17 Orientation)]
public void Print() {...};

To make it possible to create stubs correctly, types in the C function signature must obey all
the restrictions presented above for C types of variables made available in C (Section 1.6.4). In
particular, C types that correspond to arrays must contain a speci�cation of their sizes. In general,
lengths must also be included for string types. However, they can be omitted if the string is null
terminated.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 31

For the generation of stubs, SPOT uses the names of the arguments to determine the correspon-
dence between the arguments of the Java and C signatures. The Java and C type of an argument
of a native method must be one of the types that are valid for native variables. The corresponding
C type of the argument must be one of the C types that are permitted to correspond to the Java
type. Automatic conversions are performed when passing values between Java and C.

If a method is not a static method, then the object the method is applied to is passed to the
C function via the �rst argument whose name is not the same as the name of any argument in the
Java method. Otherwise, if an argument appears only in the C signature, it is passed the value 0.
If an argument appears only in the Java signature it is not be passed to the C function.

In the standard API classes, the convention is followed that if a class spK has a method M, then
the name of the corresponding C function is spKM, the arguments are in the same order, and the
argument to the C function that receives the object the method is applied to is the �rst argument.

1.7 Acknowledgments

The design and implementation of Spline is the result of a four-year e�ort by a large group of
people. Richard Waters and David Anderson have been the principle architects of Spline from its
earliest inception. In addition, they were the principal implementers of the initial version of Spline
(Spline 1.5) and led the reimplemention e�ort that created Spline 3.0.

Major contributions to the design and implementation of Spline were made by John Barrus. In
particular, he participated in the design from the very beginning, was co-designer of locales, designed
and implemented the concept of terrain's, and implemented Spline 1.5's �rst visual renderer.

Several other people helped with the implementation of Spline 1.5. In particular, Joe Marks
assisted with the initial design and wrote the �rst lines of code. David Marmor did early exploratory
work on audio processing. Michael Casey was co-designer and co-implementor of Spline 1.5's audio
renderer. William Yerazunis was co-designer and implementor of the smooth motion operations.

The design and implementation of Spline 1.5 proceeded in tandem with the design and imple-
mentation of Diamond Park, which was the most signi�cant application built on top of this early
version of Spline. The Diamond Park e�ort was lead by Barrus working closely with Stephan McK-
eown and Ilene Sterns. Additional major contributions were made by Anderson, David Brogan,
Casey, Jessica Hodgins, Waters, Yerazunis, Altitude inc., and Boston Dynamics inc.

A large team of people participated in the implementation of Spline 3.0 under the leadership of
Waters and Anderson, who were principally responsible for the design. William Lambert took over
leadership of the overall Spline e�ort at the end of 1996. William Yerazunis managed the software
engineering aspects of the project and implemented smooth motion operations. Derek Schwenke
implemented the system core including much of ISTP and the �rst visual renderer. He took over
management of the software engineering e�ort in mid 1997. Sam Shipman implemented the Java
interface for de�ning shared classes (SPOT) and the audio renderer. Alex Greysukh implemented
the underlying network communication code building on the work of Hiroshi Kozuka and Vu Phan.
Rob Kooper and David Ratajczak implemented the routines for manipulating transformations.
Christina Fyock, Evan Suits, and Barry Perlman created the �rst Spline 3.0 applications.

MERL-TR-97-11 December, 1997

32 (Internal) Spline Version 3.0 API

2 spApp

public class spApp

In Java, simple applications are subclasses of the class spApp. In C, simple applications are
collections of function de�nitions rather than a class de�nition with specialized methods. Never-
theless, the same basic approach is taken. In particular, the documentation below describes how to
write applications from the perspective of a group of functions that comprise a simple application.

The class spApp de�nes the following functions:

spAppChooseServer - Chooses session server (Section 2.5).
spAppInit - Initializes application (Section 2.6).

spAppBody - Body of application (Section 2.7).
spAppFinish - Cleans up at end of application (Section 2.8).

The way the functions above are used in a simple application can be seen by looking at the
standard application skeletons provided.

2.1 Application Templates

A number of templates are provided for main programs that can be used for applications. The
simplest of these is shown below. More complex templates allow for the combination of rendering
with an application (Section 2.2) or the creation of an application that is a Netscape plugin.

void main(int argc, char **argv) {
spWMNew(spAppChooseServer(), NULL);
spAppInit();
while (~ spAppBody()) spWMUpdate();
spAppFinish();
spWMRemove();
exit(0);

}

The application code is integrated on the lines containing the calls on spAppChooseServer,
spAppInit, spAppBody and spAppFinish. These calls decide what user server to connect to, ini-
tialize the application, perform the main application computation, and clean up at the end of the
application. Before going into any more detail about what these functions do, it is instructive to
see how the template above uses them.

spAppChooseServer is called �rst to determine what user server to connect to, if any. The result
is then used when creating the world model. spAppInit is called to set things up for the application.
The main body of the template is a loop that repetitively calls spAppBody and spWMUpdate. If
spAppBody ever returns True, then the loop terminates. To end the application, the template calls
spAppFinish and spWMRemove.

There is only one call on spWMUpdate in the template. No API function contains within itself
a call on spWMUpdate. It is a general principle that all calls on spWMUpdate should be clearly
visible|at best at top level as in the template above.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 33

The goal of the templates provided is to make it very easy to write very simple applications.
When implementing complex applications, it is expected that programmers will modify the tem-
plates, or create entirely new ones.

2.2 Interaction With Rendering

Stand-alone applications spVisual, spAudio, and spAudioVisual are provided that do visual
rendering, audio rendering and both audio and visual rendering respectively. Under the control of
spSpeaking, spHearing, and spSeeing beacons, these applications can be used to create visual and
audio output in conjunction with any application.

Having visual and audio rendering be separate from an application has two main advantages.
It allows an application to run (potentially on a separate machine) without any regard for the
update rate constraints caused by visual and audio rendering. In addition, it allows a simulation
application that does not require visual or audio rendering to run without incurring any rendering
overhead.

The above notwithstanding, it is often advantageous to combine visual and audio rendering into
an application process. There are two main reasons for this. First, if the application is going to
run on the same machine with the renderers, then there is less total overhead if they all run in
the same process. In particular, there is then only one copy of the world model instead of several.
Second, if the application wants to do keyboard and or mouse I/O with the window used for visual
rendering, then visual rendering must be included as part of the application (or at least included
with the part of the application that does the I/O).

In order for rendering to be combined with an application, the application must meet two key
criteria. First, the application must be relatively insensitive to the rate at which spWMUpdate is
called. The reason for this is that for visual rendering to work, visual rendering must closely control
the rate at which spWMUpdate is called. Second, the maximum amount of time the application
runs when it gets control must be relatively short. The reason for this is that if the application
ever runs for a long time, visual output will be frozen for this entire time.

While it is bene�cial that an application not take very much CPU time in total, combining an
application with rendering does not require this. The reason for this is that whatever amount of
time the application takes, it will take, whether or not the application is combined with rendering.
If the application takes a huge amount of time, it must be moved to a separate machine. Simply
separating the application from rendering on a single machine only makes things worse by increasing
overhead.

MERL-TR-97-11 December, 1997

34 (Internal) Spline Version 3.0 API

The following template shows how audio and visual rendering should be combined with an
application. If only visual rendering is wanted, then the calls on spAudioInit and spAudioFinish
can be omitted. If only audio rendering is wanted, then the calls on spVisualInit and spVisualFinish
can be omitted.

void main(int argc, char **argv) {
spWMNew(spAppChooseServer(), NULL);
spAudioInit();
spVisualInit();
spAppInit();
while (~ spAppBody()) spWMUpdate();
spAudioFinish();
spVisualFinish();
spAppFinish();
spWMRemove();
exit(0);

}

The template above is very similar to the template used when rendering is not combined with
an application (Section 2.1). The only di�erences are that spAudioInit and spVisualInit are called
to get things started and spVisualInit supplies the window to use for interaction with the user.

Neither spVisualInit nor spAudioInit call spWMUpdate. What is more, they both assume that
spWMUpdate is not called before they are. In general, spAppInit is free to assume the same. In
addition, spAppInit can assume that it will be called after all other initialization is complete.

2.3 User I/O

The API does not provide any functions for keyboard input, textual output to a window, or
mouse interaction. Rather, it is expected that an application will use whatever native facilities are
available in the windowing environment being used (e.g., X or Windows95). If you want to write
a portable application, then you should use a portable API such as Java and use the portable I/O
facilities that are provided by the API language.

It is often the case that an application wants to do I/O via the window that is being used to
display visual images. To do this, you should combine visual rendering into the application process
(Section 2.2) and use the window created by spVisualInit.

If the application is such that it cannot be practically combined with visual rendering, then the
application should be broken into two parts: a small part that does user I/O and a large part that
does other operations. The user I/O part should then be combined with visual rendering. It may
be possible to completely handle whatever needs to be done in response to user input in this part.
If not, then the user I/O part can communicate information to the other part of the application
through shared variables, or by some special side-communication channel.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 35

2.4 Multi-Threaded Applications

It can be convenient to implement an application using multiple threads. However, lack of
synchronization between these threads can lead to serious problems. In particular, if one thread
calls spWMUpdate, then the other threads must obey all the same conditions as the thread calling
spWMUpdate. In particular, they must not retain any pointers to shared objects or data returned
by API functions. They must be sure to check for objects that are removed every time following a
call on spWMUpdate. In addition, they cannot call API functions that operate on the world model
until after the call on spWMUpdate in the other thread returns.

As a result of the above, a thread must either be very carefully synchronized with any thread
that calls spWMUpdate, or not have any direct interaction with the world model at all. We strongly
urge the second approach.

Basically, it is expected that only one thread is interacting with the world model. If there
are other threads, then they should interact with the main thread using global variables in the
application and should not call API functions themselves. In addition to avoiding the problems
enumerated above, this avoids other problems stemming from asynchrony like multiple readers and
writers of shared objects.

2.5 spAppChooseServer

char * spAppChooseServer()

Return value - DNS address string of session manager to connect to.

The spAppChooseServer function selects the user server to connect to, if any. It must return a
DNS address string indicating the server to connect to (e.g., "node.myU.edu"). The default de�nition
of this function returns Null. This indicates that no user server should be used. This is appropriate
for any process that has a good enough network connection to operate as full ISTP peer. If a user
server is necessary it is expected that an application will replace spAppChooseServer with some
kind of interactive interface that allows the user to choose which user server to connect to.

A key restriction on spAppChooseServer is that it cannot use any operations on shared objects,
because it is called before the world model is created.

2.6 spAppInit

void spAppInit()

Return value - There is no return value.

The purpose of the spAppInit function for a simple application is to do various things that only
need to be done once before the application starts. For example, it might initialize various global
values and set up callbacks. The default de�nition of this function does nothing.

spAppInit should use the value returned by spWMGetWindow, if any for interacting with the
user. If there is no preexisting window, then the application is free to create whatever it wants to.
One situation where a window is supplied is when an application is combined with visual rendering
(Section 2.2).

MERL-TR-97-11 December, 1997

36 (Internal) Spline Version 3.0 API

2.7 spAppBody

spBoolean spAppBody()

Return value - True indicates application should be terminated.

The purpose of the spAppBody function for a simple application is to perform whatever repet-
itive computation is required once the application is up and running. For example, it might react
to events that occur in the world model and/or interact with the user. The default de�nition of
this function does nothing. This is an important degenerate case, because if spAppInit sets up
enough callbacks (Section 42) and alerters (Section 43), it may not be necessary for spAppBody to
do anything.

Each time spAppBody is called, the world model is updated (by calling spWMUpdate) to re
ect
changes caused by other processes. Callback functions (if any) are called just before spAppBody.
Each time after spAppBody is called, messages are sent out communicating changes made by the
application to other processes (by the next call on spWMUpdate). It is expected that spAppBody
will not call spWMUpdate.

If spAppBody ever returns True, this signals that the application and the process should be
brought to a graceful conclusion without spAppBody ever being called again.

2.8 spAppFinish

void spAppFinish()

Return value - There is no return value.

The purpose of the spAppFinish function for a simple application is to perform any �nalization
activities that are necessary in order for the application to be terminated gracefully. The default
de�nition of this function does nothing.

3 spVisual

public class spVisual extends spApp

spVisual is the standard visual renderer supplied with the system. To facilitate its combination
with application processes (Section 2.2), spVisual is organized in the same way as spApp.

The class spVisual inherits all the instance variables and functions of the class spApp (Section 2).
The class spVisual de�nes the following functions:

spVisualInit - Initializes visual rendering (Section 3.1).
spVisualFinish - Cleans up after visual rendering (Section 3.2).

spVisual utilizes the standard de�nition of spAppChooseServer and therefore does not connect
to any user server. When combined with an application, the application selects the user server, if
any.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 37

A key feature of spVisual is that it utilizes the same empty spAppBody function as the default
simple application. This makes it much easier to combine spVisual with an application. This ap-
proach is possible because spVisual performs all its computation using callbacks and asynchronous
threads set up by spVisualInit.

It is interesting to note that since spVisual is intended to be combined with a user application,
it must be careful to never remove any objects it does not own. If it did remove such an object,
this e�ect would be seen by the user process it was combined with.

3.1 spVisualInit

void spVisualInit()

Return value - There is no return value.

Performs appropriate initialization so that visual rendering can occur as part of a process. If
spWMGetWindow returns non-Null, then the result of visual rendering is shown in that window.
Otherwise, a new window is created and stored using spWMSetWindow. An application that is
combined with spVisual should use the window used by spVisual for interaction with the user.

Visual rendering operates in two parts. A set of callbacks detects what needs to be rendered and
creates a scene graph based on the relevant objects in the world model. An asynchronous thread
does the actual image generation. In order to achieve the frame rate requested of it (through an
spSeeing beacon), spVisual must take control of the rate that spWMUpdate is called. Therefore,
an application that is combined with spVisual cannot exercise much control over the rate at which
spWMUpdate is called.

spVisualInit makes use of a special local value of spWMGetMe. However, it insures that sp-
WMGetMe is set back to spWMGetMainOwner before spVisualInit returns. spVisualInit does not
call spWMUpdate and assumes that spWMUpdate will not be called before spVisualInit is called.

3.2 spVisualFinish

void spVisualFinish()

Return value - There is no return value.

Turns o� visual processing and performs cleanup operations leaving things in a good state.
spVisualFinish makes use of a special local value of spWMGetMe. However, it insures that sp-
WMGetMe is set back to spWMGetMainOwner before spVisualFinish returns.

MERL-TR-97-11 December, 1997

38 (Internal) Spline Version 3.0 API

4 spAudio

public class spAudio extends spApp

spAudio is the standard audio renderer used with the system. To facilitate its combination with
application processes (Section 2.2), spAudio is organized in the same way as spApp.

The class spAudio inherits all the instance variables and functions of the class spApp (Section 2).
The class spAudio de�nes the following functions:

spAudioInit - Initializes audio rendering (Section 4.1).
spAudioFinish - Cleans up after audio processing (Section 4.2).

spAudio utilizes the standard de�nition of spAppChooseServer and therefore does not connect
to any user server. When combined with an application, the application selects the user server, if
any.

A key feature of spAudio is that it utilizes the same empty spAppBody function as the default
simple application. This makes it much easier to combine spAudio with an application. This
approach is possible because spAudio performs all its computation using callbacks and asynchronous
threads set up by spAudioInit.

4.1 spAudioInit

void spAudioInit()

Return value - There is no return value.

Performs appropriate initialization so that audio I/O using the microphone and headphones
can occur.

Audio rendering operates in two parts. A set of callbacks detects what needs to be rendered
and what localization parameters should be used. An asynchronous thread does the actual sound
calculations. For the callbacks to operate correctly, spWMUpdate must be called several times a
second. For the asynchronous threads to operate correctly, the application process must not take
exclusive control of the CPU for more than tens of milliseconds at a time.

spAudioInit makes use of a special local value of spWMGetMe. However, it insures that sp-
WMGetMe is set back to spWMGetMainOwner before spAudioInit returns. spAudioInit does not
call spWMUpdate and assumes that spWMUpdate will not be called before spAudioInit is.

4.2 spAudioFinish

void spAudioFinish()

Return value - There is no return value.

Turns o� audio processing and performs cleanup operations leaving things in a good state.
spAudioFinish makes use of a special local value of spWMGetMe. However, it insures that sp-
WMGetMe is set back to spWMGetMainOwner before spAudioFinish returns.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 39

5 spWM (Fundamental)

public class spWM

The central data structure in the API is the world model. There can be only one world model
object at a time. It contains the various shared objects that are communicated among a group of
processes. The spWM type does not extend the class sp and does not correspond to an object in
the world model.

To start up a process, the �rst thing one does is create the world model to operate on. When
the process wishes to terminate, it should remove the world model. In between, the world model is
repetitively updated to re
ect changes in the objects in the world model caused by other processes.

The class spWM de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

Me - Owner id of current activity (Section 5.1).
MainOwner - Main owner id of process (Section 5.2).
SystemOwner - System owner id of process (Section 5.3).

Error - Most recent error (Section 5.4).
LastError - Last error (Section 5.5).
Interval - Interval between last two updates (Section 5.6).

DesiredInterval - Desired update interval (Section 5.7).
Week - The current week (Section 5.8).
Msec - The current millisecond (Section 5.9).

Window - Interaction Window (Section 5.10).
DNSName - DNS name of local machine (Section 5.11).

Port - Port number associated with process (Section 5.12).
MsgRejectionQueue - Objects for which messages must be rejected (Section 5.13).

The class spWM de�nes the following functions:

spWMNew - Prepares to use world model (Section 5.14).
spWMRemove - Prepares to stop process (Section 5.15).
spWMUpdate - Gets new world model state (Section 5.16).

spWMGenerateOwner - Creates a new owner id (Section 5.17).
spWMReportError - Creates error report (Section 5.18).

spWMRegister - Assures safe access through pointer (Section 5.19).
spWMDeregister - Cancels registration of pointer (Section 5.20).

MERL-TR-97-11 December, 1997

40 (Internal) Spline Version 3.0 API

5.1 Me (Fundamental)

public static int Me; //* [spName]

spName spWMGetMe()
void spWMSetMe(spName X)

spName sqWMGetMe()
void sqWMSetMe(spName X)

Owners are identi�ed by 32-bit ids of type spName. The Me variable of the spWM object
contains the owner id of the activity currently in control.

When the world model is created, the Me value is set to a main owner id assigned by the system.
It can be changed at will later. In general any activity that changes the value of Me is responsible
for restoring the value of Me once it completes operation. Additional owner ids can be obtained
using spWMGenerateOwner (Section 5.17).

5.2 MainOwner (Fundamental)

public static int MainOwner; //* [spName] readonly

spName spWMGetMainOwner()

void spWMiSetMainOwner(spName X)

spName sqWMGetMainOwner()
void sqWMSetMainOwner(spName X)

The MainOwner variable of the spWM object contains the owner id initially assigned to the
local process. It is set when the world model is initially created and cannot be altered later.

5.3 SystemOwner (Fundamental and Internal)

public static int SystemOwner; //* [spName] internal

spName spWMiGetSystemOwner()
void spWMiSetSystemOwner(spName X)

spName sqWMGetSystemOwner()
void sqWMSetSystemOwner(spName X)

The SystemOwner variable of the spWM object contains the owner id created by the system
core running in the local process for its internal use. The SystemOwner is set when the world
model is initially created and cannot be altered later.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 41

5.4 Error

public static String Error; //* [char *:500]

char * spWMGetError()
void spWMSetError(char * X)

char * sqWMGetError()
void sqWMSetError(char * X)

The Error instance variable of an spWM object records the most recent error to have occurred
during the evaluation of any API function. When the world model is created, the Error value is
set to Null. It is changed whenever an error occurs. You can set the Error value back to Null if
you want to. However, it cannot be directly set to any other value, but rather only indirectly via
spWMReportError (Section 5.18). Error strings are limited to being no more than 500 characters
long.

5.5 LastError

public static String LastError; //* [char *:500] readonly

char * spWMGetLastError()

void spWMiSetLastError(char * X)

char * sqWMGetLastError()
void sqWMSetLastError(char * X)

The LastError instance variable of an spWM object is identical to the Error instance variable
except that it cannot be directly modi�ed by an application, but rather only indirectly via spWM-
ReportError (Section 5.18). The LastError value can always be consulted to determine what the
most recent error, if any, was.

A key reason for having two variables Error and LastError is to facilitate debugging by making
sure that a program cannot accidentally remove all trace of errors having occurred.

MERL-TR-97-11 December, 1997

42 (Internal) Spline Version 3.0 API

5.6 Interval (Fundamental)

public static int Interval; //* [spDuration] readonly

spDuration spWMGetInterval()

void spWMiSetInterval(spDuration X)

spDuration sqWMGetInterval()
void sqWMSetInterval(spDuration X)

The Interval instance variable of a world model records the time in milliseconds between the
ends of the last two calls on spWMUpdate. When the world model is created, the interval is set
to zero. After the end of the second and subsequent calls on spWMUpdate, the interval value is
updated to re
ect the timing of events. It must not be modi�ed by an application.

To be precise, the interval value is updated just before action processing begins and re
ects the
interval in time between corresponding points in spWMUpdate calls. Note particularly, that the
interval is calculated after any waiting that spWMUpdate does in order to achieve the DesiredIn-
terval.

5.7 DesiredInterval (Fundamental)

public static int DesiredInterval; //* [spDuration]

spDuration spWMGetDesiredInterval()
void spWMSetDesiredInterval(spDuration X)

spDuration sqWMGetDesiredInterval()
void sqWMSetDesiredInterval(spDuration X)

The DesiredInterval instance variable of a world model controls the interval between calls on
spWMUpdate as follows. When spWMUpdate is just about to begin processing actions, it de-
termines the elapsed time since the last time actions were processed. If this time is less than
the DesiredInterval, then spWMUpdate waits until the interval is reached. If the elapsed time is
greater than or equal to the DesiredInterval, spWMUpdate proceeds without waiting. There is
nothing that spWMUpdate can do to make processing take less time than it is taking. However,
spWMUpdate ensures that the actual interval will not be less than the DesiredInterval. Since there
is a good deal of imprecision in the system's timing mechanisms, the system cannot guarantee that
the actual interval will be equal to the DesiredInterval; however, as long as the DesiredInterval is
long enough to be achievable, the system guarantees that the average error over time will be low.

It is permissible for the DesiredInterval to be set to a negative value. This has the same meaning
as the corresponding positive value except that when spWMUpdate considers waiting it waits only
so long as no outside information has been received that modi�es the world model. For example,
a DesiredInterval of -1000 speci�es that processing should proceed as soon as any new information
is received, but in any event should proceed after a second has passed.

When the world model is initially created, the DesiredInterval is set to zero. This causes
spWMUpdate to run as fast as possible without ever waiting. You can change the DesiredInterval
at any time.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 43

It is important to think carefully about how often spWMUpdate gets executed. If it executes
too often, time is wasted looking at data that has not changed in any useful way. Alternatively,
If spWMUpdate executes infrequently, you will be operating on very stale data much of the time.
Further, if spWMUpdate runs very infrequently (e.g., less than once a second or so) some of
the information about world model changes will probably be lost as queues and bu�ers over
ow.
(Things are arranged, however, so that even if you never call spWMUpdate, the system will not
crash.)

5.8 Week

public static int Week; //* [long] readonly

long spWMGetWeek()

void spWMiSetWeek(long X)

long sqWMGetWeek()
void sqWMSetWeek(long X)

The Week instance variable of a world model is an integer specifying how many weeks have
passed since midnight on a Sunday an arbitrary time in the past. The Week value is initialized
when the world model is created, updated (when needed) when spWMUpdate is called and never
changed otherwise.

5.9 Msec

public static int Msec; //* [spDuration] readonly

spDuration spWMGetMsec()

void spWMiSetMsec(spDuration X)

spDuration sqWMGetMsec()
void sqWMSetMsec(spDuration X)

The Msec instance variable of a world model is an integer specifying how many milliseconds
have elapsed since the beginning of the current week. The Msec value is initialized when the world
model is created, updated every time spWMUpdate is called and never changed otherwise. It
corresponds to the time in spWMUpdate just before action processing begins, and after any wait
that had to be performed by spWMUpdate.

If you are writing an application that you wish to have work over Sunday nights, you have to
be careful about the fact that the Msec value is a modular number between 0 and 604,800,000 (one
week in milliseconds). When going from Sunday to Monday, Msec changes from large to small.

MERL-TR-97-11 December, 1997

44 (Internal) Spline Version 3.0 API

5.10 Window (Fundamental)

public static int Window; //* [spWindow]

spWindow spWMGetWindow()
void spWMSetWindow(spWindow X)

spWindow sqWMGetWindow()
void sqWMSetWindow(spWindow X)

The Window instance variable contains the current user interaction window. The exact type of
the window object and the operations that can be applied to it depend on the operating environ-
ment. In Java they are one thing and in C under Windows95 they are another.

When the world model is �rst created, the Window is set to Null. The surrounding environ-
ment may force a particular value to be used subsequently. For instance, this is the case when
using the system as a Netscape plugin. If spVisualInit is called when the Window value is Null,
then spVisualInit creates a window to use and stores it in the Window variable. Otherwise, the
application is free to create or choose a window to use.

5.11 DNSName (Fundamental)

public static String DNSName; //* [char *:500] readonly

char * spWMGetDNSName()

void spWMiSetDNSName(char * X)

char * sqWMGetDNSName()
void sqWMSetDNSName(char * X)

The DNSName instance variable of a world model is a string containing the DNS name of the
local machine, e.g., "node.myUniv.edu". Together with the Port variable, the DNSName variable
can be used to uniquely identify an individual ISTP process.

The DNSName variable is set when a world model is created and cannot be altered later.

5.12 Port (Fundamental)

public static short Port; //* [short] readonly

short spWMGetPort()

void spWMiSetPort(short X)

short sqWMGetPort()
void sqWMSetPort(short X)

The Port instance variable of a world model is an integer specifying the port that is used for
TCP communication with the process. This port is either 80, indicating that a process is the main
ISTP process running on a given machine or some other randomly selected value. The Port variable
is set when a world model is created and cannot be altered later.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 45

When an ISTP process is started up, it attempts to use port 80. However, if it is in use, then
some other random port number is selected. One consequence of this is that if several processes are
to run on a single machine, the process (if any) that is going to act as a server must be run �rst.

5.13 MsgRejectionQueue (Fundamental and Internal)

public static int MsgRejectionQueue; //* [void *] internal

void * spWMiGetMsgRejectionQueue()
void spWMiSetMsgRejectionQueue(void * X)

void * sqWMGetMsgRejectionQueue()
void sqWMSetMsgRejectionQueue(void * X)

The MsgRejectionQueue instance variable of a world model contains the information necessary
to reject out-of-order messages about objects that have been removed from the world model. The
key problem that is being dealt with is receiving (out of order) a message about the state of an
object after previously receiving a message that speci�es that the object has been removed. Unless
something is done, this would cause the object to erroneously reappear. The MsgRejectionQueue
is maintained by the system core and must not be modi�ed by an application.

The MsgRejectionQueue is a queue with entries containing the following information:

(spName) Name - Name of object.
(int) Counter - Counter of object.

(spName) Locale - Locale of object.
(spTimeStamp) Time - Time entry was created.

Whenever an object is entered on the MsgRejectionQueue, an entry is made containing its
Name, current Counter value, and Locale as well as the current time. Whenever a description is
received for an object in the MsgRejectionQueue, the Counter on the description is checked, and
the description is rejected if the Counter value is smaller than the value saved in the queue.

The entries are ordered by time and popped o� the queue as soon as they are older than the
maximum message delay allowed by ISTP. Entries are placed on the MsgRejectionQueue whenever
an object (1) has its IsRemoved bit set or (2) changes locale, in which case the entry contains the
old locale.

Case 2 is needed among other things by a process that is providing Locale Based Communication
service so that it can know what recent changes to inform other processes of. The entry contains
the old locale. It is possible for there to be several entries for the same object; for example if the
object moves quickly through several locales.

MERL-TR-97-11 December, 1997

46 (Internal) Spline Version 3.0 API

5.14 spWMNew (Fundamental)

spWM spWMNew(char * Server, spTransferVector V)

Server - DNS name of minimal communication server or Null.
V - Transfer vector specifying functions to use for key operations.

Return value - The world model created.

Creates the world model. A process can only create one world model at a time. A process must
create the world model before using any shared object operation. After initialization, the world
model contains nothing but de�nitions of the built-in shared classes and a few internal objects that
are not observable by applications.

If the process wishes to be supported by an ISTP server that minimizes the bandwidth used to
communicate with the process, then the process uses the Server argument to specify a DNS string
naming the server (e.g., "node.myUniv.edu"). If the process wishes to operate as a stand-alone ISTP
node, then either a zero length string, or the value Null is used as the Server value.

The transfer vector is used to specify key internal operations (e.g., allocating memory) that may
have special de�nitions that are required by the surrounding environment. In simple applications,
Null is an acceptable value for this argument. You can consult the detailed de�nition of the
spTransferVector type in order to determine how to create a non-Null transfer vector.

5.15 spWMRemove (Fundamental)

void spWMRemove()

Return value - There is no return value.

Eliminates the world model and disconnects the process from the session it is in. Among other
things, this causes all of the objects owned by the process to be removed from the world model and
ensures that all the other processes in the session are informed of this fact. A process should always
call spWMRemove before terminating. Once spWMRemove has been called, a process cannot use
any shared object operation unless it �rst creates a new world model.

5.16 spWMUpdate (Fundamental)

void spWMUpdate()

Return value - There is no return value.

Causes the local world model copy to be updated to re
ect changes made by other processes.
The fundamental operation of an application process (Section 2.1) is based on a cycle of: updating
the world model (based on information received from other processes); running the application,
waiting until the desired update interval has been reached, updating the world model again, and
so on.

A number of important things happen each time spWMUpdate is called:
(A) Other processes are noti�ed of changes made in the local world model copy only when sp-

WMUpdate is called. This gives the application control over when other processes see changes. (For
instance, one can ensure that several instance variables of an object will change simultaneously).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 47

(B) The world model is brought up to date by processing messages from other processes. It is
guaranteed that the world model will not change in any way between calls to spWMUpdate, unless
the application makes the changes itself.

(C) Any actions (Section 46), callbacks (Section 42), and alerters (Section 43) in the world
model are run. (This is the only time they are run.)

(D) As part of updating the world model, some objects may be removed from the world model.
Speci�cally, spWMUpdate performs the following operations in the following order.
1) Run alerters on local objects.
2) Run interval callbacks for spVisual and spAudio.
3) Send out messages to other processes.
4) Wait so that the desired update interval is achieved.
5) Receive information from other processes.
6) Run actions processes.
7) Run alerters on remote objects.
8) Run interval callbacks.
Because running spAppBody occurs outside of spWMUpdate, it is not shown in the list of

operations above, whereas the waiting that is needed is shown as an interior step. It is easier to
understand what is happening if the steps are rolled around so that the waiting is at the top and
spAppBody is an interior step as shown below. This retelling of the story makes the closeness in
time of various steps clearer without changing what is happening.

4) Wait so that the desired update interval is achieved.
5) Receive information from other processes.
6) Run actions processes.
7) Run alerters on remote objects.
8) Run interval callbacks.
0) Run spAppBody
1) Run alerters on local objects.
2) Run interval callbacks for spVisual and spAudio.
3) Send out messages to other processes.
Note that waiting must include allowing other independent processes to run. Receiving outside

information includes properly indexing new actions, interval callbacks, and alerters. Waiting and
receiving information from other processes can be combined in order to reduce timing variations
due to changes in the number of received messages. Running alerters includes running those that
are triggered by the removal of remote and local objects respectively.

The primary factor that controls the order of events above is the desire to minimize latency
between the time information is generated and the time it can be used.

(A) Information from other processes should be integrated into the world model after any
waiting which is necessary so that the newest possible data will be available to the application.
However, outside information should be integrated before operations are performed that are part
of the application (i.e., spAppBody, but also locally created actions, alerters, and callbacks).

(B) Sending out messages about objects that have changed should happen after all operations
are performed that are part of the application, but as soon after as possible, so that others hear
about every change made as soon as possible.

MERL-TR-97-11 December, 1997

48 (Internal) Spline Version 3.0 API

(C) Actions from other processes want to occur after information from other processes is inte-
grated, but before application operations start, because these actions make changes in objects from
other processes and the application wants to respond to these changes just as if change messages
about these objects were received.

(D) A primary use of alerters is to detect situations that the spAppBody wants to respond
to. Alerters should therefore run before spAppBody, but of course after outside information is
processed so they can operate based on current information.

(E) Any operations corresponding to spVisual and/or spAudio running in the same process
should happen after all application operations have been completed so that they can respond to
every change that the application makes.

The above constraints do not indicate whether interval callbacks associated an application
should run before or after spAppBody. The system assumes that it makes sense to run them
before.

An awkward implication of the constraints above is that alerters associated with spVisual and
spAudio are required to run in a di�erent place than those associated with the application|i.e.
after spAppBody rather than before. This problem can be resolved by noting that alerters can be
run at two di�erent times as long as all the alerters on any given object are run at the same time.
In particular, spWMUpdate runs alerters on external objects before spAppBody while running
alerters on local objects after spAppBody.

Note that it does not matter to spVisual and spAudio that alerters on external objects are
run before spAppBody, because the local application cannot modify an external object. Similarly,
running alerters on local objects after spAppBody does not matter to the application, because an
alerter cannot detect a change in a local object until after the change has been made, and only the
local application can make such a change.

(When ownership of an object changes, the time at which alerters are checked changes, but the
alerters being used do not change and the old values still correspond correctly to when alerters
were last applied.)

A similar problem arises with regard to the interval callbacks for spVisual and spAudio. This can
easily be handled by making special arrangements in the system core to run the interval callbacks
owned by these processes at a special time.

5.17 spWMGenerateOwner (Fundamental)

spName spWMGenerateOwner()

Return value - A newly generated external owner id.

Activities in processes are identi�ed by 32-bit session-wide unique ids of type spName. These
owner ids are used to tag the objects created by di�erent activities. The main owner id of a process
is assigned when the world model is initially created. Additional ids can be created by using the
function spWMGenerateOwner. Each time this function is called it returns an additional owner id.

There are two kinds of owner ids: system and ordinary. spWMGenerateOwner returns ordinary
owner ids. System owner ids are only used by the system core; there is no function in the API for
creating them.

The purpose for having multiple owner ids in a single process is as the basis for controlling the
visibility of objects via world model view masks (Section 7).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 49

5.18 spWMReportError

void spWMReportError(sp Object, long Code, char * Description)

Object - The object that is the target of the error.
Code - Integer identifying the error.

Description - Textual description of the error.
Return value - There is no return value.

The API utilizes a uniform approach to error reporting. This centers around the error reporting
strings created by spWMReportError. Whenever an error occurs, spWMReportError is called and
an error reporting string is stored so that it can be easily retrieved.

An error is created based on the data passed to spWMReportError as follows. The description
string becomes the heart of the error report. It should be human readable, containing as much
contextual information as possible. The system does not modify the descriptive string and does
not retain a pointer to it.

The code is converted to ASCII and appended to the front of the description followed by a
blank. The code should be a unique identi�er of the error. (The codes for the errors reported by
the system are all negative and every di�erent error has its own unique error code. Applications
are advised to use positive error codes.) Programs that want to handle errors can tell which error
occurred by looking at the error code portion of the report string.

An ASCII version of the full GUID of the object argument, if any, is appended to the end of
the error report. This makes it possible to locate the object in question during debugging. The
GUID is used as an identi�er so that the object can be located on multiple machines.

The error string created is stored so that it can be retrieved as the value of spWMGetError and
spWMGetLastError.

As an example of the way error reporting is used, consider that a careful program that was not
completely sure that the variable X contained an spDisplaying, might retrieve the VisualDe�nition
from X as follows:

spWMSetError(NULL);
appearance = spDisplayingGetVisualDefinition(X);
if (spWMGetError()) ...

5.19 spWMRegister (Fundamental)

void spWMRegister(sp * Pointer)

Pointer - Pointer to be registered.
Return value - There is no return value.

After a shared object has been removed, the storage associated with it is eventually freed.
However, if a pointer is registered using the function spWMRegister, then the system will never
free an object that is pointed to by the pointer. This means that it will be safe to save an object
in this pointer inde�nitely (Section 1.5.3). To stop protection, thereby allowing eventual freeing of
the storage, call spWMDeregister.

MERL-TR-97-11 December, 1997

50 (Internal) Spline Version 3.0 API

The system essentially supports a restricted form of garbage collection where the function
spWMRegister is used to specify exactly which pointers are taken into account for garbage collection
purposes. Note that several threads can each register the same pointer and the pointer will be
protected until after all the threads have deregistered it. Note also that it is pointers that are being
protected, not objects per se.

There are several alternatives other than the scheme used here that could have been used to
assure safe access through pointers. The best is full garbage collection, but this is not practical
in C, because the system would have to support it entirely by itself. Another alternative would
be to have reference counts. However, as a practical matter, it is di�cult and error prone for an
application to manipulate reference counts. The scheme used has the advantage of being simple to
understand and robust in the presence of multiple activities holding pointers into the same set of
objects.

5.20 spWMDeregister (Fundamental)

void spWMDeregister(sp * Pointer)

Pointer - Pointer to be deregistered.
Return value - There is no return value.

Cancels the protection of a pointer started by spWMRegister. It is important to cancel regis-
tration when a pointer no longer needs to be protected. This is particularly true if the pointer is
stack allocated and the function it is declared in is about to return, rendering the address of the
pointer meaningless. Calling spWMRemove cancels all pointer registration.

6 spFn (Fundamental)

public abstract class spFn

An important part of the API is functions that map functional arguments over objects. There
are three basic kinds of mapping functions.

Examiners - Inspect objects existing in the local world model copy.
Monitors - Inspect objects existing in the local world model copy and then continue

inspecting similar objects that appear in the local world model copy in the future.
(Monitors are a combination of an examiner and a callback.)

Callbacks - Apply functions to objects in the local world model copy when events occur in
the future.

The type spFn is used for the functional arguments to all the above functions. (A single type
is used in all these situations because this is considerably more convenient than having to de�ne
a separate type for each purpose.) The spFn type does not extend the class sp and does not
correspond to objects in the shared world model. Rather, spFn data is stored in shared objects
and used in intermediate computation.

In C, spFn is the following functional type:

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 51

typedef spBoolean spFn(sp Object, void * State)

Object - The object the mapped function is being applied to.
State - Passed to the operation each time it is called (modi�able).

Return value - True signals that mapping should stop.

The State argument is used to communicate state information between calls to an spFn. It can
be used to accumulate a result. The return value is used for search-like operations. If an spFn ever
returns True, then the mapping activity immediately halts. It is essential that an spFn be light
weight in the sense that it runs quickly, and must not call spWMUpdate.

The following spFn could be used to count.

spBoolean spCount(sp ignore, void * state) {
int * count = (int *)state;
*count = *count+1;
return FALSE;

}

For instance, the following code counts the number of children of an object X.

int Counter = 0;
spExamineChildren(X, spMaskNORMAL, spCount, &Counter);
Result = Counter;

The value of the count is obtained by observing the value of the state variable Counter after
the examination is over.

Note that the state value that is passed to spExamineChildren and then on to the spFn spCount,
is passed directly without copying. This is essential so that it can communicate information by
side-e�ect. However, it means that the state must be in existence for the full period of time that
spExamineChildren runs. This is not a problem for spExamineChildren, but requires more thought
for operations like spBeaconMonitor where the operate continues asynchronously for a potentially
long period of time.

6.1 spFn Predicates

Another key part of the API is the ability to install alerter functions that will automatically be
called when certain events occur. Events are de�ned by predicates that test changes in the shared
variables of objects. These predicates are de�ned using the same type spFn as functions that are
mapped over objects.

When an spFn is used as a alerter predicate, the return value is interpreted as specifying whether
an event has occurred. Speci�cally, the predicate should return True or False depending on whether
it observes that the event it tests for has occurred.

Callback predicates de�ne events in terms of changes to shared instance variables. In particular,
they compare the current state of these variables with the state of these variables at the end of the
last call on spWMUpdate. (Since alerter predicates are evaluated during each call on spWMUpdate,
this ensures that any state change will be detected.)

MERL-TR-97-11 December, 1997

52 (Internal) Spline Version 3.0 API

The following shows an example of a simple alerter predicate.

spBoolean spChangedParent(sp object, void * ignore) {
return spThingGetOldParent(object) != spThingGetParent(object);

}

There are two key things to note about alerter predicates. First, since alerters are only applied
to objects whose shared variables have changed, events must involve some change in these variables.
Second, alerter predicates should not modify the object passed to them.

The API includes the following prede�ned alerter predicates. Users can de�ne any other pred-
icates they want.

spJustNew - True if object just created.
spJustRemoved - True if object just removed.

spChanged - True if object changed in any way (or just new or just removed).
spChangedTransform - True if Transform of spPositioning changed.

spChangedVisualDe�nition - True if visual de�nition of spDisplaying changed.
spChangedParent - True if Parent changed.
spChangedLocale - True if the locale an object is in has changed.

spChangedBeaconWithTag - True if object is a changed beacon with matching tag.
spRelevantOwnershipRequest - True if object is a newly appeared spOwnershipRequest for an

object owned by the local process.

Note that if there are spJustNew and an spJustRemoved alerters that are capable of �ring on
a given object X and if X is created and then removed so quickly that there is no opportunity for
alerters to �re between the time X is created and removed, then the spJustRemoved alerter will
�re, but the spJustNew alerter will not. This is an unusual situation, but spJustRemoved alerters
should be prepared to deal with it. Note that allowing both alerters to �re would not be much
help, because there would be no guarantee of the order in which they would �re|the lack of order
guarantees being a weakness of alerters in general.

The same basic problem exists when alerters that monitor changes are in e�ect. Once an object
has been removed, the only alerter above that can �re is an spJustRemoved alerter.

Alternatively, one could pretend that from the perspective of alerters, objects that come and
go that quickly simply never exist. However, this would help only with regard to objects that are
rapidly created and removed. It would not help with objects that are rapidly changed and then
removed.

6.2 Old Values of Shared Variables

To make the comparisons done by alerter predicates possible, spWMUpdate maintains saved
versions of the shared instance variables of every shared object. These versions re
ect the state of
the variables just before the last call on spWMUpdate returned. The saved values can be accessed
using access functions of the form GetOld (Section 1.5.1). (At the moment an object is created, or
�rst heard about in a particular world model copy, the old values are set equal to the new values.)

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 53

It must be kept in mind that the old variable values saved at the end of spWMUpdate re
ect
the state after information has been processed about changes in objects caused by other processes.
Therefore in the absence of changes made by alerters, the old and current values of every variable
are the same after spWMUpdate returns. This means that in the general application processing
between calls of spWMUpdate, old values have little use. The only time they di�er from current
values is when the application itself has made a change, which is something the application can
know without consulting the old values.

The time when the old values are useful is during the processing of alerters, just before spWMUp-
date returns. When a alerter is under consideration for a given object, the di�erence between the
old and new values re
ect the net result of everything that has happened to the object since the
alerter was last under consideration.

The way old values are saved is speci�cally designed for the convenience of alerters. It is not
considered a defect of the API that they are not particularly useful in other contexts.

It is worthy of note that the way the old values are set guarantees that an old value, cannot
point to a removed object for more than one cycle between calls on spWMUpdate. This is true,
because removing an object registers as a change to every object that refers to the removed object.
This causes the old pointer to the removed object to be written over with Null at the end of the
next call on spWMUpdate.

For e�ciency, the system focuses on being able to store old values rapidly rather than being
able to retrieve them rapidly. This is important, since these values are typically written much more
often then they are retrieved. However, one should be aware that reading them can be slower than
reading current values.

Instead of old values one could simply have accessors that return boolean values specifying
whether the corresponding variable could possibly have changed. This has slightly di�erent seman-
tics because it records whether there ever might have been a change rather than whether there
actually is now a change. Also, there is of course less information available.

Using change bits, would save storage. It might also allow more e�cient indexing to select
which alerters could possibly apply in a given situation, which could therefore save time. Some
might think that the bits were simpler to understand; however, others might think that they are
inherently imprecise.

On the negative side using change bits would require applications that wanted to access old
data to explicitly store it somewhere. A bigger problem with change bits is that there are many
more situations where they would have to be computed than situations where they would be used.
In particular, whenever a message is received, proper bits representing changes would have to be
computed. This is needed for each �eld on each message receipt even if there is no code anywhere
that ever looks at the bits, because such code could appear at any moment. (Whenever any message
is received about an object, the Change bit is set, but this is easy.)

MERL-TR-97-11 December, 1997

54 (Internal) Spline Version 3.0 API

7 spMask

public class spMask

A fundamental feature of the API is the notion of a view mask for the world model. The purpose
of these masks is to control the visibility of objects when using functions like spClassExamine. The
spMask type does not extend the class sp and does not correspond to objects in the shared world
model. Rather, spMask data is stored in shared objects and used in intermediate computation.

The class spMask de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

static �nal MINE - (1) Views your own objects (Section 7.1).
static �nal OTHERS - (2) Views other processes's objects (Section 7.1).
static �nal NORMAL - (3 = 1+2) Views all ordinary objects (Section 7.1).
static �nal SYSTEM - (8) Views system objects (Section 7.1).

static �nal CALLBACKS - (16) Views spIntervalCallbacks of other processes (Section 7.1).
static �nal ALL - (-1) Views all objects (Section 7.1).

There are several kinds of objects that an application typically should not see. First, they
should not see objects that exist purely for the use of the system core and are not part of the
external API. Second, they should not see objects that are created by another activity and exist
in the local world model copy only because this activity happens to be running as part of the
same process, rather than in a separate process. (For instance, an application does not want to
see callbacks owned by other activities that are not communicated to other processes listening in
the locales the objects are in.) Note that an application also typically does not want to see objects
that have been removed. However, this is no problem because objects that have been removed are
not in the local world model copy and therefore are not encountered by an application.

A world model view mask (spMask) is an integer bit mask that controls what objects are
viewable. A view mask is created by adding (or or'ing together) the constants above.

Before discussing the exact meaning of these constants, it is useful to consider a simple example.
The following expression applies F to every spThing object that is not the private object of some
other activity.

spClassExamine(spThingC, spMaskNORMAL, F, NULL)

In contrast, the following expression applies F to every spThing object that is owned by the
current activity. It does not apply F to any objects owned by other activities.

spClassExamine(spThingC, spMaskMINE, F, NULL)

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 55

The following pseudo-code shows the reasoning applied in functions like spExamineChildren to
determine whether an object is compatible with a view mask.

boolean CompatibleWithMask(sp object, spMask mask) {
if (spGetOwner(object) == spWMGetMe()) {
return (spMaskMINE & mask)

}
else {
return (spMaskOTHERS & mask) &&

(spMaskSYSTEM & mask || ~ SystemOwner(spGetOwner(object))) &&
(spMaskCALLBACKS & mask ||
~ spClassLeq(spGetClass(object), spIntervalCallbackC()))

}
}

For a view mask to make any objects viewable, at least one of the spMaskMINE and sp-
MaskOTHERS bits must be on. The three view masks constructible using spMaskMINE and
spMaskOTHERS that view any objects are all of potential use to applications. The most common
single case is spMaskNORMAL which combines spMaskMINE and spMaskOTHERS and views all
ordinary objects. This is the default value for spMasks in most situations.

The spMaskSYSTEM and spMaskCALLBACKS bits are not part of the external interface and
are intended only to be used by the system core and servers. These parts of the system often make
use of the mask spMaskALL, which makes every object viewable.

The functions spExamineChildren, spExamineDescendants, spClassExamine, and spClassMon-
itor all have view mask arguments that limit the objects that are viewed. Alerters (Section 43) also
make use of view masks.

View mask restrictions do not apply to the access functions (such as spGetParent) for obtaining
the value of instance variables. This is not a problem because, in general, you cannot get from
objects you should see to ones you should not see. Objects with ordinary owners should never point
to objects with system owners. Objects that are communicated via locales never point to ones that
are not. Note that no object ever points to an object that has been removed.

7.1 Constants

View masks are created by combining the following constants. (In C these constants are imple-
mented as #de�nes.)

spMaskMINE - (1) View objects owned by spWMGetMe.
spMaskOTHERS - (2) View objects not owned by spWMGetMe.
spMaskNORMAL - (3) View all ordinary objects.
spMaskSYSTEM - (8) View objects with other system owners.

spMaskCALLBACKS - (16) View spIntervalCallback objects owned by others.
spMaskALL - (-1) View every object.

As illustrated above, view masks can be created by adding or or'ing these constants together.

MERL-TR-97-11 December, 1997

56 (Internal) Spline Version 3.0 API

8 spTransform

public class spTransform

The data type spTransform is used as the fundamental representation of the position, orienta-
tion, and scaling of objects. A key advantage of an spTransform is that the various components
are easy to understand. The components are also well suited to interpolation. The spTransform
type does not extend the class sp and does not correspond to objects in the shared world model.
Rather, spTransform data is stored in shared objects and used in intermediate computation.

The class spTransform de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

static �nal X - (0) Index of translation X (Section 8.1).
static �nal Y - (1) Index of translation Y (Section 8.1).
static �nal Z - (2) Index of translation Z (Section 8.1).

static �nal RX - (3) Index of X coordinate of rotation axis (Section 8.1).
static �nal RY - (4) Index of Y coordinate of rotation axis (Section 8.1).
static �nal RZ - (5) Index of Z coordinate of rotation axis (Section 8.1).
static �nal RA - (6) Index of amount of rotation (Section 8.1).
static �nal SX - (7) Index of scaling along X axis (Section 8.1).
static �nal SY - (8) Index of scaling along Y axis (Section 8.1).
static �nal SZ - (9) Index of scaling along Z axis (Section 8.1).

static �nal SOX - (10) Index of X coordinate of scale axis (Section 8.1).
static �nal SOY - (11) Index of Y coordinate of scale axis (Section 8.1).
static �nal SOZ - (12) Index of Z coordinate of scale axis (Section 8.1).
static �nal SOA - (13) Index of amount of scale rotation (Section 8.1).
static �nal CX - (14) Index of center X (Section 8.1).
static �nal CY - (15) Index of center Y (Section 8.1).
static �nal CZ - (16) Index of center Z (Section 8.1).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 57

The class spTransform de�nes the following functions:

spTransformCopy - Copies one spTransform into another (Section 8.2).
spTransformFromIdent - Initializes spTransform to identity transform (Section 8.3).

spTransformGetTranslation - Gets translation from transform (Section 8.4).
spTransformSetTranslation - Sets translation in transform (Section 8.5).
spTransformGetRotation - Gets rotation in transform (Section 8.6).
spTransformSetRotation - Sets rotation in transform (Section 8.7).

spTransformGetScale - Gets scale factors from transform (Section 8.8).
spTransformSetScale - Sets scale factors in transform (Section 8.9).

spTransformGetScaleOrientation - Gets scale orientation from transform (Section 8.10).
spTransformSetScaleOrientation - Sets scale orientation in transform (Section 8.11).

spTransformGetCenter - Gets center point from transform (Section 8.12).
spTransformSetCenter - Sets center point in transform (Section 8.13).

An spTransform contains the same information as a VRML transform node. Speci�cally, an
spTransform is a vector of 17
oats representing 5 components as follows. (All units are in terms
of meters and radians.)

Translation - (X,Y,Z) identity (0,0,0)
Rotation - (RX,RY,RZ,RA) identity (0,0,1,0)

Scale - (SX,SY,SZ) identity (1,1,1)
ScaleOrientation - (SOX,SOY,SOZ,SOA) identity (0,0,1,0)

Center - (CX,CY,CZ) identity (0,0,0)

The �rst three elements are a vector representing the translation. The next four elements are an
spRotation vector representing a rotation. The next three elements specify the amount of scaling
along the X, Y, and Z axes with the value 1.0 indicating no scaling. The next four elements are
an spRotation that is applied before the scaling is performed. The �nal three elements specify a
center point for both rotations.

As in VRML, the parts of an spTransform act together as follows. Note that because of the
ScaleOrientation, the scale value can specify shear as well as scaling. It can be shown that the
composition of any two spTransforms can be represented as an spTransform and the inverse of any
spTransform can be represented as an spTransform.

(translate by Translation
(translate by Center
(rotate by Rotation
(rotate by ScaleOrientation
(scale by Scale
(rotate by -ScaleOrientation
(translate by -Center
...)))))))

MERL-TR-97-11 December, 1997

58 (Internal) Spline Version 3.0 API

By convention, a right-hand coordinate system is used with the Y axis up and objects facing
down the negative Z axis. (No assumptions are made about the relationship of the X and Y axes to
compass directions.) It should be noted that di�erent graphics modeling languages disagree with
each other about these conventions. For instance, some have the Z axis up. The way spVisualDe�-
nition links are speci�ed makes it easy to use any kind of graphic model, without having to modify
it.

The origin of the coordinate system for an object should be in the middle of the object unless
there is a compelling reason otherwise. This is needed so that the InRadius and OutRadius of
spDisplaying objects will be meaningful. (An example of a compelling reason why the origin of an
object would not be in the middle is that the origin of a subpart of an articulated form should be
at the pivot point. This makes the mathematics of moving the subpart much easier.)

Any object that has a recognizable up direction should be oriented so that this up direction is
parallel to the Y axis and points toward positive Y. Similarly, any object that has a recognizable
front should have the front facing toward the negative Z axis. For instance, an object corresponding
to the torso of an avatar would have the origin of its coordinate system in the middle of the chest,
with the Y axis pointing up toward the head and the negative Z axis pointing out through the front
of the torso. These axis conventions are needed both so that it is easy to combine di�erent objects
into a single scene and so that simulations that want to interact with objects can �nd where the
tops and fronts of the objects are.

In C, an spTransform is the following type.

typedef float * spTransform;

In addition, the following type is available for allocating memory for an spTransform. When
calling a function that operates on spTransforms, one can pass in a variable that is either of the
type spTransform or spTransformData.

typedef float spTransformData[17];

There are several levels at which you can interact with an spTransform. First, you can alter
the underlying vector directly, e.g., using the index constants (Section 8.1). This allows you to do
everything that is possible, but nothing easily.

Second, you can use the functions described in the following subsections to operate on spTrans-
form objects. These make it easier to do complex operations. These functions are particularly
important to use when performing an operation that interacts with rotation, because the inherent
ambiguity (Section 10.1) of rotations makes their direct manipulation quite error prone.

While advantages, the functions described below require a clear understanding of transform
interactions in order to �gure out how to obtain a desired e�ect. In addition, these operations are
static in the sense they call for the computation of particular spTransforms, rather than sequences
of transform values over time.

Third, you can move up to a higher level and use the smooth motion functions (Section 16.13)
de�ned in spPositioning. These allow you to specify motion sequences rather than just calculating
transforms. Whenever possible, it is advisable to operate at this higher level.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 59

Several conventions are worthy of note about the functions on spTransform objects. None of the
functions ever allocates memory. Rather, the control of memory is left entirely up to the application.
All modi�cations are by side-e�ect. However, to make it easier to create nested expressions, the
modi�ed value is used as the return value.

8.1 Constants

The following constants are available for directly accessing the various elements of an spTrans-
form. (In C, these constants are #de�nes.)

spTransformX - (0) Index of X coordinate.
spTransformY - (1) Index of Y coordinate.
spTransformZ - (2) Index of Z coordinate.

spTransformRX - (3) Index of X coordinate of rotation axis vector.
spTransformRY - (4) Index of Y coordinate of rotation axis vector.
spTransformRZ - (5) Index of Z coordinate of rotation axis vector.
spTransformRA - (6) Index of amount of rotation.
spTransformSX - (7) Index of scaling along X axis.
spTransformSY - (8) Index of scaling along Y axis.
spTransformSZ - (9) Index of scaling along Z axis.

spTransformSOX - (10) Index of X coordinate of scaling axis vector.
spTransformSOY - (11) Index of Y coordinate of scaling axis vector.
spTransformSOZ - (12) Index of Z coordinate of scaling axis vector.
spTransformSOA - (13) Index of amount of scaling rotation.
spTransformCX - (14) Index of X coordinate of center.
spTransformCY - (15) Index of Y coordinate of center.
spTransformCZ - (16) Index of Z coordinate of center.

For example, you might write.

spTransform P;
P[spTransformX] = P[spTransformY] + 2.0;

8.2 spTransformCopy

spTransform spTransformCopy(spTransform Destination, spTransform Source)

Destination - spTransform to be �lled with copied data.
Source - spTransform that is the source of the data.

Return value - Modi�ed spTransform.

Copies the data from a Source spTransform to another, which is returned.

MERL-TR-97-11 December, 1997

60 (Internal) Spline Version 3.0 API

8.3 spTransformFromIdent

spTransform spTransformFromIdent(spTransform Transform)

Transform - spTransform to be initialized.
Return value - Initialized spTransform.

Initializes the values in an spTransform so that they specify no translation, rotation, or scaling.
That is to say, the spTransform is set to (0,0,0, 0,0,1,0, 1,1,1, 0,0,1,0, 0,0,0). It is important to
initialize an spTransform before using it as a source of data, because the operations on spTransforms
do not test that transforms are well formed before beginning their operations. In particular, they
assume that the rotations in it are well formed.

8.4 spTransformGetTranslation

spVector spTransformGetTranslation(spTransform Transform)

Transform - spTransform from which to obtain translation.
Return value - Translation vector.

Returns the Translation portion of an spTransform. In C, the spVector returned shares memory
with the spTransform.

8.5 spTransformSetTranslation

spTransform spTransformSetTranslation(spTransform Transform, spVector Translation)

Transform - spTransform whose translation is to be set.
Translation - Vector specifying translation.

Return value - Modi�ed spTransform.

Sets the Translation portion of an spTransform. The other parts of the spTransform are not
altered.

8.6 spTransformGetRotation

spRotation spTransformGetRotation(spTransform Transform)

Transform - spTransform from which to extract rotation information.
Return value - Rotation component of spTransform.

Returns the Rotation portion of an spTransform represented as an spRotation. In C, the
spRotation returned shares memory with the spTransform.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 61

8.7 spTransformSetRotation

spTransform spTransformSetRotation(spTransform Transform, spRotation Rotation)

Transform - spTransform whose Rotation is to be set.
Rotation - Rotation value.

Return value - Modi�ed spTransform.

Sets the Rotation portion of an spTransform. The other parts of the spTransform are not
altered.

8.8 spTransformGetScale

spVector spTransformGetScale(spTransform Transform)

Transform - spTransform from which to obtain Scale values.
Return value - Scale vector.

Returns the Scale portion of an spTransform. In C, the spVector returned shares memory with
the spTransform.

The three elements of the spVector contain the amount of scale along the X, Y, and Z axes
respectively. The value 1.0 indicates no change in scale.

8.9 spTransformSetScale

spTransform spTransformSetScale(spTransform Transform, spVector Vector)

Transform - spTransform whose Scale is to be set.
Vector - Vector of Scale values.

Return value - Modi�ed spTransform.

Sets the Scale portion of an spTransform. The other parts of the spTransform are not altered.

8.10 spTransformGetScaleOrientation

spRotation spTransformGetScaleOrientation(spTransform Transform)

Transform - spTransform from which to obtain ScaleOrientation information.
Return value - ScaleOrientation rotation.

Returns the ScaleOrientation portion of an spTransform represented as an spRotation. In C,
the spRotation returned shares memory with the spTransform.

8.11 spTransformSetScaleOrientation

spTransform spTransformSetScaleOrientation(spTransform Transform, spRotation R)

Transform - Transform to set ScaleOrientation in.
R - ScaleOrientation rotation.

Return value - Modi�ed spTransform.

Sets the ScaleOrientation portion of an spTransform. The other parts of the spTransform are
not altered.

MERL-TR-97-11 December, 1997

62 (Internal) Spline Version 3.0 API

8.12 spTransformGetCenter

spVector spTransformGetCenter(spTransform Transform)

Transform - spTransform from which to obtain center point.
Return value - Center point vector.

Returns the Center portion of an spTransform. In C, the spVector returned shares memory
with the spTransform.

8.13 spTransformSetCenter

spTransform spTransformSetCenter(spTransform Transform, spVector Center)

Transform - Transform to set Center in.
Center - Center point vector.

Return value - Modi�ed spTransform.

Sets the Center portion of an spTransform. The other parts of the spTransform are not altered.

9 spVector

public class spVector

The type spVector is a 3-element vector of
oats. It is used to represent several distinct things.
The spVector type does not extend the class sp and does not correspond to objects in the shared
world model. Rather, spVector data is stored in shared objects and used in intermediate computa-
tion.

The class spVector de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

static �nal X - (0) Index of X component (Section 9.1).
static �nal Y - (1) Index of Y component (Section 9.1).
static �nal Z - (2) Index of Z component (Section 9.1).

static �nal ZERO - (0,0,0) Zero length vector (Section 9.1).
static �nal AXISX - (1,0,0) Unit vector along X axis (Section 9.1).
static �nal AXISY - (0,1,0) Unit vector along Y axis (Section 9.1).
static �nal AXISZ - (0,0,1) Unit vector along Z axis (Section 9.1).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 63

The class spVector de�nes the following functions:

spVectorCopy - Copies vector (Section 9.2).
spVectorSetFromScalar - Sets vector elements from scalar value (Section 9.3).

spVectorEquals - Tests equality (Section 9.4).
spVectorEqualsDelta - Tests equality within delta (Section 9.5).

spVectorAdd - Adds two vectors (Section 9.6).
spVectorSubtract - Subtracts two vectors (Section 9.7).

spVectorMultiplyByScalar - Multiplies by a scalar (Section 9.8).
spVectorDivideByScalar - Divides by scalar (Section 9.9).
spVectorCrossProduct - Computes cross product of two vectors (Section 9.10).
spVectorDotProduct - Computes the dot product of two vectors (Section 9.11).

spVectorComposeScales - Computes element-by-element product (Section 9.12).
spVectorLength - Computes the length of a vector (Section 9.13).

spVectorNormalize - Normalizes vector to length 1.0 (Section 9.14).

There are three major uses of vectors. The �rst is as an ordinary vector in Cartesian coordinates,
with the three elements being the X, Y, and Z coordinates respectively. These vectors are used to
specify translations, rotation axes, and center points.

The second use of vectors is as a set of Euler angles. In this use, the �rst element is a rotation
around the X axis in radians; the second element is a rotation around the Y axis in radians; and
the third element is a rotation around the Z axis in radians. Since rotations do not commute, it is
important to realize that these correspond to �rst rotating around Z, and then rotating around Y,
and lastly rotating around X.

The third use of vectors is as a representation for scaling. In this use, the three elements
represent the amount of scaling in the X, Y, and Z axes respectively. A value of 1.0 in an element
speci�es no scaling.

In C, an spVector is the following type.

typedef float * spVector;

In addition, the following type is available for stack allocating memory for an spVector. When
calling a function that operates on spVectors, one can pass in a variable that is either of the type
spVector or spVectorData.

typedef float spVectorData[3];

Several conventions are worthy of note about the functions on spVectors. None of the functions
ever allocates memory. Rather, the control of memory is left entirely up to the application. All
modi�cations are by side-e�ect. However, to make it easier to create nested expressions, the
modi�ed vector is used as the return value.

MERL-TR-97-11 December, 1997

64 (Internal) Spline Version 3.0 API

9.1 Constants

The following three constants are provided for accessing the components of an spVector. (In C,
these constants are external variables initialized to appropriate values.)

spVectorX - (0) Index of X coordinate.
spVectorY - (1) Index of Y coordinate.
spVectorZ - (2) Index of Z coordinate.

For example, you might write.

spVector V;
V[spVectorX] = P[spVectorY] + 2.0;

The following four constants contain particular vectors that are useful as arguments to various
API functions. (In C, these constants are external variables initialized to appropriate values.)

spVectorZERO - (0,0,0) Zero vector.
spVectorAXISX - (1,0,0) Vector along X axis.
spVectorAXISY - (0,1,0) Vector along Y axis.
spVectorAXISZ - (0,0,1) Vector along Z axis.

For example, to compute the rotation that is needed in order to look from the origin down the
X axis with the Y axis up, you might write.

spRotation R;
spRotationLookAt(R, spVectorZERO, spVectorAXISX, spVectorAXISY);

9.2 spVectorCopy

spVector spVectorCopy(spVector Destination, spVector Source)

Destination - spVector to set.
Source - spVector to copy.

Return value - Modi�ed vector.

Copies a vector into another.

9.3 spVectorSetFromScalar

spVector spVectorSetFromScalar(spVector Vector, float Scalar)

Vector - spVector whose elements are to be set.
Scalar - Value to set elements to.

Return value - Modi�ed spVector.

Sets all three elements of an spVector to be equal to a given Scalar.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 65

9.4 spVectorEquals

spBoolean spVectorEquals(spVector A, spVector B)

A - Vector to compare.
B - Vector to compare.

Return value - True if vectors are equal.

Returns True if two vectors are component-by-component equal within a small system-de�ned
tolerance.

9.5 spVectorEqualsDelta

spBoolean spVectorEqualsDelta(spVector A, spVector B, float Tolerance)

A - Vector to compare.
B - Vector to compare.

Tolerance - Precision of comparison.
Return value - True if vectors are equal within delta.

Returns True if two vectors are component-by-component equal within a tolerance speci�ed by
the user.

9.6 spVectorAdd

spVector spVectorAdd(spVector A, spVector B)

A - spVector to add vector to.
B - spVector to add.

Return value - Modi�ed vector.

Adds two vectors together and stores the result in the �rst vector.

9.7 spVectorSubtract

spVector spVectorSubtract(spVector A, spVector B)

A - spVector to subtract vector from.
B - spVector to subtract.

Return value - Modi�ed vector.

Subtracts a second vector from a �rst vector and stores the result in the �rst vector.

9.8 spVectorMultiplyByScalar

spVector spVectorMultiplyByScalar(spVector Vector, float Scalar)

Vector - spVector to multiply by scalar.
Scalar - Value to multiply by.

Return value - Modi�ed vector.

Modi�es a vector by multiplying each element by a scalar.

MERL-TR-97-11 December, 1997

66 (Internal) Spline Version 3.0 API

9.9 spVectorDivideByScalar

spVector spVectorDivideByScalar(spVector Vector, float Scalar)

Vector - spVector to divide by scalar.
Scalar - Value to divide by.

Return value - Modi�ed vector.

Modi�es a vector by dividing each element by a scalar.

9.10 spVectorCrossProduct

spVector spVectorCrossProduct(spVector A, spVector B)

A - First spVector to multiply.
B - Second spVector to multiply.

Return value - Modi�ed vector.

Computes the cross product of two vectors and stores it in the �rst vector.

9.11 spVectorDotProduct

float spVectorDotProduct(spVector A, spVector B)

A - The �rst vector to multiply.
B - The second spVector to multiply.

Return value - The dot product.

Computes the dot product of two vectors and stores it in the �rst vector.

9.12 spVectorComposeScales

spVector spVectorComposeScales(spVector A, spVector B)

A - spVector of scale values that is to be modi�ed.
B - spVector of values to compose with existing scale values.

Return value - Modi�ed spVector.

Modi�es an spVector by multiplying each element by the corresponding element of another
spVector.

9.13 spVectorLength

float spVectorLength(spVector Vector)

Vector - The vector whose length is desired.
Return value - The length.

Computes the length of a vector. That is to say, the square root of the sum of the squares of
the elements.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 67

9.14 spVectorNormalize

spVector spVectorNormalize(spVector Vector)

Vector - Vector to normalize.
Return value - Modi�ed vector.

Converts a vector into a unit length vector pointing in the same direction. That is to say,
divides each element by the length of the vector.

10 spRotation

public class spRotation

The principle way that rotations are speci�ed is in terms of a rotation axis passing through
the origin and a rotation angle about this axis in radians. Typically, the rotation angle is between
plus or minus �. A key advantage of an spRotation is that the various components are easy to
understand. In addition, because the components are relatively independent, they are well suited
to interpolation. The spRotation type does not extend the class sp and does not correspond to
objects in the shared world model. Rather, spRotation data is stored in shared objects and used
in intermediate computation.

The class spRotation de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

static �nal X - (0) Index of X value (Section 10.2).
static �nal Y - (1) Index of Y value (Section 10.2).
static �nal Z - (2) Index of Z value (Section 10.2).
static �nal A - (3) Index of Angle value (Section 10.2).

The class spRotation de�nes the following functions:

spRotationCopy - Copies one spRotation into another (Section 10.3).
spRotationFromIdent - Initializes spRotation (Section 10.4).
spRotationGetAxis - Returns Axis in spRotation (Section 10.5).
spRotationSetAxis - Sets Axis in spRotation (Section 10.6).

spRotationGetAngle - Returns Angle in spRotation (Section 10.7).
spRotationSetAngle - Sets Angle in spRotation (Section 10.8).
spRotationToQuat - Converts spRotation to spQuaternion (Section 10.9).

spRotationFromQuat - Converts spQuaternion to spRotation (Section 10.10).
spRotationToAngles - Converts spRotation to Euler angles (Section 10.11).

spRotationFromAngles - Converts Euler angles to spRotation (Section 10.12).
spRotationMult - Computes the composition of two spRotations (Section 10.13).

spRotationLookAt - Computes viewing rotation (Section 10.14).

MERL-TR-97-11 December, 1997

68 (Internal) Spline Version 3.0 API

An spRotation is a vector of 4
oats representing two components as follows.

Axis - (RX,RY,RZ) identity (0,0,1)
Angle - RA identity 0

The �rst three elements are a vector representing an axis through the origin to rotate about. The
last element is an amount of rotation in radians. Radians are used because they are more natural
for numerical calculations. However, most people think more easily in degrees. In recognition of
this, the following constant is provided.

spDEGREES - Number of radians in a degree.

Using this constant you can specify �/2 radians (90 degrees) as follows.

90.0f * spDEGREES

In C, an spRotation is the following type.

typedef float * spRotation;

In addition, the following type is available for allocating memory for an spRotation. When
calling a function that operates on spRotations, one can pass in a variable that is either of the type
spRotation or spRotationData.

typedef float spRotationData[4];

Several conventions are worthy of note about the functions on spRotations. None of the func-
tions ever allocates memory. Rather, the control of memory is left entirely up to the application.
All modi�cations are by side-e�ect. However, to make it easier to create nested expressions, the
modi�ed value is used as the return value.

A key complexity in the API is that four di�erent representations for rotations are supported.
This is necessary because di�erent communities of people are accustomed to di�erent representa-
tions and justi�ed because each representation has a situation where it is particularly convenient.
The primary rotation representation is spRotation vectors such as those included in an spTrans-
form. The second rotation representation is a vector of 3 Euler angles (in an spVector). The Third
rotation representation is a vector of 4
oats representing a quaternion (spQuaternion). The fourth
rotation representation is the rotation part of an spMatrix.

10.1 Rotation Ambiguity

A fundamental di�culty with rotations in general and spRotations in particular is ambiguity.
For example, no matter how it is represented, a rotation of 2� is the same as no rotation at all.
More speci�cally:

(X, Y, Z, A) = (X, Y, Z, A+2pi) ; rotations are cyclic
(X, Y, Z, A) = (X, Y, Z, A-2pi) ; rotations are cyclic
(X, Y, Z, A) = (nX, nY, nZ, A) ; axis length is irrelevant
(X, Y, Z, A) = (-X, -Y, -Z, -A) ; opposite rotation about opposite axis is same
(X, Y, Z, 0) = (X2, Y2, Z2, 0) ; if angle is zero, all axes are the same

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 69

One can introduce conventions to reduce the ambiguity such as limiting the range of angles,
requiring unit length axes, specifying a �xed zero rotation axis, etc. However, these do not really
get rid of the fundamental problem. Rather, they merely convert ambiguous situations into ones
where abrupt (and awkward) changes occur. For example, ones where a small increment in the
angle suddenly causes a jump to a far away value or a jump to a radically di�erent rotation axis if
the angle becomes zero.

It is important to note that these ambiguities are only a problem if you operate directly on the
parts of a rotation. For example, a program might set the axis and angle in a rotation and then
periodically add a small increment to the angle in order to rotate the object around the originally
speci�ed axis.

Hidden in this approach is the assumption that the axis will not change and therefore that
incrementing the angle means rotating a small amount around this �xed axis. Doing a rotation
this way is a hidden time bomb in a program unless you can be totally sure that the axis really
will not be changed by any other operation.

Verifying this assumption is made very di�cult by the presence of the ambiguities outlined
above. To verify the assumption one would presumably start by verifying that the rotation as a
whole will not be altered by anything other than the program you are writing. However, this is not
enough, because there are a variety of situations where an operation could be applied somewhere else
that does not change the overall value of the rotation, but converts it into a di�erent representation
for the same value. For example, if the angle happens to be zero at a given moment, such an
operation could make an arbitrary change to the axis.

An important example where this problem could arise is when your program causes rotations to
be converted from one form to another and then back again. This includes using inverse pairs of the
functions spRotationToQuat, spRotationFromQuat, spRotationToAngles, spRotationFromAngles,
and spRotationFromAngles, but also spMatrixToTransform, and spMatrixFromTransform, (and
therefore spPositioningMatrix and spPositioningRelativeMatrix). For example, if you compute the
spMatrix corresponding to an spTransform, change something in the matrix that has nothing to
do with rotation, and then convert back to a transform, you might get a rotation that has been
canonicalized in some way and therefore internally is not the same as the rotation you started with,
even though it has the same net rotational e�ect.

Another example is the operation spPositioningLocalize, which has to adjust transforms when
the coordinate system changes as an object moves from one locale to another. Even if there is no
change in rotation between the coordinate systems, a rotational canonicalization can occur.

The way to avoid problems with the ambiguity of rotations is to not make assumptions! Instead
of just adding an increment to an angle, to do a rotation, a program should explicitly specify the
axis to use each time rather than assume it. This means that an operation like spRotationMult
will have to be used instead of just doing an addition. But it means that the right rotation will
occur no matter how the initial state of the rotation is represented.

MERL-TR-97-11 December, 1997

70 (Internal) Spline Version 3.0 API

Given how dangerous it is to directly modify parts of an spRotation while assuming that other
parts have not been modi�ed, it could have been decide to omit direct modi�cation of parts from
the API. Direct modi�cation of parts is supported for two reasons. First, there are situations where
an assumption of a �xed axis is reasonable (e.g., moving the hands of clock that is resting in a
�xed position) and the e�ciency gains in these situations are signi�cant. Second, since rotations
are directly represented as vectors in the API, programmers can always modify individual elements
no matter what the API includes; therefore, the API might as well make it straightforward to at
least modify the right elements.

The moral of this section is that it is unwise to directly modify an individual element of a
rotation except in very special situations. Rather, one should make fully speci�ed incremental
changes in the rotation as a whole that do not make any assumptions about the prior state. Note
that the incrementality is important to avoid a second pitfall that goes beyond mere ambiguity.

If you want to write a program that will work correctly, even if a rotation gets converted into a
di�erent form representing the same rotation, you could save in your program a representation of
the rotation that is totally under the control of your program. For this local copy of the rotation
it would be much easier to verify that just changing a single component would work correctly. You
could then make fast incremental changes, and copy the stored rotation to the rotation you wish
to modify each time the stored rotation is changed.

This approach works better than directly modifying just one element of a rotation stored outside
your program. However, you would still be making the assumption that the rest of the system would
never change the rotation itself, but rather only the way it is represented. This assumption can be
wrong when an object changes locales and when multiple programs interact to e�ect the a rotation.
It is therefore better to create operations that read the current rotational state, modify it in fully-
speci�ed incremental ways, and then write it back again, rather than making any assumptions
about its current value.

10.2 Constants

The class spRotation includes the following constants for accessing the X, Y, Z, and Angle
components of an spRotation. (In C, these constants are #de�nes.)

spRotationX - (0) Index of X value in spRotation.
spRotationY - (1) Index of Y value in spRotation.
spRotationZ - (2) Index of Z value in spRotation.
spRotationA - (3) Index of Angle value in spRotation.

For example, you might write.

spRotation R;
R[spRotationX] = A[spRotationY] + 2.0;

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 71

10.3 spRotationCopy

spRotation spRotationCopy(spRotation Destination, spRotation Source)

Destination - spRotation to be modi�ed.
Source - spRotation to be copied.

Return value - Modi�ed spRotation.

Copies the data from a Source spRotation to another, which is returned.

10.4 spRotationFromIdent

spRotation spRotationFromIdent(spRotation Rotation)

Rotation - spRotation to be initialized.
Return value - Initialized spRotation.

Initializes the values in an spRotation so that they specify no rotation about the Z axis. That
is to say, the spRotation is set to (0,0,1,0). It is important to initialize an spRotation before using
it as a source of data because the operations on spRotations do not test that rotations are well
formed before beginning their operations. In particular, they assume that the axis does not have
zero length.

10.5 spRotationGetAxis

spVector spRotationGetAxis(spRotation Rotation)

Rotation - spRotation to obtain Axis from.
Return value - Axis portion of spRotation.

Returns the Axis portion of an spRotation. In C, the spVector returned shares memory with
the spRotation.

10.6 spRotationSetAxis

spRotation spRotationSetAxis(spRotation Rotation, spVector Axis)

Rotation - spRotation to modify.
Axis - Rotation axis.

Return value - Modi�ed spRotation.

Sets the Axis portion of an spTransform. The angle is not altered.

10.7 spRotationGetAngle

float spRotationGetAngle(spRotation Rotation)

Rotation - spRotation to get Angle from.
Return value - Rotation Angle.

Returns the Angle in an spRotation.

MERL-TR-97-11 December, 1997

72 (Internal) Spline Version 3.0 API

10.8 spRotationSetAngle

spRotation spRotationSetAngle(spRotation Rotation, float Angle)

Rotation - spRotation to modify.
Angle - Rotation Angle.

Return value - Modi�ed spRotation.

Sets the Angle in an spTransform. The axis is not altered.

10.9 spRotationToQuat

spQuaternion spRotationToQuat(spRotation Rotation, spQuaternion Quat)

Rotation - spRotation to be converted.
Quat - spQuaternion to modify.

Return value - Modi�ed spQuaternion.

Computes the spQuaternion corresponding to an spRotation.

10.10 spRotationFromQuat

spRotation spRotationFromQuat(spRotation Rotation, spQuaternion Quat)

Rotation - spRotation to be modi�ed.
Quat - spQuaternion to get rotation information from.

Return value - Modi�ed spRotation.

Computes the spRotation corresponding to an spQuaternion. Note that this is an inherently
one-to-many operation that involves an implicit canonicalization (Section 10.1) of the rotation as
a consequence of picking just one value to actually return. Therefore, identity operations that
include this function may alter the internal elements of a rotation even though they do not change
its overall value.

10.11 spRotationToAngles

spVector spRotationToAngles(spRotation Rotation, spVector Vector)

Rotation - spRotation to convert.
Vector - spVector to be modi�ed.

Return value - Modi�ed spVector containing Euler angles.

Computes the Euler angles corresponding to an spRotation.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 73

10.12 spRotationFromAngles

spRotation spRotationFromAngles(spRotation Rotation, spVector Angles)

Rotation - spRotation to be modi�ed.
Angles - spVector of Euler angles.

Return value - Modi�ed spRotation.

Computes the spRotation corresponding to a vector of Euler angles. Note that this is an
inherently one-to-many operation that involves an implicit canonicalization (Section 10.1) of the
rotation as a consequence of picking just one value to actually return. Therefore, identity operations
that include this function may alter the internal elements of a rotation even though they do not
change its overall value.

10.13 spRotationMult

spRotation spRotationMult(spRotation A, spRotation B)

A - spRotation to be altered.
B - Additional spRotation to be applied.

Return value - Modi�ed spRotation.

Computes an spRotation that represents the composition of two spRotations. Speci�cally, an
spRotation A is modi�ed to represent the e�ect of applying a second rotation B after A. Note that
this means that B is e�ectively multiplied on the left, not the right.

The composition is done by converting both angles to spQuaternions and then converting the
result back. This last step is an inherently one-to-many operation that involves an implicit canon-
icalization (Section 10.1) of the rotation as a consequence of picking just one value to actually
return. Therefore, even if B speci�es no rotation, or both A and B have the same rotation axis,
the result might not have the same rotation axis as A.

10.14 spRotationLookAt

spRotation spRotationLookAt(spRotation R, spVector From, spVector To, spVector Up)

R - spRotation to contain result.
From - (X,Y,Z) position to look from.

To - (X,Y,Z) point to look at.
Up - Vector specifying up direction.

Return value - Modi�ed spRotation.

Computes the absolute spRotation that should be used to view one position from another. In
particular, an spRotation R is computed so that if the rotation is used for an object A at the From
position, then the negative Z axis of A's coordinate system points to the speci�ed To position,
and A's Y axis and the speci�ed Up vector are co-planar. Typically, the Up vector is chosen to
be parallel to the Y axis of the main coordinate system. This causes objects that are upright to
appear upright if the rotation is used to position an spSeeing beacon.

The rotation that is the target of spRotationLookAt is modi�ed by �lling it in with the viewing
rotation and then returned.

MERL-TR-97-11 December, 1997

74 (Internal) Spline Version 3.0 API

11 spQuaternion

public class spQuaternion

Several di�erent representations for rotations are supported. One of these is spQuaternion,
which is a 4-element vector of
oats representing a quaternion. There are very few functions in
the class spQuaternion, because spRotation is much more central to the API. The spQuaternion
type does not extend the class sp and does not correspond to objects in the shared world model.
Rather, spQuaternion data is stored in shared objects and used in intermediate computation.

The class spQuaternion de�nes the following functions:

spQuaternionCopy - Copies one spQuaternion into another (Section 11.1).
spQuaternionFromIdent - Initializes spQuaternion (Section 11.2).

spQuaternionMult - Computes the composition of two spQuaternions (Section 11.3).

The four elements of an spQuaternion represent a quaternion number. (The vector is required
to represent a unit quaternion, i.e., the sum of the squares of the elements of an spQuaternion is
1.0.)

q[0]*i + q[1]*j + q[2]*k + q[3]

In C, an spQuaternion is the following type.

typedef float * spQuaternion;

In addition, the following type is available for stack allocating memory for an spQuaternion.
When calling a function that operates on spQuaternions, one can pass in a variable that is either
of the type spQuaternion or spQuaternionData.

typedef float spQuaternionData[4];

11.1 spQuaternionCopy

spQuaternion spQuaternionCopy(spQuaternion Destination, spQuaternion Source)

Destination - spQuaternion to be modi�ed.
Source - spQuaternion to be copied.

Return value - Modi�ed spQuaternion.

Copies the data from a Source spQuaternion to another, which is returned.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 75

11.2 spQuaternionFromIdent

spQuaternion spQuaternionFromIdent(spQuaternion Quaternion)

Quaternion - spQuaternion to be initialized.
Return value - Initialized spQuaternion.

Initializes the values in an spQuaternion so that they specify no rotation. That is to say, the
spQuaternion is set to (0,0,0,1). It is important to initialize an spQuaternion before using it as
a source of data because the operations on spQuaternions do not test that the spQuaternions are
well formed before beginning their operations.

11.3 spQuaternionMult

spQuaternion spQuaternionMult(spQuaternion A, spQuaternion B)

A - spQuaternion to be altered.
B - Additional rotation to be applied.

Return value - Modi�ed spQuaternion.

Computes an spQuaternion that represents the composition of two spQuaternions. Speci�cally,
an spQuaternion A is modi�ed to represent the e�ect of applying a second rotation B after A. Note
that B is e�ectively multiplied on the left, not the right.

MERL-TR-97-11 December, 1997

76 (Internal) Spline Version 3.0 API

12 spMatrix

public class spMatrix

Following standard graphics practice, the positions, orientations, scaling, and shear of objects
can be represented using 4x4 transformation matrices called spMatrix objects. These matrices are
also capable of representing other e�ects such as taper; however, because spTransforms are used as
the fundamental representation, these additional e�ects cannot be used. The various operations on
spMatrix objects assume that the matrix corresponds purely to translation, rotation, scaling, and
shear. The spMatrix type does not extend the class sp and does not correspond to objects in the
shared world model. Rather, spMatrix data is stored in shared objects and used in intermediate
computation.

The class spMatrix de�nes the following functions:

spMatrixCopy - Sets one matrix from another (Section 12.1).
spMatrixFromIdent - Initializes spMatrix to identity matrix (Section 12.2).

spMatrixGetTranslation - Gets translation component (Section 12.3).
spMatrixSetTranslation - Sets translation component (Section 12.4).
spMatrixFromTransform - Sets matrix from transform (Section 12.5).

spMatrixToTransform - Computes spTransform from matrix (Section 12.6).
spMatrixInverse - Computes inverse of matrix (Section 12.7).
spMatrixMult - Multiplies two matrix objects (Section 12.8).

spMatrixMultVector - Multiplies matrix times vector (Section 12.9).

An spMatrix is a matrix of the following form. The upper right hand quadrant is a 3x3 rotation
matrix specifying orientation, scaling, and other e�ects. The last column speci�es translation (i.e.,
position).

R R R X
R R R Y
R R R Z
0 0 0 1

An spMatrix is stored in column major order as a vector of 16
oats. In C, an spMatrix is the
following type.

typedef float * spMatrix;

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 77

In addition, the following type is available for stack allocating memory for an spMatrix. When
calling a function that operates on spMatrix objects, one can pass in a variable that is either of the
type spMatrix or spMatrixData.

typedef float spMatrixData[16];

Several conventions are worthy of note about the functions on spMatrix objects. All of the
functions assume that an spMatrix represents only rotation, translation, scaling, and shear with
no other e�ects like taper or re
ection. None of the functions ever allocates memory. Rather,
the control of memory is left entirely up to the application. All modi�cations are by side-e�ect.
However, to make it easier to create nested expressions, the modi�ed value is used as the return
value.

12.1 spMatrixCopy

spMatrix spMatrixCopy(spMatrix Destination, spMatrix Source)

Destination - spMatrix to set.
Source - Value to copy into matrix.

Return value - Modi�ed matrix.

Modi�es one matrix to equal another.

12.2 spMatrixFromIdent

spMatrix spMatrixFromIdent(spMatrix Matrix)

Matrix - spMatrix to be set to the identity matrix.
Return value - Initialized spMatrix.

Modi�es an spMatrix to be the identity matrix. The identity matrix is one where the rotation
matrix is the identity matrix specifying no changes and there is no translation. That is to say,
the spMatrix is set to (1,0,0,0, 0,1,0,0, 0,0,1,0, 0,0,0,1). It is important to initialize an spMatrix
before using it as a source of data because the operations on spMatrix objects do not test that the
matrices are well formed before beginning their operations.

12.3 spMatrixGetTranslation

spVector spMatrixGetTranslation(spMatrix Matrix)

Matrix - spMatrix from which to obtain translation.
Return value - Translation vector.

Returns the translation component of an spMatrix. In C, the spVector returned shares memory
with the spMatrix.

MERL-TR-97-11 December, 1997

78 (Internal) Spline Version 3.0 API

12.4 spMatrixSetTranslation

spMatrix spMatrixSetTranslation(spMatrix Matrix, spVector Translation)

Matrix - spMatrix whose translation is to be set.
Translation - spVector specifying translation.

Return value - Modi�ed spMatrix.

Sets the translation component of an spMatrix, leaving the rest of the spMatrix unmodi�ed.

12.5 spMatrixFromTransform

spMatrix spMatrixFromTransform(spMatrix Matrix, spTransform Transform)

Matrix - spMatrix to set.
Transform - spTransform to copy into the matrix.

Return value - Modi�ed spMatrix.

Modi�es a matrix so that it has the translation, rotation, scaling, and shear speci�ed by an
spTransform.

12.6 spMatrixToTransform

spTransform spMatrixToTransform(spMatrix Matrix, spTransform Transform)

Matrix - spMatrix to get information from.
Transform - spTransform to set.

Return value - Modi�ed transform.

Computes the spTransform that corresponds to an spMatrix and stores the result in the indi-
cated spTransform. It should be noted that this operation is computationally quite expensive. In
addition, it is an inherently one-to-many operation that involves an implicit canonicalization (Sec-
tion 10.1) of the rotation as a consequence of picking just one value to actually return. Therefore,
identity operations that include this function may alter the internal elements of a rotation even
though they do not change its overall value.

Not every spMatrix can be converted into an spTransform. For example, an spTransform that
speci�es taper cannot be. However, any spMatrix that can be computed by using the functions
provided here can be converted into an spTransform. The only exception to this is if the individual
elements of an spMatrix are set directly. This is not recommended.

12.7 spMatrixInverse

spMatrix spMatrixInverse(spMatrix spMatrix)

spMatrix - Matrix to be inverted.
Return value - Modi�ed matrix.

Modi�es a matrix so that it becomes the inverse of its previous value. That is to say, so
that it speci�es an opposite rotation about the same axis, inverse scaling, and the negation of the
translation. The product of a matrix and its inverse is the identity matrix.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 79

12.8 spMatrixMult

spMatrix spMatrixMult(spMatrix A, spMatrix B)

A - spMatrix to be multiplied on the left.
B - spMatrix to be multiplied on the right.

Return value - Modi�ed spMatrix.

Computes the product of two matrix objects. This is the sum of the translations, the product
of the scaling and the result of performing one rotation after the other. A matrix A is multiplied
by another matrix B (with A on the left and B on the right) and A is modi�ed to contain the result
and returned.

12.9 spMatrixMultVector

spVector spMatrixMultVector(spMatrix Matrix, spVector Vector)

Matrix - spMatrix to be multiplied on the left.
Vector - spVector to be multiplied on the right and modi�ed.

Return value - Modi�ed spVector.

Multiply an spMatrix times an spVector to determine what the transformed vector is. This
determines the result of the transformation speci�ed by an spMatrix on the given vector. The
result is stored in the argument vector and returned.

As an example, the following code shows how to calculate a vector Up in the local coordi-
nate system of an spThing A that corresponds to the global up direction spVectorAXISY. The
code multiplies the spMatrix relating the topmost coordinates to A's coordinates by a copy of
spVectorAXISY to determine a vector in A's coordinates that corresponds to up.

spMatrix M;
spVector Up;
Up = spVectorCopy(Up, spVectorAXISY);
spMatrixMultVector(spPositioningRelativeMatrix(A, spTopmost(A), M), Up);

MERL-TR-97-11 December, 1997

80 (Internal) Spline Version 3.0 API

13 spPath

public class spPath

An spPath is a stored sequence of spTransforms separated in time that can be used to represent
a motion path. Facilities are provided for recording (Section 13.3) and playing back (Section 16.16)
these paths. The spPath type does not extend the class sp and does not correspond to objects in
the shared world model. Rather, spPath data is stored in shared objects and used in intermediate
computation.

The class spPath de�nes the following functions:

spPathNew - Creates spPath (Section 13.1).
spPathFree - Frees spPath (Section 13.2).

spPathAppendTransform - Adds spTransform to end of path (Section 13.3).
spPathGetTransform - Gets spTransform from path (Section 13.4).

spPathCopy - Copies path (Section 13.5).
spPathSave - Writes path to �le (Section 13.6).
spPathLoad - Loads path from �le (Section 13.7).

spPathChangeStartPoint - Transforms path (Section 13.8).
spPathThin - Compresses path data (Section 13.9).

In C, an spPath is a linked list containing spTransforms and durations. The duration associated
with an spTransform in an spPath speci�es how much time should intervene between the previous
spTransform and the spTransform tagged with the duration. For the �rst spTransform, the duration
speci�es how much time should elapse for an object moving from wherever it previously was to the
�rst position in the spPath. Functions are provided for putting data into paths and getting the
data back out. Functions are also provided for storing paths in the �le system and subsequently
retrieving them.

13.1 spPathNew

spPath spPathNew()

Return value - Newly created path.

Creates a new path containing no spTransforms.

13.2 spPathFree

void spPathFree(spPath Path)

Path - Path to remove.
Return value - There is no return value.

Frees the storage corresponding to an spPath.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 81

13.3 spPathAppendTransform

spPath spPathAppendTransform(spPath Path, spTransform Point, spDuration Duration)

Path - Path to add spTransform onto end of.
Point - spTransform to add onto path.

Duration - Time delta associated with point in milliseconds.
Return value - Modi�ed path.

Adds an spTransform and time delta to the end of an spPath. The extended path is returned.
The appending may not happen entirely by modifying the path input. As a result, you must be
sure to record the returned path. For example you might write the following:

P = spPathAppendTransform(P, Transform, 20)

13.4 spPathGetTransform

spDuration spPathGetTransform(spPath Path, long Index, spTransform Transform)

Path - Path to fetch spTransform out of.
Index - Zero-based index of spTransform in path.

Transform - spTransform to store result in.
Return value - Time interval corresponding to spTransform in path.

Obtains an spTransform from an spPath. The spTransform is returned by modifying the Trans-
form argument. The corresponding time delta is returned as the value. The Index counts from
zero as the index of the �rst spTransform. A negative duration is returned if Index is beyond the
end of the path.

13.5 spPathCopy

spPath spPathCopy(spPath Path)

Path - Path to copy.
Return value - Newly created copy of path.

Creates a new path identical to an existing path. The existing path is not modi�ed.

13.6 spPathSave

void spPathSave(spPath Path, char * Name, char * File)

Path - Path to save.
Name - Identifying name for path in the �le.
File - Name of �le to hold path.

Return value - There is no return value.

Saves an spPath in a disk �le. Path �les can contain several paths identi�ed by names. This is
convenient when recording a number of paths corresponding to the di�erent parts of an articulated
�gure.

MERL-TR-97-11 December, 1997

82 (Internal) Spline Version 3.0 API

13.7 spPathLoad

spPath spPathLoad(spPath Path, char * Name, char * File)

Path - Path to load data into.
Name - Identifying name of path in the �le.
File - Name of �le holding path.

Return value - Modi�ed path.

Reads the path with the speci�ed name from the speci�ed �le. This is done by replacing the
contents (if any) of an existing path which is returned.

13.8 spPathChangeStartPoint

spPath spPathChangeStartPoint(spPath Path, spTransform Transform)

Path - Path to convert.
Transform - New starting point.

Return value - Modi�ed path.

An spPath speci�es a trajectory starting from a particular absolute position. Often it is valuable
to be able to follow a relative trajectory from a separately chosen starting point. spPathNewStart-
Point accommodates this by changing the starting point of a path. This is done by multiplying
each transform in the path by an appropriate conversion matrix. The change is made by modifying
the path, which is returned.

13.9 spPathThin

spPath spPathThin(spPath Path, float Tolerance)

Path - Path to compress.
Tolerance - Error tolerance.

Return value - Modi�ed path.

Often an spPath will contain much more data than necessary. For example, there may be many
spTransforms in a row that correspond to very nearly the same position. spPathThin eliminates as
many spTransforms as possible from the path without causing an unreasonable di�erence between
the old and new paths. How great a di�erence is allowed is speci�ed by the tolerance parameter.
This places a maximum allowed delta between preexisting and interpolated data points. One can
often use a quite large tolerance value without altering the visual appearance of a path. The change
is made by modifying an existing path, which is returned.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 83

14 spFormat

public class spFormat

The spFormat type does not extend the class sp and does not correspond to objects in the
shared world model. Rather, spFormat data is stored in shared objects and used in intermediate
computation. spFormats specify various sound data formats including sampling rate and encoding.

The class spFormat de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

static �nal LINEAR8MONO16 - 8k linear samples per second (Section 14.1).
static �nal LINEAR16MONO16 - 16k linear samples per second (Section 14.1).
static �nal LINEAR32MONO16 - 32k linear samples per second (Section 14.1).

The class spFormat de�nes the following functions:

spFormatDurationFromLength - Computes time duration (Section 14.2).
spFormatLengthFromDuration - Computes length in bytes (Section 14.3).

In C, An spFormat is the following structure. The various �elds can be independently manipu-
lated; however, it is primarily intended that applications use a small set of constant values and the
small number of methods described below.

typedef struct _spFormat {
unsigned short rate;
short encoding;
unsigned short bitsPerSample;
unsigned short samplesPerFrame;

} spFormat;

The rate speci�es how many times per second the sound data is sampled. Popular rates include
8000, 16000, 32000, and 44100. The encoding (an integer code) speci�es what kind of data encoding
is used. The bits per sample speci�es how many bits (e.g., 8, 16) are in each sample. The samples
per frame speci�es how many channels of data are represented (e.g., 1 (mono), 2 (stereo), 4 (quad)).

All sound data accessible to applications is linearly encoded with 16 bits per sample. (More
compact encodings are used when communicating between processes.) Typically, sound is output
through spAudioSources in mono and rendered through a user's headphones in stereo.

14.1 Constants

The following constants contain useful spFormat values. (In C these constants are #de�nes.)

spFormat8LINEAR16MONO - 8k samples per second, linear encoding, 16 bit samples, mono.
spFormat16LINEAR16MONO - 16k samples per second, linear encoding, 16 bit samples, mono.
spFormat32LINEAR16MONO - 32k samples per second, linear encoding, 16 bit samples, mono.

MERL-TR-97-11 December, 1997

84 (Internal) Spline Version 3.0 API

14.2 spFormatDurationFromLength

spDuration spFormatDurationFromLength(spFormat Format, long Bytes)

Format - Format sound data is stored in.
Bytes - Number of bytes of data.

Return value - Time required to play sound in milliseconds.

Computes the duration in milliseconds (rounded up to the nearest millisecond) of the speci�ed
number of bytes of sound data stored using the indicated format.

14.3 spFormatLengthFromDuration

long spFormatLengthFromDuration(spFormat Format, spDuration Duration)

Format - Format sound data is stored in.
Duration - Time required to play sound in milliseconds.

Return value - Number of bytes of data.

Computes the number of bytes required to represent the speci�ed number of milliseconds of
sound data using the indicated format.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 85

15 sp (Fundamental)

public abstract class sp

This is the root of the shared object hierarchy. The class is abstract in the sense that applications
do not create objects of the class sp. However, the functions associated with this class are applicable
to every shared object.

The class sp de�nes the following instance variables, with the variables in the external API in
bold and the variables that are fundamental in the sense that they could not be properly supported
by an application programmer underlined:

static �nal C - spClass object for class (Section 15.1).
static �nal DEGREES - (�/180.0) Number of radians in a degree (Section 15.2).

LocalPtr - Local data (Section 15.3).
NextPtr - Hash table bucket chain (Section 15.4).
Marker - Validation code (Section 15.5).

shared DescriptionLength - Shared data length (Section 15.6).
shared Counter - Message counter (Section 15.7).
shared Name - Unique ID (Section 15.8).
shared Class - Class description (Section 15.9).

shared Owner - Unique ID of owner (Section 15.10).
shared Locale - Containing locale (Section 15.11).

shared SharedBits - Shared boolean value storage (Section 15.12).
shared Parent - Containing object (Section 15.13).

shared IsRemoved - Removal indicator (Section 15.14).
shared ForceReliable - Indicates forced reliable communication (Section 15.15).

shared InhibitReliable - Indicates blocking of messages repairs (Section 15.16).
LocalBits - Local boolean value storage (Section 15.17).
IsNew - Newness indicator (Section 15.18).

AppData - Data for use by application (Section 15.19).
MessageNeeded - Message required indicator (Section 15.20).

Change - Shared-data change-indicator (Section 15.21).
OldPtr - Old shared data (Section 15.22).
JavaPtr - Companion Java object (Section 15.23).
Referrers - Reverse index (Section 15.24).
Alerters - Applicable actions (Section 15.25).

Msgs - Queue of messages to be processed (Section 15.26).
LastUpdateTime - Last time at which object state was updated (Section 15.27).

MERL-TR-97-11 December, 1997

86 (Internal) Spline Version 3.0 API

The class sp de�nes the following functions:

spNew - Creates new object (Section 15.28).
spInitialization - Initializes instance variables (Section 15.29).

spRemove - Eliminates object (Section 15.30).
spExamineChildren - Looks at child objects (Section 15.31).

spExamineDescendants - Looks at all descendant objects (Section 15.32).
spTopmost - Returns highest level ancestor of object (Section 15.33).

spPrint - Prints object readably (Section 15.34).
spLocallyOwned - Queries whether object is owned by local process (Section 15.35).

spSetParent - Sets Parent of object (Section 15.36).

It is not possible to create instances of the class sp. Rather, one can only create instances of
particular subclasses of the class sp.

15.1 C

public static final spClass C; //* [sp]

Given an object, one can obtain the descriptor of the object's class by using the accessor
spGetClass. This is all that is needed in many situations. However, it is also often convenient to
be able to obtain the description of a particular class even though you do not have any particular
instance of the class. For example, you might want to use spClassExamine to �nd any instances
that exist.

For each class spK, the system automatically generates a constant spKC that contains the class
descriptor for the class. For example, sp includes the variable spC, which can be used as follows:

spClassExamine(spC, spMaskNORMAL, F, NULL)

15.2 DEGREES

All angles are represented in radians. Radians are used because they are more natural for
numerical calculations. However, most people think more easily in degrees. In recognition of this,
the following constant is provided. (In C, this constant is a #de�ne.)

spDEGREES - Number of radians in a degree.

Using this constant you can specify �/2 radians (90 degrees) as follows.

90.0f * spDEGREES

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 87

15.3 LocalPtr (Fundamental and Internal)

transient public int LocalPtr; //* [void *] internal

void * spiGetLocalPtr(sp Object)
void spiSetLocalPtr(sp Object, void * X)

void * sqGetLocalPtr(sp Object)
void sqSetLocalPtr(sp Object, void * X)

The data associated with shared objects is stored in three parts. One part contains the shared
instance variables. This part is sent in messages from one process to another. The second part
contains the local instance variables. The third part contains a record of the state of the shared
variables just after alerters were last applied to the object.

Shared objects are directly identi�ed by a pointer to the part containing shared values. For
rapid access to the local data, a local instance variable called the LocalPtr contains a pointer to
the part of the object containing the local data. (The LocalPtr is stored adjacent to the shared
data so that it can be accessed from a pointer to the shared data, but it is not part of the shared
data and is not transmitted between machines.)

The LocalPtr of a shared object is initialized when the object is created and must never by
changed. Information about the LocalPtr is maintained separately in each process.

15.4 NextPtr (Fundamental and Internal)

transient public int NextPtr; //* [void *] internal

void * spiGetNextPtr(sp Object)
void spiSetNextPtr(sp Object, void * X)

void * sqGetNextPtr(sp Object)
void sqSetNextPtr(sp Object, void * X)

The system uses a hash table as an index into the shared objects in the world model based on
GUIDs for the objects. The buckets of the hash table are chained through shared objects using a
local instance variable called the NextPtr. (The NextPtr is stored adjacent to the shared data so
that it can be rapidly accessed from a pointer to the shared data, but it is not part of the shared
data and is not transmitted between machines.)

The NextPtr of a shared object is manipulated by the hash table algorithms used by the system
and must not be modi�ed in any other way. Information about the NextPtr is maintained separately
in each process.

MERL-TR-97-11 December, 1997

88 (Internal) Spline Version 3.0 API

15.5 Marker (Fundamental and Internal)

transient public int Marker; //* [long] internal

long spiGetMarker(sp Object)
void spiSetMarker(sp Object, long X)

long sqGetMarker(sp Object)
void sqSetMarker(sp Object, long X)

To facilitate error checking and debugging, each shared object contains a special marker that
is unique to shared objects. This makes it possible to determine with high probability whether a
given piece of memory does or does not represent a shared object. This marker is stored in a local
instance variable called the Marker. (The marker is stored adjacent to the shared data so that it
can be accessed from a pointer to the shared data, but it is not part of the shared data and is not
transmitted between machines.)

The Marker variable of a shared object is set to a special value at the moment when the object
is created and set to a di�erent value when the object is removed. It must not be modi�ed at any
other time. Information about the Marker is maintained separately in each process.

15.6 DescriptionLength (Fundamental and Internal)

public short DescriptionLength; //* [short] internal

short spiGetDescriptionLength(sp Object)
short spiGetOldDescriptionLength(sp Object)
void spiSetDescriptionLength(sp Object, short X)

short sqGetDescriptionLength(sp Object)
short sqGetOldDescriptionLength(sp Object)
void sqSetDescriptionLength(sp Object, short X)

Changes in the shared data associated with a shared object are communicated between processes
using messages that contain a snapshot of the state of the shared data. To facilitate the construction
of these messages, each shared object has a shared instance variable called the DescriptionLength
that speci�es the number of bytes occupied by the shared data. (The DescriptionLength is required
to be su�ciently small to satisfy the general limitation that single UDP messages must be less than
600 bytes or so long. As part of this, spFixedAscii strings are required to be less than 500 bytes
long.)

The DescriptionLength must be an integer. When an object is created, its DescriptionLength
is initialized by the system to the appropriate value. The DescriptionLength never changes after it
has been initialized. Information about the DescriptionLength is shared between processes.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 89

15.7 Counter (Fundamental and Internal)

public short Counter; //* [short] internal

short spiGetCounter(sp Object)
short spiGetOldCounter(sp Object)
void spiSetCounter(sp Object, short X)

short sqGetCounter(sp Object)
short sqGetOldCounter(sp Object)
void sqSetCounter(sp Object, short X)

Every shared object has a shared instance variable called the Counter that is incremented every
time a message about the object is sent to other processes. The purpose of this is to allow a process
that receives messages about an object to identify and ignore duplicate and out-of-order messages.
Information about the Counter is shared between processes.

15.8 Name (Fundamental and Internal)

public int Name; //* [spName] internal

spName spiGetName(sp Object)
void spiSetName(sp Object, spName X)

spName sqGetName(sp Object)
spName sqGetOldName(sp Object)
void sqSetName(sp Object, spName X)

To support the unambiguous communication of shared objects between processes over a network,
each shared object is assigned a Globally Unique ID (GUID) that is guaranteed to be unique in the
world and in time for 100 years. Taking advantage of the fact that objects typically do not have long
lives, names are represented using only 32 bits of type spName in most situations. Using this 32-bit
compressed representation saves substantial amounts of storage and communication bandwidth in
comparison with many other unique naming schemes.

Shared objects are assigned unique names when they are initially created. It is guaranteed that
the Name of an object will never change. Information about the Name is shared between processes.

Note that the unique name of an object is not available in the external interface. If an application
wants to uniquely identify an object, it should associate the object with an spBeacon.

The fundamental representation of object IDs uses 96 bits (12 bytes, 3 words) composed of two
parts:

Process ID: 80 bits corresponding to a process. This value is assigned whenever a new process
starts and is guaranteed to be unique in space and time (for a century). This value is opaque. No
way is speci�ed for obtaining any information about a process if one only has a process identi�er.
The process identi�er 0 (zero) is reserved for indicating built-in objects|i.e., the built-in classes.

MERL-TR-97-11 December, 1997

90 (Internal) Spline Version 3.0 API

Object ID: 16 bits. As a process creates new objects, it generates names for them by changing
the object ID part of the name, holding the process identi�er constant. Names are never reused.
Once 64k names have been generated, the process ID is changed. (As explained below, a process
has available to it 64k names per second.)

To promote memory and communication e�ciency, object names are represented at all times
in the following compressed form:

Process ID table pointer: 16 bits that indicates an entry in a table of process ids. (The process
id table pointer 0 (zero) is reserved for indicating built-in objects.)

Object ID: The 16-bit object ID for the object.
These are combined to form 32-bit values of types spName and spOwner. Note that the com-

pressed representation for an object ID on two di�erent processes will typically not be the same
because the process ID table entries will not be in the same order.

A table of process IDs is used to interpret the process-ID-table-pointers in compressed object
names. In a world model, the process-ID-table-pointers are indexes into this table. In a message,
the part of the whole table that is needed in order to understand the compressed object names in
the message is sparsely represented as a vector of process-ID-table-pointer/process-ID pairs. Note
that in a message containing several object descriptions there need only be one uni�ed vector of
process-ID-table-pointer/process-ID pairs.

The above promotes e�ciency because typically, the world model (or a message) will refer
to many objects, but these objects will share only a small number of process IDs. In memory,
everything is the same as now, still allowing block copying when messages are sent, with only a
small overhead necessitated by the process-ID table.

The cost of the above is centered on message receipt when compressed IDs have to be translated
to correspond to the receiver's process-ID table and to a lesser degree when messages are sent and
the appropriate sparse process-ID table in each message has to be created.

The GUIDs above are designed so that it is possible to use one inde�nitely without having to
worry about name collisions. However, it is pragmatically important not to do so.

In particular, the bene�ts of the compression scheme above depends critically on the assumption
that almost all the names owned by a given process have the same process ID.

If, in the extreme, every object had a di�erent process ID, then the compression scheme would
actually increase total memory usage slightly. If names were used permanently, then as the days
wore on, the ratio of process IDs to names in use would relentlessly rise toward 1.0 with unfortunate
consequences. Rather than let this happen, one should take the opportunity to remove old objects
and create new ones with new names from currently active name spaces whenever possible.

Note that beacons provide a conveniently method for making a persistent mark. Because they
use URLs, they provide an in�nite number of tags. These URLs take up a signi�cant amount of
space. However, this space is only used when a persistent tag is actually needed.

Process IDs are composed of 80 bits in order to allow the following basic scheme for generating
them based on Internet address. The uniqueness of process IDs follows from the uniqueness of
Internet addresses.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 91

Process IDs are created by concatenating an Internet Address uniquely identifying a machine
(32 bits but slated soon to become 128 bits), a port number uniquely identifying a process on the
machine (16 bits), and a generation counter uniquely identifying the moment the process started
(32 bits). A free port number is obtained when the process starts. The generation counter is
obtained by estimating the time in seconds. Absent a reliable method of obtaining the time, some
�le based method must be used to obtained guaranteed unique counter values.

15.9 Class (Fundamental)

public spClass Class; //* [sp] readonly

sp spGetClass(sp Object)

void spiSetClass(sp Object, sp X)

sp sqGetClass(sp Object)
sp sqGetOldClass(sp Object)
void sqSetClass(sp Object, sp X)

Each shared object has a shared instance variable called its Class that contains an spClass
object describing the local and shared instance variables associated with the object.

The Class of an object is set when it is initially created and cannot change after that time.
Information about the Class is shared between processes.

15.10 Owner (Fundamental)

public int Owner; //* [spName]

spName spGetOwner(sp Object)
spName spGetOldOwner(sp Object)
void spSetOwner(sp Object, spName X)

spName sqGetOwner(sp Object)
spName sqGetOldOwner(sp Object)
void sqSetOwner(sp Object, spName X)

An important feature of the API is that every shared object has a single owner and the owning
activity is the only process that can modify any of the shared data associated with the object.
This avoids readers/writers con
icts when using shared objects. The only exception to the above is
that a process can create an spAction object that can run in other processes and remotely modify
objects that are owned by the same process as the spAction.

Each shared object has a shared instance variable called its Owner that contains the unique ID
of the activity that owns it. The name space of owner IDs is the same as the name space of object
IDs. Owner IDs are created using the function spWMGenerateOwner. To determine whether you
are the owner of an object X perform the test:

spGetOwner(X) == spWMGetMe()

MERL-TR-97-11 December, 1997

92 (Internal) Spline Version 3.0 API

The Owner of a shared object is set to the value of spWMGetMe when the object is created.
After that time, the Owner of an object is free to change the Owner to a di�erent owner ID, thereby
giving up ownership of the object to another process. A process must be careful to set the Owner
to a valid owner ID. If not, the object will be irrecoverably lost in limbo, until it eventually times
out. Information about the Owner is shared between processes.

A process can request that ownership of an object be transferred to it by creating an spOwn-
ershipRequest object (Section 47). The owner may or may not satisfy the request.

15.11 Locale (Fundamental and Internal)

public spLocale Locale; //* [sp] internal

sp spiGetLocale(sp Object)
sp spiGetOldLocale(sp Object)
void spiSetLocale(sp Object, sp X)

sp sqGetLocale(sp Object)
sp sqGetOldLocale(sp Object)
void sqSetLocale(sp Object, sp X)

The locale (Section 26) an object is in depends on the Parent of the object. If the Parent is a
locale, then the object is in that locale. Otherwise the object is in the same locale as its Parent.
(If there is no Parent then the object is not in any locale and information about it will not be
communicated to any other process.)

In the interest of e�ciency, the system caches the locale an object is in using a local instance
variable called the Locale. This cache is incrementally maintained whenever the Parent of an object
(or any of its ancestors) is changed. It must not be altered in any other way. Information about
the locale is shared between processes.

This variable is shared, because it is maintained by the system in the process that owns an
object and used by other processes. In particular, it may be the case that at a given moment,
the owner of an object and another process might disagree about the Parent of an object. (For
example, if the other process has not yet obtained information about the Parent.) In that situation,
the other process simply believes what the owner says about the locale the object is in, rather than
computing for itself what locale the object is in.

The system core running in the process that owns an object computes the Locale value and keeps
it up to date due to changed Parents and changing Locales of Parents. The Locale controls what
addresses are used when sending messages. Receiving processes don't compute Locale information,
but rather just believe whatever they are told via this variable. (A side bene�t of this is that for
every object that is in a locale, every process always knows which locale it is in. Therefore, there
are never any objects in limbo merely because a receiver has not yet found out what locale they
are in.)

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 93

Whenever the value of the Locale variable changes, a message about the new state of the object
is sent both to the old locale and to the new locale. The message to the old locale can be di�erential.
The message to the new locale must be full. Processes that are interested in only the old, but not
the new locale, purge the object from their world models when they process this message. Processes
that are interested only in the new locale but not the old, hear about the object for the �rst time
when it enters the locale. They then create the object in their world model copies. Processes that
are interest in both the old and new locales merely change which locale the object is in. (These
processes receive two messages, one di�erential and one full, specifying the same information.)

15.12 SharedBits (Internal)

public int SharedBits; //* [long] internal

long spiGetSharedBits(sp Object)
long spiGetOldSharedBits(sp Object)
void spiSetSharedBits(sp Object, long X)

long sqGetSharedBits(sp Object)
long sqGetOldSharedBits(sp Object)
void sqSetSharedBits(sp Object, long X)

Instance variables include a number of boolean variables. For e�ciency, the boolean variables
that are shared between processes are stored together in a single multi-bit shared variable called
the SharedBits. The meanings of the individual bits are described elsewhere. They should never
be manipulated as a group, but rather only by using the appropriate accessors for individual bits.
Information about the SharedBits is shared between processes.

15.13 Parent

public sp Parent; //* [sp]

sp spGetParent(sp Object)
sp spGetOldParent(sp Object)
void spSetParent(sp Object, sp X)

sp sqGetParent(sp Object)
sp sqGetOldParent(sp Object)
void sqSetParent(sp Object, sp X)

A key feature of shared objects is that they can be hierarchically arranged. For example, an
articulated humanoid �gure might be constructed so that the top level object corresponds to the
torso. The torso might have a head, two upper arms, and two thighs attached to it. Each upper
arm might have a lower arm attached to it and so on.

Hierarchical relationships between shared objects are represented by using a shared instance
variable called the Parent. In the example above, the lower arms of the humanoid �gure would
have as Parents the corresponding upper arms which would have as their Parents the torso.

MERL-TR-97-11 December, 1997

94 (Internal) Spline Version 3.0 API

An equally important feature of the Parent of an object is that it determines what locale
(Section 26) the object is in. This in turn determines how the object is communicated, because
information about an object is sent only to the locale it is in. If the Parent of an object is Null,
information about it will not be sent anywhere.

There are no explicit access functions for the inverse of the Parent relationship. However, this
information can be indirectly obtained using the functions spExamineChildren (Section 15.31) and
spExamineDescendants (Section 15.32).

The Parent of a shared object must be another shared object, or Null, meaning that there is no
Parent. When an object is created, its Parent is initialized to Null. Information about the Parent
is shared between processes.

15.14 IsRemoved (Fundamental)

public boolean IsRemoved; //* [spBoolean] readonly

spBoolean spGetIsRemoved(sp Object)
spBoolean spGetOldIsRemoved(sp Object)

void spiSetIsRemoved(sp Object, spBoolean X)

spBoolean sqGetIsRemoved(sp Object)
spBoolean sqGetOldIsRemoved(sp Object)
void sqSetIsRemoved(sp Object, spBoolean X)

The shared instance variable IsRemoved has the value True if and only if the object has been
removed by its owner. It is still permissible to look at the values of the instance variables of an
object after the object has been removed. (This is important in alerters.) However, one has to be
very careful about retaining pointers to objects that have been removed, because the system frees
the storage corresponding to an object soon after it is removed.

The IsRemoved bit is set to False when an object �rst appears in the world model. It is set
to True when the object is removed. The IsRemoved bit must never be altered in any other way.
Information about the IsRemoved bit is shared between processes.

By comparing the current and old values of the IsRemoved bit, one can determine whether an
object was recently removed. In particular, if the current value is True while the old value is still
False, then the object was removed since alerters were last run on the object.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 95

15.15 ForceReliable (Fundamental and Internal)

public boolean ForceReliable; //* [spBoolean] internal

spBoolean spiGetForceReliable(sp Object)
spBoolean spiGetOldForceReliable(sp Object)
void spiSetForceReliable(sp Object, spBoolean X)

spBoolean sqGetForceReliable(sp Object)
spBoolean sqGetOldForceReliable(sp Object)
void sqSetForceReliable(sp Object, spBoolean X)

The shared instance variable ForceReliable controls whether an object is communicated using
TCP. When ForceReliable is True, the communication of the object using TCP via the appropriate
Locale-Based Communication server is forced. Otherwise, it is not. See the documentation of ISTP.

The ForceReliable bit has a default value of False. Information about the ForceReliable bit is
shared between processes.

15.16 InhibitReliable (Fundamental and Internal)

public boolean InhibitReliable; //* [spBoolean] internal

spBoolean spiGetInhibitReliable(sp Object)
spBoolean spiGetOldInhibitReliable(sp Object)
void spiSetInhibitReliable(sp Object, spBoolean X)

spBoolean sqGetInhibitReliable(sp Object)
spBoolean sqGetOldInhibitReliable(sp Object)
void sqSetInhibitReliable(sp Object, spBoolean X)

The shared instance variable InhibitReliable controls whether the appropriate Locale-Based
Communication server sends out positive acknowledgments so that processes can determine whether
they have the correct information about an object. When InhibitReliable is True, the sending of
these acknowledgments is blocked. This is appropriate when the object is changing so rapidly that
there is no point in trying to retransmit lost information. See the documentation of ISTP.

The InhibitReliable bit has a default value of False. Information about the InhibitReliable bit
is shared between processes.

MERL-TR-97-11 December, 1997

96 (Internal) Spline Version 3.0 API

15.17 LocalBits (Internal)

transient public short LocalBits; //* [short] internal

short spiGetLocalBits(sp Object)
void spiSetLocalBits(sp Object, short X)

short sqGetLocalBits(sp Object)
void sqSetLocalBits(sp Object, short X)

Instance variables include a number of boolean variables. For e�ciency, the local boolean vari-
ables of shared objects are stored together in a single multi-bit local variable called the LocalBits.
The meanings of the individual bits are described elsewhere. They should never be manipulated as
a group, but rather only by using the appropriate accessors for individual bits. Information about
the LocalBits is maintained separately in each process.

15.18 IsNew (Fundamental)

transient public boolean IsNew; //* [spBoolean] readonly

spBoolean spGetIsNew(sp Object)

void spiSetIsNew(sp Object, spBoolean X)

spBoolean sqGetIsNew(sp Object)
void sqSetIsNew(sp Object, spBoolean X)

The local instance variable IsNew has the value True if and only if the object appeared in the
local world model copy since the last time alerters were run on that kind of object. The IsNew bit
is only intended to be used by alerters and has little value in other situations.

The IsNew bit is set to True when an object �rst appears in the world model. It is set to
False at the end of the next call on spWMUpdate. Information about the IsNew bit is maintained
separately in each process.

Note that if an object has just newly appeared, then the old values of its shared instance variables
contain the values that the shared instance values had at the moment the object appeared.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 97

15.19 AppData

transient public int AppData; //* [void *]

void * spGetAppData(sp Object)
void spSetAppData(sp Object, void * X)

void * sqGetAppData(sp Object)
void sqSetAppData(sp Object, void * X)

Every shared object has a local instance variable called AppData, which applications can use to
store any 32-bit quantity they want to. This can be very convenient in many situations. However,
note that if you store pointers to dynamically allocated structures, you must carefully monitor
the removal of objects (e.g., with a callback) or risk having a memory leak due to the allocated
structures not getting freed when objects are removed. (Since the system does not understand
anything about what is in this variable, it cannot take any action to prevent memory leaks.) In
addition, if two applications running on the same machine and sharing the same world model copy
both try to use this variable, severe problems will arise unless they cooperate closely.

When an object is created, the AppData value is set to Null. Applications can do whatever
they want with it after that time. Information about the AppData is maintained separately in each
process.

15.20 MessageNeeded (Fundamental and Internal)

transient public boolean MessageNeeded; //* [spBoolean] internal

spBoolean spiGetMessageNeeded(sp Object)
void spiSetMessageNeeded(sp Object, spBoolean X)

spBoolean sqGetMessageNeeded(sp Object)
void sqSetMessageNeeded(sp Object, spBoolean X)

When a process modi�es the shared data associated with an object, a message containing the
new state of the object's shared data is sent to other processes. Detailed control over when a
message is sent is exercised via a local boolean instance variable called the MessageNeeded bit.
When (and only when) the MessageNeeded bit is True for an object owned by the local process, a
message is sent describing the state of the object and the MessageNeeded bit is set back to False.
Information about the MessageNeeded bit is maintained separately in each process.

The MessageNeeded bit is set to False when an object is initially created. Whenever one of
the external API functions for modifying shared instance variables (such as spSetParent) is used,
the function sets the MessageNeeded bit to True. Due to this automatic maintenance of the
MessageNeeded bit, the typical application writer need not be concerned with the MessageNeeded
bit.

However, those that extend the system need to think carefully about when the MessageNeeded
bit should be set. The reason for this is that the fast internal shared data modi�cation functions
(such as sqSetParent) do not set the MessageNeeded bit. If the MessageNeeded bit should be set,
then it must be set separately.

MERL-TR-97-11 December, 1997

98 (Internal) Spline Version 3.0 API

One reason for not always setting the MessageNeeded bit is that several shared instance variables
of an object may be being modi�ed at once and therefore there is no need to set the MessageNeeded
bit more than once.

Another reason for not setting the MessageNeeded bit is that when an action modi�es an object,
this typically should not trigger the sending of a message, because the basic idea behind actions is
to have them exercise remote control over objects in lieu of sending messages.

15.21 Change (Fundamental and Internal)

transient public boolean Change; //* [spBoolean] internal

spBoolean spiGetChange(sp Object)
void spiSetChange(sp Object, spBoolean X)

spBoolean sqGetChange(sp Object)
void sqSetChange(sp Object, spBoolean X)

The processing of alerters (Section 43) is triggered by observing that the shared data of a shared
object has changed. Since changes in shared data are relatively rare events (on the scale of time
that the system checks whether alerters should be applied) special steps are taken to make it very
e�cient to detect whether a change has, or has not, occurred. In particular, each shared object has
a local instance variable called the Change bit that speci�es whether there has been any change in
the shared data since the last time alerters were run on the object. Alerter processing is applied to
an object only when the Change bit is True. The Change bit is then set back to False. Information
about the Change bit is maintained separately in each process.

The Change bit is set to False when an object is initially created. Whenever one of the external
API functions for modifying shared instance variables (such as spSetParent) is used, the function
sets the Change bit to True. Similarly, whenever a message arrives specifying a new state for an
object, the Change bit is also set to True. Due to this automatic maintenance of the Change bit,
the typical application writer need not be concerned with the Change bit.

However, those that extend the system need to think carefully about when the Change bit
should be set. The reason for this is that the fast internal shared variable modi�cation functions
(such as sqSetParent) do not set the Change bit. If the Change bit should be set, then it must be
set separately.

One reason for not always setting the Change bit is that several shared instance variables of an
object may be being modi�ed at once and therefore there is no need to set the Change bit more
than once. Note that actions set the Change bit even though they do not set the MessageNeeded
bit so that alerters will be correctly triggered.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 99

15.22 OldPtr (Fundamental and Internal)

transient public int OldPtr; //* [void *] internal

void * spiGetOldPtr(sp Object)
void spiSetOldPtr(sp Object, void * X)

void * sqGetOldPtr(sp Object)
void sqSetOldPtr(sp Object, void * X)

Shared objects are identi�ed by a pointer to the part containing shared values. For rapid access
to the old shared data, a local instance variable called the OldPtr contains a pointer to the part of
the object containing the old data.

The OldPtr of a shared object is initialized when the object is created and must never by
changed. Information about the OldPtr is maintained separately in each process.

15.23 JavaPtr (Fundamental and Internal)

transient public int JavaPtr; //* [void *] internal

void * spiGetJavaPtr(sp Object)
void spiSetJavaPtr(sp Object, void * X)

void * sqGetJavaPtr(sp Object)
void sqSetJavaPtr(sp Object, void * X)

As part of the support for the Java API, each shared object has a local instance variable called
the JavaPtr, which points to the corresponding Java object, if any.

This pointer is maintained by the interface between the system and Java and must not be
modi�ed in any other way. Information about the JavaPtr is maintained separately in each process.

15.24 Referrers (Fundamental and Internal)

transient public int Referrers; //* [spNameInfoPtr] internal

spNameInfoPtr spiGetReferrers(sp Object)
void spiSetReferrers(sp Object, spNameInfoPtr X)

spNameInfoPtr sqGetReferrers(sp Object)
void sqSetReferrers(sp Object, spNameInfoPtr X)

Each shared object X has a local instance variable called the Referrers that contains a list of
every other object that refers to X. Each list entry speci�es an object that points to X and which
instance variable of the object points to X. For instance, if 12 objects in the world model refer to
X and one of these objects refers to X from two di�erent places, then the referrers list of X will
contain 13 entries indicating exactly how the 12 objects refer to X. One use of this reverse index
is to rapidly determine which objects are the children of a given object X by determining which
objects refer to X as their Parent.

MERL-TR-97-11 December, 1997

100 (Internal) Spline Version 3.0 API

The Referrers index is incrementally maintained by the functions (such as spSetParent) that
alter instance variables pointing to shared objects. It is also changed when messages are received
describing a new state for an object. It is essential that referrers lists not be altered in any other
way. Information about the Referrers is maintained separately in each process.

15.25 Alerters (Fundamental and Internal)

transient public int Alerters; //* [void *] internal

void * spiGetAlerters(sp Object)
void spiSetAlerters(sp Object, void * X)

void * sqGetAlerters(sp Object)
void sqSetAlerters(sp Object, void * X)

As part of the support for alerters (Section 43) the system maintains indexes of what alerters
are monitoring which objects. In particular, each shared object X has a local instance variable
called Alerters that contains a list of all the alerters that are monitoring X. If X is not a class,
then the alerters are speci�cally monitoring X as opposed to any other object. If X is a class, then
the alerters monitor every object that is an instance of X or any subclass of X. These indexes are
incrementally maintained as alerters are created and removed. Information about the Alerters list
is maintained separately in each process.

15.26 Msgs (Fundamental and Internal)

transient public int Msgs; //* [void *] internal

void * spiGetMsgs(sp Object)
void spiSetMsgs(sp Object, void * X)

void * sqGetMsgs(sp Object)
void sqSetMsgs(sp Object, void * X)

The Msgs local instance variable of an object contains a list of messages about the object that
are waiting to be processed (Section 1.5.6). The list is used to ensure that messages are processed
in order even when they arrive out of order. The Msgs variable is manipulated by the system core
and must not be altered by an application process. Information about the Msgs list is maintained
separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 101

15.27 LastUpdateTime (Fundamental and Internal)

transient public int LastUpdateTime; //* [spTimeStamp] internal

spTimeStamp spiGetLastUpdateTime(sp Object)
void spiSetLastUpdateTime(sp Object, spTimeStamp X)

spTimeStamp sqGetLastUpdateTime(sp Object)
void sqSetLastUpdateTime(sp Object, spTimeStamp X)

The LastUpdateTime local instance variable of an object contains the most recent time at which
a message about the object was processed. This is only relevant to objects that are not owned by the
local process. Among other things, this value is used to determine whether an unreasonably long
time has elapsed without getting any messages about the object. The LastUpdateTime variable is
manipulated by the system core and must not be altered by an application process. Information
about the LastUpdateTime is maintained separately in each process.

15.28 spNew

sp spNew()

Return value - The newly constructed object.

With regard to constructing objects, shared classes fall into three categories. A couple of classes
(such as sp and spLinking) are abstract in the sense that they merely group together some useful
operations or specify a pattern that must be specialized before it can be used. It is not possible to
construct instances of these classes. (As a result, the function spNew does not actually exist. It
is described here in order to present what New functions must look like for shared classes that are
not abstract.)

For most classes spK, instances are created using an automatically generated zero-argument
constructor named spKNew. When this is the case, no special comment is made in this documen-
tation beyond noting the existence of the constructor. The way spKNew is implemented is shown
below.

sp spKNew() {
return spClassNewObj(spKC(), 0);

}

Some classes (for example spLocale) have constructors that take arguments. In this case, the
constructor is not automatically generated. Nevertheless, it must begin by calling spClassNewObj
as in the automatically generated constructor shown above.

Whenever a special New function exists, this document contains a subsection describing it.
A key reason for having constructors with arguments is that a number of classes have instance
variables that must be set at the moment an object is created and cannot be changed later.

MERL-TR-97-11 December, 1997

102 (Internal) Spline Version 3.0 API

15.29 spInitialization

void spInitialization(sp Object)

Object - Object to be initialized.
Return value - There is no return value.

Initializes the values of instance variables. Whenever an instance of a shared class is created,
by a New function, The values of the instance variables are all set to all bits zero. After this, the
Initialization functions are called for the class and all its ancestors in order to properly initialize
any variables that need to have non-zero values. The Initialization functions are called starting
with spInitialization and then working down to the most speci�c class so that the Initialization
function for a class can override the Initialization function(s) for its superclass(es).

In order to reduce the number of Initialization functions that have to be written, the API
is designed so that as much as possible, all bits zero is an appropriate initial value. The only
major exception to this is that spTransforms (Section 8) are initialized to the identity transform,
which is not all zero. Wherever a non-zero initialization is needed, this fact is pointed out in this
documentation.

Whenever the a new shared class is de�ned that requires a variable to be initialized to something
other than zero, an Initialization function must be de�ned for the class. If no Initialization function
is de�ned, then the system automatically generates one that does nothing.

15.30 spRemove (Fundamental)

void spRemove(sp Object)

Object - The object to be removed.
Return value - There is no return value.

Removes an object from the world model. The exact behavior depends on whether the object
is or is not owned by the local process. If an object X is removed by the process that owns it, then
the IsRemoved bit is set to True in X, every �eld in X that points to another object is set to Null,
every �eld in every other object that points to X is set to Null, and these changes are communicated
to all the other processes that know about the object, causing the object to be removed in these
processes as well. (One must be very careful when accessing objects that may have been removed
(Section 1.5.3).)

In contrast if an object is removed by a process that does not own it, then X is taken out of the
world model without changing any �elds and without communicating anything to other processes.
That is so say, the world model is simply put into the state that it would have been in if it had
never heard about X. In particular, if the process later hears about the object again, it will be
restored to the world model exactly as it was, with all references intact.

Removal is di�erent from freeing the storage for an object. Freeing happens separately and not
necessarily immediately. Removal of an object by its owner signals the explicit desire to remove an
object from the world model and therefore from the view of other processes. It is essential that it
occur immediately, not at some later time.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 103

15.31 spExamineChildren

void spExamineChildren(sp Object, spMask Mask, spFn F, void * Data)

Object - The object whose children are to be examined.
Mask - spMask (Section 7) limiting the objects considered.

F - Operation (Section 6) applied to children of the object.
Data - Passed to the operation each time it is called (modi�able).

Return value - There is no return value.

Applies an operation to all the direct children of an object that are compatible with the Mask.
(An object C is a child of an object P if and only if P is the Parent of C.) There are no guarantees
as to the order in which the children will be accessed.

There is no explicit representation of the children of an object, and no direct way to access the
children of an object. However, the indirect approach provided by spExamineChildren is typically
at least as convenient as some more direct approach would be.

15.32 spExamineDescendants

void spExamineDescendants(sp Object, spMask Mask, spFn F, void * Data)

Object - The object whose descendants are to be operated on.
Mask - spMask (Section 7) limiting the objects considered.

F - Operation (Section 6) applied to descendants of the object.
Data - Passed to the operation each time it is called (modi�able).

Return value - There is no return value.

Applies an operation to all the children of an object that are compatible with the Mask and
then to all their children that are compatible with the Mask and so on. The order of application is
unde�ned except that the operation will be applied to a given descendent D before it is applied to
any of the descendants of D.

15.33 spTopmost

sp spTopmost(sp Object)

Object - Thing whose ancestor is to be located.
Return value - Highest level ancestor.

Computes the highest level ancestor of an object that de�nes the coordinate system the object is
in. This value is often useful when using operations like spPositioningRelativeMatrix (Section 16.9).
If the object is contained in an spLocale, then this locale is returned. If the object is not in any
locale, then Null is returned.

MERL-TR-97-11 December, 1997

104 (Internal) Spline Version 3.0 API

15.34 spPrint (Fundamental)

void spPrint(sp Object)

Object - The object to print.
Return value - There is no return value.

Prints out the contents of all the instance variables of a shared object. This is very useful for
debugging.

15.35 spLocallyOwned (Fundamental and Internal)

spBoolean spLocallyOwned(sp Object)

Object - Object whose ownership is being tested.
Return value - True of object locally owned.

Returns True if and only if the object in question is owned by the local process. That is to say,
it checks whether the process ID of the owner ID is associated with the local process. This can be
done quickly because the local process knows exactly what process IDs it has generated.

15.36 spSetParent (Fundamental and Internal)

void spSetParent(sp Object, sp Parent)

Object - Object whose Parent is to be changed.
Parent - New Parent.

Return value - There is no return value.

Sets the Parent of an object. This is basically just the standard setting method for the Parent
instance variable of all sp objects. However, a special method has to be provided because special
internal processing has to be applied when the Parent of an object changes. This need not concern
application programmers.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 105

16 spPositioning

public abstract class spPositioning extends sp

spPositioning groups together data and functions that are related to positions and motion.

The shared class spPositioning inherits all the instance variables and functions of the class sp
(Section 15). The class spPositioning de�nes the following instance variables, with the variables in
the external API in bold and the variables that are fundamental in the sense that they could not
be properly supported by an application programmer underlined:

spPositioningC - Class descriptor (Section 15.1).
shared Transform - Position and orientation (Section 16.1).

Matrix - Matrix corresponding to Transform (Section 16.2).
MatrixOK - Indicates cached matrix is accurate (Section 16.3).

MatrixInverse - Matrix corresponding to inverse of Transform (Section 16.4).
MatrixInverseOK - Indicates cached matrix inverse is accurate (Section 16.5).

The class spPositioning de�nes the following functions:

spPositioningMatrix - Computes matrix for transform (Section 16.6).
spPositioningMatrixInverse - Computes inverse of matrix for transform (Section 16.7).

spPositioningLocalize - Puts object in appropriate locale (Section 16.8).
spPositioningRelativeMatrix - Computes matrix relating two objects (Section 16.9).
spPositioningRelativeVector - Computes vector between two objects (Section 16.10).

spPositioningDistance - Computes distance between two objects (Section 16.11).
spPositioningLookAt - Orients object to look at another (Section 16.12).
spPositioningGoThru - Moves smoothly through position (Section 16.13).
spPositioningStopAt - Moves smoothly to position and stops (Section 16.14).
spPositioningStop - Stops object where it is. (Section 16.15).

spPositioningFollowPath - Moves smoothly along a prede�ned path (Section 16.16).
spPositioningMotionTimeLeft - Computes duration of queued smooth motion (Section 16.17).
spPositioningGetMotionQueue - Obtains smooth motion queue as path (Section 16.18).
spPositioningFlushMotionQueue - Discards remainder of smooth motion queue (Section 16.19).

spPositioningSetTransform - Sets Transform (Section 16.20).
spPositioningInitialization - Initializes Transform (Section 16.21).

It is not possible to create instances of the class spPositioning. Rather, one can only create
instances of particular subclasses of the class spPositioning.

MERL-TR-97-11 December, 1997

106 (Internal) Spline Version 3.0 API

16.1 Transform

public float[] Transform; //* [spTransform:17]

spTransform spPositioningGetTransform(sp Object)
spTransform spPositioningGetOldTransform(sp Object)
void spPositioningSetTransform(sp Object, spTransform X)

spTransform sqPositioningGetTransform(sp Object)
spTransform sqPositioningGetOldTransform(sp Object)
void sqPositioningSetTransform(sp Object, spTransform X)

The fundamental representation of the position, orientation, and scaling of an spPositioning is
an spTransform (Section 8). This is stored in a shared instance variable called the Transform. This
form of representation is chosen because it is easy to understand and each feature is represented
separately, so that individual features are easy to change without e�ecting any other feature.

The Transform of an spPositioning is interpreted relative to the coordinate system of the object's
Parent. For instance, if the head of a humanoid �gure is represented as a child of the torso, then
the Transform of the head speci�es the position, orientation and scaling of the head relative to
the torso. This is convenient both because it makes it easy to move the head relative to the torso
and because it makes it possible to move and scale the torso and head together relative to the
surrounding world without modifying the Transform of the head.

Note that the Transform e�ects many features of subclasses of spPositioning. For instance, it
e�ects the appearance of an spDisplaying and other pieces of information as well, such as the size
of the units of the InRadius.

The Transform is of type spTransform. When an spPositioning object is created, its Transform
is initialized to a value that indicates, no translation, no rotation, and no scaling. It can be changed
whenever desired later. Information about the Transform is shared between processes.

The value returned by spPositioningGetTransform shares memory with the spPositioning itself
and in general, cannot be retained across a call to spWMUpdate (Section 1.4).

16.2 Matrix (Internal)

transient public float[] Matrix; //* [spMatrix:16] internal

spMatrix spPositioningiGetMatrix(sp Object)
void spPositioningiSetMatrix(sp Object, spMatrix X)

spMatrix sqPositioningGetMatrix(sp Object)
void sqPositioningSetMatrix(sp Object, spMatrix X)

The Matrix local instance variable of an spPositioning stores the most recent value returned by
spPositioningMatrix. It is set to all zeros when an spPositioning is initially created. Information
about the Matrix is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 107

16.3 MatrixOK (Internal)

transient public boolean MatrixOK; //* [spBoolean] internal

spBoolean spPositioningiGetMatrixOK(sp Object)
void spPositioningiSetMatrixOK(sp Object, spBoolean X)

spBoolean sqPositioningGetMatrixOK(sp Object)
void sqPositioningSetMatrixOK(sp Object, spBoolean X)

The MatrixOK local instance variable of an spPositioning speci�es whether the Matrix value
accurately corresponds to the current Transform value. It is set to False when an spPositioning is
initially created. It is set to True whenever spPositioningMatrix computes a new matrix value. It
is set back to False whenever the Transform of an spPositioning is modi�ed. Special care must be
taken to ensure that this happens when the Transform is modi�ed by an spAction or by the receipt
a message that modi�es the spPositioning. Information about the MatrixOK bit is maintained
separately in each process.

16.4 MatrixInverse (Internal)

transient public float[] MatrixInverse; //* [spMatrix:16] internal

spMatrix spPositioningiGetMatrixInverse(sp Object)
void spPositioningiSetMatrixInverse(sp Object, spMatrix X)

spMatrix sqPositioningGetMatrixInverse(sp Object)
void sqPositioningSetMatrixInverse(sp Object, spMatrix X)

The MatrixInverse local instance variable of an spPositioning stores the most recent value
returned by spPositioningMatrixInverse. It is set to all zeros when an spPositioning is initially
created. Information about the MatrixInverse is maintained separately in each process.

16.5 MatrixInverseOK (Internal)

transient public boolean MatrixInverseOK; //* [spBoolean] internal

spBoolean spPositioningiGetMatrixInverseOK(sp Object)
void spPositioningiSetMatrixInverseOK(sp Object, spBoolean X)

spBoolean sqPositioningGetMatrixInverseOK(sp Object)
void sqPositioningSetMatrixInverseOK(sp Object, spBoolean X)

The MatrixInverseOK local instance variable of an spPositioning speci�es whether the Matrix-
Inverse value accurately corresponds to the current Transform value. It is set to False when an
spPositioning is initially created. It is set to True whenever spPositioningMatrixInverse compues
a new inverse matrix value. It is set back to False whenever the Transform of an spPositioning is
modi�ed. Special care must be taken to ensure that this happens when the Transform is modi�ed
by an spAction or by the receipt a message that modi�es the spPositioning. Information about the
MatrixInverseOK bit is maintained separately in each process.

MERL-TR-97-11 December, 1997

108 (Internal) Spline Version 3.0 API

16.6 spPositioningMatrix

spMatrix spPositioningMatrix(sp Object)

Object - Object for which matrix is being calculated.
Return value - spMatrix corresponding to transform of spThing.

The fundamental representation of the position, orientation, and scaling of an spPositioning is
an spTransform. However, in many computational situations, it is more convenient to manipulate
this information when represented as a 4x4 transformation matrix (Section 12). The function
spPositioningMatrix computes the spMatrix corresponding to the Transform of an spPositioning.
Since this is relatively expensive to compute, the result is cached so that it only has to be recomputed
when the Transform changes.

The value returned by spPositioningMatrix shares memory with the spPositioning itself and in
general, cannot be retained across a call to spWMUpdate (Section 1.4).

There is no operation for directly setting the Transform of an spPositioning from an spMatrix.
Rather one should use spPositioningSetTransform and spMatrixToTransform. This makes the
expense of this operation more obvious to the application writer. As much as possible, it is wise to
operate solely in terms of spTransforms.

16.7 spPositioningMatrixInverse

spMatrix spPositioningMatrixInverse(sp Object)

Object - Object for which inverse matrix is being calculated.
Return value - Inverse of spMatrix corresponding to transform of spThing.

Computes the inverse of the spMatrix corresponding to the Transform of an spPositioning. Since
this is relatively expensive to compute, the result is cached so that it only has to be recomputed
when the Transform changes.

The value returned by spPositioningMatrixInverse shares memory with the spPositioning itself
and in general, cannot be retained across a call to spWMUpdate (Section 1.4).

16.8 spPositioningLocalize

spBoolean spPositioningLocalize(sp Object, sp Destination, spBoolean ChooseSmallest)

Object - The object to be put in an appropriate locale.
Destination - The locale the object is to be placed in.

ChooseSmallest - True forces positioning in smallest containing locale.
Return value - True if the object changes locale.

Places an spPositioning object in an appropriate locale (Section 26). The object must have as
its direct Parent a locale L. The object is either left in L or placed in one of the locales neighboring
(Section 26.1) L. The determination of where to put the object is done in one of three modes by
calling spLocaleChoose.

(1) If the Destination argument is not Null, then the object is placed in this locale, which must
either equal L or neighbors L.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 109

(2) If the Destination argument is Null and the ChooseSmallest argument is True, then L and
all the locales neighboring L are checked to see which ones have boundaries that encompass the
location of the object. If any of these locales contain the object, then the object is placed in the
containing locale whose boundary has the smallest Volume.

(3) If the Destination argument is Null and the chooseSmallest argument is False, then the
system �rst checks whether the object is inside L. If it is, no further action is taken. If not, a new
locale is found for the object as in mode (2).

(The reason why this third mode of behavior is included is that it is usually su�cient and is a
great deal more e�cient than the second mode of operation. The reason that the second mode of
operation is included is that the third mode will never move an object from a locale L into another
locale that is contained within L.)

No matter how a new locale for the object is chosen, the new locale is made the Parent of the
object. True is returned if object changes locale.

If the Parent the object changes from one locale to another, the Transform of the object is
adjusted based on the export transform relating the two locales. The fact that spPositioningLocalize
automatically performs this adjustment is an important part of its value. This adjustment involves
conversion between spTransform and spMatrix objects. As a result, there can be problems with
rotational ambiguity (Section 10.1).

Whenever an object whose Parent is a locale moves in such a way that it might have moved
out of the boundary of its locale, spPositioningLocalize should be called with a locale argument of
Null to make sure that the object ends up in an appropriate locale. To teleport someplace, you can
just set the parent link and matrix of an object yourself to some particular position in some locale.

For the convenience of the application writer, spPositioningLocalize is automatically called
every cycle on every locally owned spRoot object. This is done with the Destination argument
Null and the ChooseSmallest argument False. In general, application writers can control when
spPositioningLocalize is called merely be deciding which objects should be spRoot objects. The
typical application need not contain any calls on spPositioningLocalize.

16.9 spPositioningRelativeMatrix

spMatrix spPositioningRelativeMatrix(sp X, sp Object, spMatrix Matrix)

X - spPositioning object specifying reference coordinate system.
Object - spPositioning object whose relative position is to be computed.
Matrix - spMatrix in which to store result.

Return value - Modi�ed spMatrix.

Computes an spMatrix that speci�es the position, orientation, and scaling of an spPositioning
object in the coordinate system of another object X. If X is the Parent of the object, then this
is just the matrix of the object. If is an ancestor of the object, then several matrices have to be
multiplied together. If the object and have a more complex relationship, then some matrices have
to be inverted. If the object and are in di�erent locales, then the relationships between the two
locales have to be taken into account, by importing the object into 's locale. If the locales are not
immediate neighbors, then the relationship between the locales may be ambiguous non existent. In
either of these cases, and an error is posted and Null is returned. The result is stored in the Matrix
argument which is returned.

MERL-TR-97-11 December, 1997

110 (Internal) Spline Version 3.0 API

16.10 spPositioningRelativeVector

spVector spPositioningRelativeVector(sp Object, sp X, spVector Vector)

Object - spPositioning object whose relative position is to be computed.
X - spPositioning object specifying reference coordinate system.

Vector - spVector in which to store result.
Return value - Modi�ed spVector.

Computes the translation portion of the matrix computed by spPositioningRelativeMatrix, if
any. If there is a value, it is stored in the Vector argument and returned. Otherwise an error is
posted and Null is returned.

16.11 spPositioningDistance

float spPositioningDistance(sp Object, sp X)

Object - spPositioning object whose relative position is to be computed.
X - spPositioning object specifying reference coordinate system.

Return value - Distance between objects.

Returns the length of the vector computed by spPositioningRelativeVector, if any. If there is
no vector, then an error is posted and -1 is returned.

16.12 spPositioningLookAt

void spPositioningLookAt(sp Object, sp Target)

Object - spPositioning object to be oriented looking at another.
Target - spPositioning to be looked at.

Return value - There is no return value.

Modi�es the Transform of an spPositioning object so that the object is looking at another
spPositioning object Target. That is to say, the rotational orientation of the object is altered so
that the negative Z axis of the object's coordinate system points to the origin of Target's coordinate
system. In addition, the Y axis of the object is oriented so that it and the Y axis of the highest
level coordinate system containing the object are co-planar. If the object is an spSeeing object
controlling visual rendering, this causes objects that are upright from the perspective of the highest
level coordinate system containing the object to appear upright in the images generated.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 111

16.13 spPositioningGoThru

void spPositioningGoThru(sp Object, spTransform Transform, spDuration Time)

Object - spPositioning to be moved.
Transform - Position and orientation to move to.

Time - Duration of move.
Return value - There is no return value.

Causes an spPositioning object to move smoothly so as to pass through the speci�ed position
and orientation after the speci�ed Time in milliseconds. An action (Section 46) is used to support
the motion so that a high degree of smoothness can be achieved using low communication band-
width. The action sets the Transform of the object to an appropriate intermediate value every time
spWMUpdate is called,setting the Change bit but not the MessageNeeded bit.

Multiple motion requests for a given object are queued up one after the other. If there is a
motion request in the queue whose time interval has not yet been completed, then the time interval
of the motion request being added is interpreted as occurring after the last request in the queue
has been completed. If the queue is empty or all the requests in the queue have been completed,
then the time interval is interpreted as starting at the current moment (rather than as starting at
the time in the possibly distant past when the last request to be completed ended).

Smooth motion is achieved by interpolating between (and extrapolating beyond) the positions
and orientations speci�ed. (spTransforms are used because they are more suitable for interpolation
than spMatrix objects.) It should be noted that while a smooth motion action is in control of
an object, its activity will override any attempt to set the transform of the object directly. The
smooth motion action relinquishes control of the object as soon as it comes to rest with an empty
smooth motion request queue. Note that the queue can be empty, with the object still in motion,
extrapolating beyond the last requested position. If you want to force an object to stop immediately,
call spPositioningStop.

The accessor spPositioningSetTransform can also be used to move an spPositioning to a partic-
ular position. However, it causes the object to jump abruptly to that position, rather than moving
along a smooth path from start to �nish.

16.14 spPositioningStopAt

void spPositioningStopAt(sp Object, spTransform Transform, spDuration Time)

Object - spPositioning to be moved.
Transform - Position to stop at.

Time - Duration of move.
Return value - There is no return value.

Causes an spPositioning to move smoothly so as to reach and stop at the speci�ed position and
orientation after the speci�ed time in milliseconds. spPositioningStopAt is identical to spPosition-
ingGoThru except that the object comes to rest at the speci�ed position instead of extrapolating
beyond it once the time interval has expired.

If several motion segments are to be chained together, then you should call spPositioning-
GoThru. If you just want to smoothly move an object to some place, then you should call spPosi-
tioningStopAt.

MERL-TR-97-11 December, 1997

112 (Internal) Spline Version 3.0 API

16.15 spPositioningStop

void spPositioningStop(sp Object)

Object - spPositioning to stop.
Return value - There is no return value.

This causes an spPositioning to stop moving and stay wherever it currently is. This is useful to
stop an object that is moving in extrapolative mode after the end of a number of smooth motion
requests, without causing any abrupt change in position.

16.16 spPositioningFollowPath

void spPositioningFollowPath(sp Object, spPath Path)

Object - The object to be moved.
Path - The path to follow.

Return value - There is no return value.

Causes an object to smoothly follow the speci�ed prerecorded path. If there is an already
existing queue of smooth motion requests, then the path is appended to the end of the queue.
Otherwise, it becomes the queue.

An interesting issue regarding smooth motion can be most clearly seen in the context of paths.
An spTransform is only meaningful given some particular coordinate system. For simplicity and
reusability, all the spTransforms in an spPath are assumed to be relative to a single coordinate
system. This makes it easy to reuse a path originally designed in one locale in another locale, but
special care must be taken when a path is long enough that it extends through several locales. This
is dealt with by transforming the path each time a locale boundary is crossed as described below.

For all smooth motion requests, including following paths, the spTransforms speci�ed are in-
terpreted as being in the coordinate system of the object X being moved. In particular, all the
spTransforms in the queue of smooth motion requests are relative to the coordinate system of X.
When the object X is transferred from one locale to another, the Transform of X must be adjusted
to take account of the change of coordinate system. The spTransforms in the queue of smooth
motion requests have to be adjusted in just the same way. If the locale of X is changed using
spPositioningLocalize, the Transform of X and the transforms in the smooth motion queue are all
adjusted automatically. If the locale of X is changed in some other way, the adjustment of the
transforms is up to the application.

Note that smooth motion itself never causes a change of locale. The application itself must call
spPositioningLocalize if it thinks that changing locales might be necessary. The reason this is left up
to the application is that only the application knows whether this might be necessary. In particular,
many motions are con�ned to a single locale and the system does not want to force the overhead
of calling spPositioningLocalize in such cases. If a motion might transit between locales, then the
application should call spPositioningLocalize regularly (e.g., a few times a second). Exactly how
often spPositioningLocalize needs to be called depends on the relationship between the speed of
the motion and the size of the locales being transited.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 113

16.17 spPositioningMotionTimeLeft

spDuration spPositioningMotionTimeLeft(sp Object)

Object - Object in motion.
Return value - Remaining milliseconds of motion.

Returns the number of milliseconds required to complete the smooth motion requests queued
up for an object. That is to say, the amount of time remaining before extrapolation beyond the
end of the queue will begin.

16.18 spPositioningGetMotionQueue

spPath spPositioningGetMotionQueue(sp Object)

Object - spPositioning object to get motion queue for.
Return value - Copied contents of motion queue.

Returns the current contents of the smooth motion queue in the form of an spPath. The queue
is copied so that the returned path can be manipulated without having any e�ect on the motion of
the object. (If you want to have an e�ect, get the queue as a path,
ush the queue, alter the path,
and then have the object follow the new path.)

16.19 spPositioningFlushMotionQueue

void spPositioningFlushMotionQueue(sp Object)

Object - spPositioning object whose motion queue is to be
ushed.
Return value - There is no return value.

Get rid of the remaining queue of smooth motion requests for an object, while retaining the
history of past motion. Flushing the queue is the appropriate thing to do if one wants to substitute
a new series of smooth motion requests. The past history is retained so that a smooth transition
can be made. If no new requests are speci�ed, the object will extrapolate forward at its current
velocity. (If you just want the object to stop where it is, call spPositioningStop.

Because the current position the object is at may not be an explicit part of the motion history,
it is possible for a substitute series of smooth motion requests to cause an abrupt jerk when they
start to take e�ect. This can be prevented by �rst specifying that the object should move to its
current position in zero milliseconds. This makes the current position be part of the motion history.

MERL-TR-97-11 December, 1997

114 (Internal) Spline Version 3.0 API

16.20 spPositioningSetTransform (Internal)

void spPositioningSetTransform(sp Object, spTransform Transform)

Object - spPositioning whose Transform is to be set.
Transform - New spTransform.

Return value - There is no return value.

Sets the Transform variable in an spPositioning, doing everything a standard Set accessor would
do, but also sets indicators specifying that the corresponding spMatrix must be recalculated (I.e.,
sets the MatrixOK andMatrixInverseOK bits to False). This accessor method is explicitly described
in order to indicate that it does not have just the standard default behavior.

Note that if smooth motion is in e�ect, directly setting the Transform of an object, will have
little e�ect, because it will immediately be overridden the next time a smooth motion position is
calculated. If you want to start setting the Transform directly, �rst stop smooth motion.

16.21 spPositioningInitialization (Internal)

void spPositioningInitialization(sp Object)

Object - spPositioning object to initialize.
Return value - There is no return value.

Initializes the Transform of an spPositioning to the identity spTransform.

17 spDisplaying

public abstract class spDisplaying extends sp

spDisplaying groups together data that speci�es appearance and extent.

The shared class spDisplaying inherits all the instance variables and functions of the class sp
(Section 15). The class spDisplaying de�nes the following instance variables, with the variables in
the external API in bold and the variables that are fundamental in the sense that they could not
be properly supported by an application programmer underlined:

spDisplayingC - Class descriptor (Section 15.1).
shared VisualDe�nition - Graphical model (Section 17.1).

shared InRadius - Contained bounding sphere size (Section 17.2).
shared OutRadius - Containing bounding sphere size (Section 17.3).

GraphicsNode - Corresponding scene graph node (Section 17.4).

It is not possible to create instances of the class spDisplaying. Rather, one can only create
instances of particular subclasses of the class spDisplaying.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 115

17.1 VisualDe�nition

public spVisualDefinition VisualDefinition; //* [sp]

sp spDisplayingGetVisualDefinition(sp Object)
sp spDisplayingGetOldVisualDefinition(sp Object)
void spDisplayingSetVisualDefinition(sp Object, sp X)

sp sqDisplayingGetVisualDefinition(sp Object)
sp sqDisplayingGetOldVisualDefinition(sp Object)
void sqDisplayingSetVisualDefinition(sp Object, sp X)

An spDisplaying object has a shared instance variable called the VisualDe�nition that speci�es
how it looks. The VisualDe�nition is a 3D graphical model that is used by the visual renderer
when generating images of the virtual world.

The VisualDe�nition of an spDisplaying must be an spVisualDe�nition object (Section 24) or
Null, indicating that the spDisplaying has no appearance. When an spDisplaying is created, its
VisualDe�nition is initialized to Null. Information about the VisualDe�nition is shared between
processes.

17.2 InRadius

public float InRadius; //* [float]

float spDisplayingGetInRadius(sp Object)
float spDisplayingGetOldInRadius(sp Object)
void spDisplayingSetInRadius(sp Object, float X)

float sqDisplayingGetInRadius(sp Object)
float sqDisplayingGetOldInRadius(sp Object)
void sqDisplayingSetInRadius(sp Object, float X)

An spDisplaying object has a shared instance variable called the InRadius that speci�es the
radius of the largest sphere (positioned at the center of the object's coordinate system) that �ts
entirely within the object. This is included to provide a crude, but rapid, basis for applications to
reason about collisions and other interactions between spDisplaying objects. Note that since the
InRadius is with respect to the coordinate system of the object itself, it is scaled by the Transforms
of the object and its ancestors. Therefore, from the perspective of an ancestor coordinate system,
the InRadius actually speci�es an ellipsoid, not a sphere.

The InRadius of an spDisplaying must be a
oat. When an spDisplaying is created, its InRadius
is initialized to zero. Information about the InRadius is shared between processes.

MERL-TR-97-11 December, 1997

116 (Internal) Spline Version 3.0 API

17.3 OutRadius

public float OutRadius; //* [float]

float spDisplayingGetOutRadius(sp Object)
float spDisplayingGetOldOutRadius(sp Object)
void spDisplayingSetOutRadius(sp Object, float X)

float sqDisplayingGetOutRadius(sp Object)
float sqDisplayingGetOldOutRadius(sp Object)
void sqDisplayingSetOutRadius(sp Object, float X)

An spDisplaying object has a shared instance variable called the OutRadius that speci�es the
radius of the smallest sphere (positioned at the center of the object's coordinate system) in which the
object can �t. This is included to provide a crude, but rapid, basis for applications to reason about
collisions and other interactions between spDisplaying objects. Like the InRadius, the OutRadius
is scaled by the Transforms of the object and its ancestors and therefore from the perspective of
an ancestor coordinate system, actually speci�es an ellipsoid, not a sphere.

The OutRadius of an spDisplaying must be a
oat. When an spDisplaying is created, its
OutRadius is initialized to zero. Information about the OutRadius is shared between processes.

The InRadius, and OutRadius, of spDisplaying objects are included to provide a quick minimal
step in the direction of describing the volume occupied by an object. Many other things are possible,
like bounding boxes and BSP trees. These were not included because they would take up too much
space to support as a general thing. Users can de�ne specializations of spDisplaying that have more
detailed volume descriptions if they want.

17.4 GraphicsNode (Internal)

transient public int GraphicsNode; //* [void *] internal

void * spDisplayingiGetGraphicsNode(sp Object)
void spDisplayingiSetGraphicsNode(sp Object, void * X)

void * sqDisplayingGetGraphicsNode(sp Object)
void sqDisplayingSetGraphicsNode(sp Object, void * X)

For the convenience of the visual renderer, spDisplaying objects have a local instance variable
called the GraphicsNode that is used to point to the corresponding node (if any) in the scene
graph being rendered. This facilitates the incremental modi�cation of the scene graph when the
information associated with an spDisplaying changes.

The GraphicsNode of an spDisplaying is an unrestricted pointer that is not manipulated by
the system. When an spDisplaying is created, its graphics node is initialized to Null. Information
about the GraphicsNode is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 117

18 spLinking (Fundamental)

public abstract class spLinking extends sp

Shared objects are divided into two major categories: small objects that can be communicated
very rapidly between processes (on the order of a hundred milliseconds) and large slowly changing
objects that are communicated more slowly between processes (on the order of a few seconds). The
various subclasses of the class spLinking comprise the large slowly changing objects.

The key feature of spLinking objects is that they refer to an arbitrarily large piece of data via
a Uniform Resource Locator (URL). The link object itself, including the URL, is communicated to
other processes in the same way, and just as fast, as any other object. However, once the link itself
has been received, additional work has to be done to retrieve the data speci�ed by the URL. This
can take several seconds.

As discussed in the documentation of ISTP, the data pointed to by the URL is retrieved over
the World Wide Web using standard web protocols. Checksums and caching of local �les are used
to minimize unnecessary fetching of data while insuring that the data being used is always up to
date.

Like any object, the Parent of a link controls how the link is communicated. In particular, the
Parent of a link must ensure that the link is known in the locale where it is used. Typically, the
Parent of a link is set to the object that uses it. To support prefetching of data, one can place links
to the data in locales adjacent to the locale where it is used. Note that having multiple copies of a
link does not cause the associated data to be loaded into memory multiple times.

An application may create links that it is not using at the moment but wishes to be able to
use rapidly. For example, suppose that there is an avatar that wishes to be able to switch rapidly
between several visual appearances. This can be supported by creating a link for each appearance
and making the avatar be the Parent of these links. This will cause the links to be communicated
to the locale the avatar is in and therefore preloaded in this locale. The avatar can then change its
appearance instantaneously by changing which link its VisualDe�nition variable points to.

The shared class spLinking inherits all the instance variables and functions of the class sp
(Section 15). The class spLinking de�nes the following instance variables, with the variables in the
external API in bold and the variables that are fundamental in the sense that they could not be
properly supported by an application programmer underlined:

spLinkingC - Class descriptor (Section 15.1).
shared URL - URL string (Section 18.1).

shared Checksum - Compact data summary (Section 18.2).
FileName - Name of local cached copy of URL data (Section 18.3).

Data - In memory data (Section 18.4).

The class spLinking de�nes the following functions:

spLinkingNew - Creates link with given URL (Section 18.5).
spLinkingURLAltered - Signals alteration of URL data (Section 18.6).
spLinkingReadData - Reads URL data into memory (Section 18.7).

MERL-TR-97-11 December, 1997

118 (Internal) Spline Version 3.0 API

It is not possible to create instances of the class spLinking. Rather, one can only create instances
of particular subclasses of the class spLinking.

The processing of links is a two level operation: getting the URL data into a local �le cache
and getting this data into memory.

A cache of local �les corresponding to URLs is maintained in the local �le system. Critically,
this cache contains not only the �les, but also version identifying checksums.

In-memory representations of URL data are created when necessary. When there is an in-
memory copy, then every link with a given URL and checksum all point to just one copy of the
associated in-memory data. This allows many links to point to the same data with little more cost
than having just one link pointing to the data.

When a process hears about a link L, it proceeds it as follows.
(1) If the LoadData bit in the spClass object for L is False, then no data is ever read and no

action is taken. (The system has to be careful to take correct action if the LoadData bit changes
when several instances of the associated class already exist.)

(2) Otherwise, if L is already in the world model and the checksum has not changed, no action
need be taken. The old Data value must be correct.

(3) Otherwise, if there is another link K of the same type as L with the same values for the
URL and Checksum, then the data pointer is copied from K to L. This must be the correct value
to use for L as well.

(4) Otherwise, the local �le cache is checked to see whether the data corresponding to the
speci�ed URL and Checksum has already been fetched. If not, this data is fetched. Once the data
has been fetched, the appropriate ReadData operation is used to create an in-memory representation
of this data. The processing above is done in a separate thread so that it will not cause delays
in the local process. During the (possibly long) time it takes for the new Data to be computed,
the fact that L is about to change (or to appear) is hidden from the application. Once the Data
becomes available, L is created if necessary and its checksum is set to the proper value. This delay
is introduced so that the application will be able to use the new Data the moment it is able to
detect that the link has appeared or changed. An application that does something with Link data
must be an the lookout (e.g., with alerters) for links that appear and/or change so that it can
respond appropriately.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 119

18.1 URL (Fundamental)

public String URL; //* [spFixedAscii] readonly

spFixedAscii spLinkingGetURL(sp Object)

void spLinkingiSetURL(sp Object, spFixedAscii X)

spFixedAscii sqLinkingGetURL(sp Object)
void sqLinkingSetURL(sp Object, spFixedAscii X)

The central piece of information in an spLinking object is a shared instance variable called the
URL, which contains a Uniform Resource Locator (URL) identifying the large piece of data being
linked to. For example, spVisualDe�nition links (Section 24) point to 3D graphical models. When
a process is informed of the existence of an spVisualDe�nition link, it fetches the data referred to
by the link's URL for later use.

The URL of an spLinking must be a string. It must be less than 500 characters in length, so
that the containing object can �t into a single UDP message. It must be speci�ed at the time
the link is initially created and cannot be modi�ed after that time. Information about the URL is
shared between processes.

It is inadvisable to have an object you own refer to a link created by another process because
the link may get removed at any time. Rather, you should create your own link with the same
URL and refer to that. (The system takes care of making sure that there are not two copies of the
same URL data in memory at once, even if there are multiple links containing the URL.)

You really should not refer to someone else's URL either, unless you can trust them not to
change or delete either the URL or the data it points to. To be completely safe, you should make
a copy of the URL data and then refer to your own copy. (Note that if you are pointing to a
URL that someone else changes, then you will not know that you should call spLinkingURLAltered
(Section 18.6) and therefore your link will end up referring to an obsolete version of the data that
can no longer be obtained.)

MERL-TR-97-11 December, 1997

120 (Internal) Spline Version 3.0 API

18.2 Checksum (Fundamental and Internal)

public int Checksum; //* [long] internal

long spLinkingiGetChecksum(sp Object)
long spLinkingiGetOldChecksum(sp Object)
void spLinkingiSetChecksum(sp Object, long X)

long sqLinkingGetChecksum(sp Object)
long sqLinkingGetOldChecksum(sp Object)
void sqLinkingSetChecksum(sp Object, long X)

Each spLinking object contains a shared instance variable called the Checksum, which contains
a checksum of the data referred to by the URL. Communicating the Checksum in a link in addition
to the URL makes it possible for a process to determine whether a cached copy of the URL data
is up to date without refetching the URL data. If the system detects that the Checksum in a
link has changed, then it immediately refetches the data. By means of the Checksums in links,
communicating processes ensure that URL data is fetched when, but only when, necessary.

The Checksum is a 32-bit integer. The Checksum is automatically computed when an spLinking
object is �rst created using a CRC algorithm. If the URL data is later modi�ed, the Checksum needs
to be changed. Changing the Checksum is triggered by using the function spLinkingURLAltered
(Section 18.6). The Checksum should never be altered directly. Information about the Checksum
is shared between processes.

Since the Checksum is computed directly from the actual data referred to by the link, it is
guaranteed (with extremely high probability) to change whenever the data changes. This makes it
more reliable and more useful than the various kinds of freshness information available form HTTP
servers.

18.3 FileName

transient public String FileName; //* [char *]

char * spLinkingGetFileName(sp Object)
void spLinkingSetFileName(sp Object, char * X)

char * sqLinkingGetFileName(sp Object)
void sqLinkingSetFileName(sp Object, char * X)

The FileName local variable of an spLinking object contains the name of the local cached copy of
the URL data. If the data has not been fetched (I.e., because the LoadData bit of the corresponding
spClass object is False), then the FileName is a zero length string. If several links have the same
URL, then they all point to the same cached copy of the data. The ReadData function typically
operates by processing the data indicated by the FileName variable.

The FileName is automatically �lled in by the system when the URL data is identi�ed in the
local cache (perhaps after having to be fetched from a remote source) and is automatically updated
if the underlying data changes. The FileName and the data it points to should never be altered in
any way. Information about the FileName is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 121

18.4 Data

transient public int Data; //* [void *] readonly

void * spLinkingGetData(sp Object)

void spLinkingiSetData(sp Object, void * X)

void * sqLinkingGetData(sp Object)
void sqLinkingSetData(sp Object, void * X)

The data fetched from the URL of an spLinking is stored in a local instance variable called the
Data. If several links have the same URL, then the data is only read into memory once and each
link points to the same block of data.

The kind of data pointed to by the Data pointer of a link di�ers from one kind of link to another.
The Data pointer is automatically �lled in by the system when a new link appears in the world
model and is automatically updated when the underlying data changes. The Data pointer and the
data it points to should never be altered in any way. Information about the Data is maintained
separately in each process.

A key feature of the Data variable is that it is guaranteed that the Data value will be �lled in
before the Link becomes visible in the world model. Speci�cally, whenever a new link is created,
the Data is read in by the New function. In addition, whenever a message is received describing a
new link, the act of actually entering the link into the local world model is delayed until after the
Data has been obtained. This delay makes things more convenient for processes that want to do
something with the data and is irrelevant to ones that don't.

18.5 spLinkingNew

sp spLinkingNew(spFixedAscii URL)

URL - The URL of the link to be created.
Return value - The newly constructed object.

This function does not exist for the class spLinking itself. It is described here because it is an
abstract prototype of the creation function that must be written when a new subclass of spLinking
is de�ned. In particular, link creation functions must take a URL string as their �rst argument
and create a link object containing the URL. This is the only way the URL in a link can be set.

The code below shows the general form that the New function for a subclass spL of spLinking
must have. In particular, it must call spClassNewLink to create the link itself. This insures that
Checksum is properly computed and the ReadData function is called if necessary. (Note that even
if the LoadData bit for the link class is False, the URL data has to be fetched in order to calculate
the proper Checksum, but an in-memory data image is created only if LoadData is True.)

sp spLNew(spFixedAscii URL) {
return spClassNewLink(spLC(), URL);

}

MERL-TR-97-11 December, 1997

122 (Internal) Spline Version 3.0 API

18.6 spLinkingURLAltered

void spLinkingURLAltered(sp Link)

Link - The link whose URL has been altered.
Return value - There is no return value.

The purpose of this function is to notify the system that the data referred to by the URL in a
link has changed. In the interest of e�ciency, the system assumes that URL data never changes
except when explicitly noti�ed by an application.

When a link is created, the system retrieves the URL data, obtaining it from a local cache
if possible. After that time, the system assumes that the data will not change unless explicitly
instructed otherwise. If you change a �le underlying the URL in a link you own, then you must
notify the system by calling spLinkingURLAltered. This causes the system to update its URL
caches, recalculate checksums, reload the data into memory (if needed), and notify all users of the
link that the associated data that it has changed. This causes them to refetch it as well.

The processing above is mediated by the Checksums stored in links. These Checksums allow
the user of a link to determine whether a cached data value is correct without refetching the URL
data. The fact that spLinkingURLAltered causes the Checksum in the link to be updated, causes
the link to be recommunicated to other processes, which causes them to refetch and reload the
changed data if necessary.

18.7 spLinkingReadData

void spLinkingReadData(sp Link)

Link - The link object whose URL data is to be read into memory.
Return value - There is no return value.

This function does not exist for the class spLinking itself. It is described here because it is an
abstract prototype of the URL data reading function that must be written when a new subclass of
spLinking is de�ned.

The purpose of the data reading functions for link classes is to create an in-memory representa-
tion of the URL data based on a local disk copy of this data. The system automatically creates the
local disk copy and stores the name of the local �le in the FileName �eld. The ReadData function
creates a memory image based on this data and stores a pointer to the result in the Data variable
of the link object. It may initialize other local �elds of the object as well.

The ReadData function can do whatever it wants with the local �le to create an in-memory
image of the speci�ed data. The only requirement is that if called twice on the same local �le,
the ReadData function must create identical in-memory images of the data. This assumption is
necessary so that the system can omit calling the ReadData function on duplicate copies of the
same data.

The ReadData method for a class should be looked at as a default way to read in the associated
data. An application process can override this by providing a di�erent operation via the Read-
DataFn of the associated spClass object. Further, whether the data should be read at all is under
the control of the LoadData variable in the associated spClass object.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 123

Every link class has the identical Data �eld so that the system can use a uniform approach to
handling all links. In particular, the system decides whether and when to call the data-reading
functions for links in order to avoid having to read the same data into memory twice. As part of
this, multiple links can end up pointing to the same copy of the data.

The system handles the freeing of the data read in a similarly uniform way. When the last
link referring to a particular piece of data is freed, the data is freed as well. To support this, data
reading functions must allocate the space for what they read in one contiguous chunk.

19 spMultilinking (Fundamental)

public abstract class spMultilinking extends spLinking

An spMultilinking is a link that servers as an index into several pieces of data. Such an index is
useful in situations where several equivalent pieces of data exist|e.g., 3D models at di�erent levels
of detail and in di�erent formats.

When an spMultilinking is used, each process that encounters it picks a single piece of data to
use from the index. After that, the processing of an spMultilinking is essentially identical to the
processing that would be applied to an ordinary link pointing to the selected data.

The shared class spMultilinking inherits all the instance variables and functions of the classes:
spLinking (Section 18) and sp (Section 15). The class spMultilinking de�nes the following instance
variables, with the variables in the external API in bold and the variables that are fundamental in
the sense that they could not be properly supported by an application programmer underlined:

spMultilinkingC - Class descriptor (Section 15.1).
Multipart - Speci�es which data item is being used (Section 19.1).

IndexName - Name of local cached copy of index data. (Section 19.2).

The class spMultilinking de�nes the following functions:

spMultilinkingNew - Creates multilink with given URL (Section 19.3).
spMultilinkingSelect - Select data to use (Section 19.4).

It is not possible to create instances of the class spMultilinking. Rather, one can only create
instances of particular subclasses of the class spMultilinking.

The data pointed to by the URL in an spMultilinking object is required to have the following
standard format:

URL checksum
<additional indented lines can be interpreted in any way by the ReadData method.>
URL checksum
<additional indented lines can be interpreted in any way by the ReadData method.>
...

A multilink is an index of up to 256 alternative pieces of data. (The limit of 256 is imposed to
facilitate the compact communication of changes in multilink data by the system core.)

MERL-TR-97-11 December, 1997

124 (Internal) Spline Version 3.0 API

Each entry in a multilink begins with a line containing a URL and checksum, which are logically
equivalent to the URL and checksum in a simple link.

When multilinks are processed, exactly one of the entries in the index is used to retrieve the
associated data. The entry to use is chosen by the spMultilinkingSelect function. A non-shared
�eld called Multipart records which entry was chosen as the basis of the in-memory representation
of the link data on a given occasion.

The Select function is called to choose an item if, and only if, the LoadData bit is True in the
spClass object for the multilinking class. Local URL caching is applied only to the single item
chosen. The other items are not fetched. (The index itself is of course fetched before the Select
function is called.) If LoadData is False, nothing is fetched and no action is taken.

Multilinks have ReadData functions just like simple links. Once a particular data item has been
selected, an in-memory image is created using the ReadData function.

The internal structure of the top-level data for a multilink has to be speci�ed so that the data
caching mechanism for links can be applied to the data referred to by the individual entries as well
as to the index structure itself.

In particular, note that spLinkingURLAltered and spClassNewLink understand multilinks as
well as links and operate on the items within a multilink as well as the index as a whole.

19.1 Multipart (Fundamental and Internal)

transient public int Multipart; //* [long] internal

long spMultilinkingiGetMultipart(sp Object)
void spMultilinkingiSetMultipart(sp Object, long X)

long sqMultilinkingGetMultipart(sp Object)
void sqMultilinkingSetMultipart(sp Object, long X)

The local variable Multipart speci�es which data item in an spMultilinking index is in use, if
any. The Multipart is a 32-bit integer. The Multipart must be set before the data associated with
an spMultilinking can be loaded. Once the Multipart is set, it cannot be altered. Information
about the Multipart is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 125

19.2 IndexName

transient public String IndexName; //* [char *]

char * spMultilinkingGetIndexName(sp Object)
void spMultilinkingSetIndexName(sp Object, char * X)

char * sqMultilinkingGetIndexName(sp Object)
void sqMultilinkingSetIndexName(sp Object, char * X)

The IndexName local variable of an spMultilinking object contains the name of the local cached
copy of the index pointed to by the URL. If the index has not been fetched (I.e., because the
LoadData bit of the corresponding spClass object is False), then the IndexName is a zero length
string. If several multilinks have the same URL, then they all point to the same cached copy of the
data. The Select function typically operates by processing the data indicated by the IndexName
variable.

The IndexName is automatically �lled in by the system when the URL data is identi�ed in the
local cache (perhaps after having to be fetched from a remote source) and is automatically updated
if the underlying data changes. The IndexName and the data it points to should never be altered
in any way. Information about the IndexName is maintained separately in each process.

19.3 spMultilinkingNew

sp spMultilinkingNew(v URL)

URL - The URL of the link to be created.
Return value - The newly constructed object.

This function does not exist for the class spMultilinking itself. It is described here because
it is an abstract prototype of the creation function that must be written when a new subclass of
spMultilinking is de�ned. In particular, multilink creation functions must take a URL string as
their �rst argument and create a multilink object containing the URL. This is the only way the
URL in a multilink can be set.

The code below shows the general form that the New function for a subclass spM of spMultilink-
ing must have. In particular, it must call spClassNewLink to create the link itself. spClassNewLink
understand multilinks and well as links and insures that Checksum is properly computed for the
object as a whole and for each entry in the index. It also insures that the Select and ReadData
functions are called if necessary. (Note that even if the LoadData bit for the multilink class is False,
the URL data has to be fetched in order to calculate the proper Checksum and the URL data for
each item must be fetched to calculate/check the appropriate checksum for each item. However,
an in-memory data image is created only if LoadData is True.)

sp spMNew(spFixedAscii URL) {
return spClassNewLink(spLC, URL);

}

MERL-TR-97-11 December, 1997

126 (Internal) Spline Version 3.0 API

19.4 spMultilinkingSelect

long spMultilinkingSelect(sp Link)

Link - The multilink object for which a choice must be made.
Return value - Zero-based index of item chosen (-1 means none).

This function does not exist for the class spMultilinking itself. It is described here because it is
an abstract prototype of the URL data reading function that must be written when a new subclass
of spMultilinking is de�ned.

The purpose of the selection functions for multilink classes is to decide which of the items in the
index should be read into memory. The ReadData function does the actual reading. (The system
�lls in the FileName variable based on what the Select function chooses.) The Select function must
set the Multipart �eld in order to specify which item has been chosen. The value -1 is used to
indicate that no item has been chosen. If no item is chosen, then there will be no fetching of data
over the net and no loading into memory even if LoadData True.

When a Select function is called, it typically operates by inspecting the index pointed to by
the IndexName variable. (That is to say, the Select function is not called until after the URL data
has been fetched over the net.) The Select function can do whatever it wants with the local �le
in order to make a decision, but should do so based solely on this �le without fetching any of the
URLs in it. The only requirement is that if called twice on the same local �le, the Select function
must make the same choice. This assumption is necessary so that the system can omit calling the
Select function on duplicate copies of the same data.

The Select method for a class should be looked at as a default way to make a choice. An
application process can override this by providing a di�erent operation via the SelectFn of the
associated spClass object. Further, whether a selection should be made at all is under the control
of the LoadData variable in the associated spClass object.

20 spBeaconing (Fundamental)

public abstract class spBeaconing extends sp

Beacons is to provide a way for application processes to communicate with each other in-
dependent of the location-addressable communication operating in conjunction with locales. In
particular, they provide a way to locate an object even when there is no knowledge about what
locale the object is in.

The shared class spBeaconing inherits all the instance variables and functions of the class sp
(Section 15). The class spBeaconing de�nes the following instance variables, with the variables in
the external API in bold and the variables that are fundamental in the sense that they could not
be properly supported by an application programmer underlined:

spBeaconingC - Class descriptor (Section 15.1).
shared Tag - Tag string (Section 20.2).

shared Suppress - Suppress processes triggered by the beacon (Section 20.3).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 127

It is not possible to create instances of the class spBeaconing. Rather, one can only create
instances of particular subclasses of the class spBeaconing.

A discussion of the concepts underlying Beacons can be found in [Barrus J.W., Waters R.C.,
and Anderson D.B., \Locales and Beacons: E�cient and Precise Support for Large Multi-User
Virtual Environments," IEEE Virtual Reality Annual International Symposium, (Santa Clara CA,
March 1996), pages 204{213]. Detailed information about beacon communication is presented in
the separate description of ISTP.

Whenever a process creates, removes, modi�es or obtains ownership of a beacon, it communi-
cates the beacon in the normal locale-based way. In addition, it sends information about the beacon
to the Content-Based communication server speci�ed by the DNS name in the beacon's Tag. A pro-
cess can receive messages about spBeacons from: peer processes via locale-based communication,
Content-Based communication servers as answers to queries, and Locale-Based Communication
servers in response to connecting to new locales.

20.1 Using Beacons

Beacons provide a way to bootstrap from an initial state of knowing nothing about a part of a
virtual world to a state of having located a locale of interest and become aware of the objects in
that part of the world model. This is done in a three part process.

(1) Decide on a beacon tag that is of interest.
(2) Decide which if any of the beacons with that tag are of interest.
(3) Connect to the part(s) of the world model that contain the beacon(s) of interest.
The �rst step concerns solely the tags of beacons. In a given situation, there must be an a priori

method for selecting tags of interest. Once a tag has been selected, spBeaconMonitor is used to get
access to all the beacons with the tag no matter what locale they are in.

When a beacon B has been obtained by spBeaconMonitor it is likely that the local world model
copy will not contain any information about the locale B is in except for B itself. Therefore the
decision in the second step above of what beacons are interesting must be done solely based on
data that is in the beacons themselves. To make this easier in a given application, a new subclass
of beacons might be de�ned with some additional information.

To obtain information about the other objects in the locale B is in, a process must create an
observer object (Section 21) and put it in the same locale. The only reliable way to do this is to
initially make the Observer be a descendant of B. The reason that this is the only reliable approach
is that B may well be the only object in the local world model copy that is in the locale in question.

Note that B has a Parent P. It might well be the case that it would be more convenient to
make the Observer be a direct child of P. This typically cannot be done directly, because P is
typically not known. However, the e�ect can easily be obtained by using spBeaconGoto instead of
spBeaconMonitor to �nd the beacon in the �rst place.

There are several standard ways in which beacons are used. Perhaps the most common is
to connect to a service provider such as a visual rendering process. In order to communicate
with a server, a format for tags must be agreed on in advance. For instance to communicate
between visual renderers and processes, the API uses tags of the form "//ip-address/spVisual"

(e.g., "//earth.merl.com/spVisual").

MERL-TR-97-11 December, 1997

128 (Internal) Spline Version 3.0 API

To contact a visual renderer, you create an spSeeing beacon with an appropriate tag. The
renderer monitors beacons looking for tags with its fully quali�ed DNS address string in it. When
it �nds one, it creates an spVisualObserver as a child of the beacon and goes to work. If the beacon
it is following gets removed, the renderer will then look for another beacon. (If two beacons both
attempt to use the same renderer, the renderer will render based on the beacon it encounters �rst.)

A second prototypical example is using beacons to mark a �xed location. For example, this
is done to indicate the landing pad that is the entry point for Diamond Park. In particular, the
outside locale in Diamond Park contains a beacon whose Transform indicates the position and
orientation of the center of the landing pad. This beacon is created by the process that creates
the park. The beacon has a tag like "/www.merl.com/Diamond-Park" that is communicated (e.g., in
Email) to people that might be interested in entering the park.

Someone who wants to visit the park creates an avatar, and then uses spBeaconGoto to put
this avatar into the park. The avatar can then move freely about the park and into other locales
such as the insides of the various buildings.

20.2 Tag (Fundamental)

public String Tag; //* [spFixedAscii] readonly

spFixedAscii spBeaconingGetTag(sp Object)

void spBeaconingiSetTag(sp Object, spFixedAscii X)

spFixedAscii sqBeaconingGetTag(sp Object)
void sqBeaconingSetTag(sp Object, spFixedAscii X)

The central instance variable of an spBeacon is a shared variable called the Tag. The key feature
of beacons is that a global name service is maintained that maps from Tags to the beacon objects
so that beacons can be accessed based on their Tags no matter where they are located. To allow
many di�erent people to create Tags that do not con
ict with each other, beacon Tags are URLs.
It is generally not a good idea to have lots of beacons with the same Tag, but there can be several
beacons with the same Tag.

A beacon Tag is a string of type spFixedAscii. It must be less than 500 characters in length, so
that the containing object can �t into a single UDP message. It must be speci�ed when a beacon
is initially created and cannot be changed after that time. Information about the Tag is shared
between processes.

Note that the DNS/port part of a Tag URL (which must be present) selects the process that
provides beacon service for the beacon.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 129

20.3 Suppress

public boolean Suppress; //* [spBoolean]

spBoolean spBeaconingGetSuppress(sp Object)
spBoolean spBeaconingGetOldSuppress(sp Object)
void spBeaconingSetSuppress(sp Object, spBoolean X)

spBoolean sqBeaconingGetSuppress(sp Object)
spBoolean sqBeaconingGetOldSuppress(sp Object)
void sqBeaconingSetSuppress(sp Object, spBoolean X)

spBeacon objects have a shared instance variable called the Suppress bit that can be used to
suppress the activity of processes that would otherwise by triggered by the beacon. Speci�cally,
a process that sees a beacon targeted at it that has the Suppress bit True should not perform its
normal activity, but should be ready at any moment to start doing so if the Suppress bit changes
to False.

The Suppress bit of a beacon is set to False when the beacon is created. It can be changed at
any time later. Information about the Suppress bit is shared between processes.

As an example of the use of the Suppress bit, consider the interaction of spSeeing beacons and
visual rendering. Normally, an spSeeing beacon triggers the creation of an image. However, if the
Suppress bit is on, then no image is created. Nevertheless, all the loading of model �les and the like
that is needed to create an image is done, so that the creation of an image can begin instantaneously
when requested.

This can be used in two ways. First, you an toggle Suppress bits in order to jump rapidly from
one view to another. Second, you can utilize an spSeeing beacon whose suppress bit is always False
to trigger the preloading of visual information by moving it into locales in the direction you are
going in advance of your actually going to these locales. This will not change how much is rendered
at any one time, but will mean changes of scene can happen faster.

MERL-TR-97-11 December, 1997

130 (Internal) Spline Version 3.0 API

21 spObserving (Fundamental)

public abstract class spObserving extends sp

spObserving objects control Locale-Based communication between processes and therefore
which objects are in the local world model copy. spObserving objects exercise this control by
triggering the receipt of information about the locale they are in and typically about all neighbor-
ing locales as well. Di�erent subclasses of spObserving give access to di�erent kinds of information.

The shared class spObserving inherits all the instance variables and functions of the class sp
(Section 15). The class spObserving de�nes the following instance variables, with the variables in
the external API in bold and the variables that are fundamental in the sense that they could not
be properly supported by an application programmer underlined:

spObservingC - Class descriptor (Section 15.1).
shared Audio - Indicates whether audio data is desired. (Section 21.1).

shared IgnoreNearby - Neighbor locale observation indication (Section 21.2).

It is not possible to create instances of the class spObserving. Rather, one can only create
instances of particular subclasses of the class spObserving.

A critical part of Locale-Based Communication is that in addition to having a process only
receive information about the parts of the world model it is attending to, it is also the case that
when a process stops attending to part of the world model, then information about that part is
purged from the local world model copy. To understand how this works, consider that if an object
is in the local world model copy it is there for one of the following reasons:

(1) The object is owned by the local process.
(2) The object is a beacon whose Tag matches the Pattern of a locally owned spBeaconMonitor

object, or the class of such a beacon or the locale of such a beacon.
(3) The object is a locale that contains a locally owned object or is the neighbor of a locale that

contains a locally owned spObserving object with the IgnoreNearby bit o�.
(4) The object is in a locale that is present due to (3).
(5) The object is a locale that is a neighbor of a locale present due to (2) or (3) or an spBoundary

of a locale present due to (2) or (3) or (4).
Locale-Based Communication servers guarantee that when a connection is opened, the local

process has every object corresponding to (3{5) and Content-Based Communication servers guar-
antee that you have every object corresponding to (2). The process itself inherently has every
object corresponding to (1).

Every object in the world model whose presence is not required by one of the reasons above
should be purged and put on the MsgRejectionQueue. This purging does not have to happen on
every call to spWMUpdate, but should be checked whenever an spCom object or spBeaconMonitor
is removed.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 131

21.1 Audio

public boolean Audio; //* [spBoolean]

spBoolean spObservingGetAudio(sp Object)
spBoolean spObservingGetOldAudio(sp Object)
void spObservingSetAudio(sp Object, spBoolean X)

spBoolean sqObservingGetAudio(sp Object)
spBoolean sqObservingGetOldAudio(sp Object)
void sqObservingSetAudio(sp Object, spBoolean X)

When True, the Audio shared instance variable of an spObserving causes the system to receive
streaming audio data. Otherwise, streaming audio data is not received.

The Audio bit of an spObserving can be freely turned on and o�. By default, the Audio bit is
False. (spAudioObserver objects change this default by setting the Audio bit True.) Information
about the Audio bit is shared between processes.

21.2 IgnoreNearby (Fundamental)

public boolean IgnoreNearby; //* [spBoolean]

spBoolean spObservingGetIgnoreNearby(sp Object)
spBoolean spObservingGetOldIgnoreNearby(sp Object)
void spObservingSetIgnoreNearby(sp Object, spBoolean X)

spBoolean sqObservingGetIgnoreNearby(sp Object)
spBoolean sqObservingGetOldIgnoreNearby(sp Object)
void sqObservingSetIgnoreNearby(sp Object, spBoolean X)

When False, the IgnoreNearby shared instance variable of an spObserving causes the system to
receive messages about objects in all the locales near (Section 26.1) the locale the spObserving object
is in. If IgnoreNearby is True then the system attends only to the single locale the spObserving
objects in.

The IgnoreNearby bit of an spObserving can be freely turned on and o�. By default, the
IgnoreNeighbors bit is False. Information about the IgnoreNearby bit is shared between processes.

MERL-TR-97-11 December, 1997

132 (Internal) Spline Version 3.0 API

22 spVisualParameters

public abstract class spVisualParameters extends sp

The class spVisualParameters groups together key pieces of data relevant to visual rendering.
In an spSeeing object these parameters are used as requests. In an spVisualObserver object, these
parameters are used to report on what the renderer is doing.

The shared class spVisualParameters inherits all the instance variables and functions of the
class sp (Section 15). The class spVisualParameters de�nes the following instance variables, with
the variables in the external API in bold and the variables that are fundamental in the sense that
they could not be properly supported by an application programmer underlined:

spVisualParametersC - Class descriptor (Section 15.1).
shared FarClip - Far clipping distance (Section 22.1).

shared NearClip - Near clipping distance (Section 22.2).
shared Field - Field of view (Section 22.3).

shared Interval - Desired inter-frame interval (Section 22.4).

It is not possible to create instances of the class spVisualParameters. Rather, one can only
create instances of particular subclasses of the class spVisualParameters.

22.1 FarClip

public float FarClip; //* [float]

float spVisualParametersGetFarClip(sp Object)
float spVisualParametersGetOldFarClip(sp Object)
void spVisualParametersSetFarClip(sp Object, float X)

float sqVisualParametersGetFarClip(sp Object)
float sqVisualParametersGetOldFarClip(sp Object)
void sqVisualParametersSetFarClip(sp Object, float X)

The FarClip shared instance variable of spVisualParameters speci�es the distance to the far
clipping plain that should (is) be(ing) used by the visual renderer. The FarClip is a
oat and is
set to zero when an spVisualParameters is created. In an spSeeing, this indicates that the visual
renderer should pick whatever value it feels is most appropriate. It can be changed later, but may
take on the order of a second to take e�ect. Information about the FarClip is shared between
processes.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 133

22.2 NearClip

public float NearClip; //* [float]

float spVisualParametersGetNearClip(sp Object)
float spVisualParametersGetOldNearClip(sp Object)
void spVisualParametersSetNearClip(sp Object, float X)

float sqVisualParametersGetNearClip(sp Object)
float sqVisualParametersGetOldNearClip(sp Object)
void sqVisualParametersSetNearClip(sp Object, float X)

The NearClip shared instance variable of spVisualParameters speci�es the distance to the Near
clipping plain that should (is) be(ing) used by the visual renderer. The NearClip is a
oat and is
set to zero when an spVisualParameters is created. In an spSeeing, this indicates that the visual
renderer should pick whatever value it feels is most appropriate. It can be changed later, but may
take on the order of a second to take e�ect. Information about the NearClip is shared between
processes.

22.3 Field

public float Field; //* [float]

float spVisualParametersGetField(sp Object)
float spVisualParametersGetOldField(sp Object)
void spVisualParametersSetField(sp Object, float X)

float sqVisualParametersGetField(sp Object)
float sqVisualParametersGetOldField(sp Object)
void sqVisualParametersSetField(sp Object, float X)

The Field shared instance variable of spVisualParameters speci�es the vertical viewing angle
in radians that should (is) be(ing) used by the visual rendering process. The Field is a
oat and
is set to zero when an spSeeing is created. In an spSeeing, this indicates that the visual renderer
should pick whatever value it feels is most appropriate. It can be changed later, but may take on
the order of a second to take e�ect. Information about the Field is shared between processes.

MERL-TR-97-11 December, 1997

134 (Internal) Spline Version 3.0 API

22.4 Interval

public int Interval; //* [spDuration]

spDuration spVisualParametersGetInterval(sp Object)
spDuration spVisualParametersGetOldInterval(sp Object)
void spVisualParametersSetInterval(sp Object, spDuration X)

spDuration sqVisualParametersGetInterval(sp Object)
spDuration sqVisualParametersGetOldInterval(sp Object)
void sqVisualParametersSetInterval(sp Object, spDuration X)

The interval shared instance variable of spVisualParameters speci�es the time interval between
frames in milliseconds. For instance, an interval of 33 speci�es 30 frames per second. In an
spSeeing, the Interval should be viewed as a target. It will not be possible for the visual renderer
to achieve a very small Interval given a complex scene to render. The Interval is set to zero when
an spPositioning is created. In an spSeeing, this indicates that the visual renderer should create
frames as fast as possible. It can be changed later, but may take on the order of a second to take
e�ect. Information about the Interval is shared between processes.

23 spAudioParameters

public abstract class spAudioParameters extends sp

The class spAudioParameters groups together key pieces of data relevant to visual rendering.
In an spHearing object these parameters are used as requests. In an spAudioObserver object, these
parameters are used to report on what the renderer is doing.

The shared class spAudioParameters inherits all the instance variables and functions of the
class sp (Section 15). The class spAudioParameters de�nes the following instance variables, with
the variables in the external API in bold and the variables that are fundamental in the sense that
they could not be properly supported by an application programmer underlined:

spAudioParametersC - Class descriptor (Section 15.1).
shared Focus - Audio source to focus on (Section 23.1).
shared Live - Indicates whether live sources should be rendered (Section 23.2).

shared Format - Controls the format used for rendered sound (Section 23.3).

It is not possible to create instances of the class spAudioParameters. Rather, one can only
create instances of particular subclasses of the class spAudioParameters.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 135

23.1 Focus

public spAudioSource Focus; //* [sp]

sp spAudioParametersGetFocus(sp Object)
sp spAudioParametersGetOldFocus(sp Object)
void spAudioParametersSetFocus(sp Object, sp X)

sp sqAudioParametersGetFocus(sp Object)
sp sqAudioParametersGetOldFocus(sp Object)
void sqAudioParametersSetFocus(sp Object, sp X)

spAudioParameters objects have a shared instance variable called the Focus that speci�es which
surrounding sources should (are) be(ing) included as part of the rendered audio. If a particular
spAudioSource is speci�ed as the Focus, then only the sound from that source is received. Otherwise
data from all nearby sources is mixed together. The Focus can be used both to zero in on a particular
sound source so that it can be heard clearly amid many others and to limit the amount of processing
that is required to support audio rendering.

The default value of the Focus is Null. In an spAudioSource, the Focus variable is ignored. In
an spHearing, you can change it at will, but there may be a delay of a second or so before the
change has any e�ect. (It is not expected that it will be changed often.) Information about the
Focus is shared between processes.

23.2 Live

public boolean Live; //* [spBoolean]

spBoolean spAudioParametersGetLive(sp Object)
spBoolean spAudioParametersGetOldLive(sp Object)
void spAudioParametersSetLive(sp Object, spBoolean X)

spBoolean sqAudioParametersGetLive(sp Object)
spBoolean sqAudioParametersGetOldLive(sp Object)
void sqAudioParametersSetLive(sp Object, spBoolean X)

spAudioParameters objects have a shared instance variable called the Live bit, which speci�es
whether Live sources with the same owner should (are) be(ing) included in the rendered sound
image. Speci�cally, if the Live bit is False for an spHearing beacon then spAudioSources with the
Live bit True that have the same owner as the spHearing beacon triggering rendering are ignored.
If the Live bit is True in an spHearing beacon, every source is treated the same. (This feature is
used to suppress sound rendering of a user's spoken input in the headphones he is wearing.)

The default value of the Live bit is False. In an spHearing, you can change it at will, but there
may be a delay of a second or so before the change has any e�ect. (It is not expected that it will
be changed often.) Information about the Live bit is shared between processes.

MERL-TR-97-11 December, 1997

136 (Internal) Spline Version 3.0 API

23.3 Format

public long Format; //* [spFormat]

spFormat spAudioParametersGetFormat(sp Object)
spFormat spAudioParametersGetOldFormat(sp Object)
void spAudioParametersSetFormat(sp Object, spFormat X)

spFormat sqAudioParametersGetFormat(sp Object)
spFormat sqAudioParametersGetOldFormat(sp Object)
void sqAudioParametersSetFormat(sp Object, spFormat X)

spAudioParameters objects have a shared instance variable called the Format, which speci�es
the in-memory format for sound data. In an spHearing beacon, it can be set to zero with the
meaning that the audio renderer should use whatever format it considers best. In an spAudioSource
it speci�es the format the application will use to write and observe data. In an spAudioObserver
it speci�es what format the renderer is using for localized sound.

This format is of type spFormat (Section 14). It is initialized to zero and can be changed later.
If changed in an spHearing beacon, the change may take on the order of a second to take e�ect.
Information about the Format is shared between processes.

24 spVisualDe�nition

public class spVisualDefinition implements spMultilinking

An instance of the class spVisualDe�nition is a multilink to one or more 3D graphical models
specifying a visual appearance. Ordinary applications typically do not read in these 3D models.
Rather, they are only read in by the visual renderer. When they are read in, they are converted
into scene graphs in the internal format used by the renderer. The chunk of scene graph created is
stored in the data variable of the spVisualDe�nition link.

The shared class spVisualDe�nition inherits all the instance variables and functions of the class
spMultilinking (Section 19). The class spVisualDe�nition de�nes the following instance variables,
with the variables in the external API in bold and the variables that are fundamental in the sense
that they could not be properly supported by an application programmer underlined:

spVisualDe�nitionC - Class descriptor (Section 15.1).

The class spVisualDe�nition de�nes the following functions:

spVisualDe�nitionNew - Creates spVisualDe�nition given a URL (Section 24.1).
spVisualDe�nitionReadData - Reads visual model data (Section 24.2).
spVisualDe�nitionSelect - Selects model to use (Section 24.3).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 137

The basic approach for creating images of a virtual world centers around spDisplaying objects
and their visual de�nitions. The appearances of all the spDisplaying objects in view at a given
moment are combined together into a scene graph and rendered. Typically these objects will also
inherit from spPositioning. In that case, the positions and orientations of the various appearances
are taken from the Transform �elds of the objects; otherwise, the identity spTransform is used.

Getting an appearance entered into the world model is a three step process.
(1) One �rst creates (or locates) a 3D model in VRML, or whatever other format the renderer

you are using supports. This is done using standard modeling tools.
(2) Next one has to decide how the model should be positioned on an object in the world model.

As discussed in detail below, this positioning is speci�ed as part of the multilink index data.
(3) Finally, to get the appearance into a particular virtual world, you create an spVisualDe�-

nition link whose URL refers to the intermediate description �le and make it be the appearance of
one or more spDisplaying objects. The following code shows an example of this.

look = spVisualDefinitionNew("http://www.models.com/demo/models/table");
object = spThingNew();
spDisplayingSetVisualDefinition(object, look);
spSetParent(look, object);
spPositioningSetTransform(object, Position);

The index �les for an spVisualDe�nition contain several pieces of information that are used as
a basis for selecting which model to use. It also contains information that speci�es how a given
model should be used. This additional information is introduced by the keywords:

Format: - The Format of the corresponding model speci�ed using standard MIME types. At
the moment, VRML (I.e., \model/vrml") is the only supported format.

Polygons: - An integer specifying the number of polygons in the model. This is used to select
level of detail based on the overall polygon budget of a given renderer. (This is optional
and defaults to 0 indicating no information.

Importance: - An integer from 1 to 100 specifying the relative importance of this model. In
general, a renderer will try to show more important models at higher detail. (This is
optional and defaults to 0 indicating no information.)

Transform: - spTransform specifying how the model should be placed on an object. It can be
used to move the origin, rotate the image, and/or change the scaling. (This is optional
and defaults to the identity transform.)

The key element above is the positioning transform. It allows you to take an arbitrary model
and use it without having to alter it in any way. For example, suppose that you are creating a
virtual world that contains a virtual car that can move around. To conform with the API's object
orientation standards (Section 8), the spThing for the car must be oriented with the Y axis up and
with the front of the car facing down the negative Z axis. Further, to make it easy to move the car
around, it is convenient to place the origin of the car on the ground under the center of the car's
appearance. In addition, the car in the virtual world has some intended size. (These latter two
needs would remain even if the API had no object orientation standards.) It is very unlikely that
a given model for the car's appearance will meet these conditions. However, using a positioning
transform it is trivial to adapt the model to its use in the virtual world without having to modify
the model itself.

MERL-TR-97-11 December, 1997

138 (Internal) Spline Version 3.0 API

Continuing the example above, "http://www.models.com/demo/models/table" might contain:

http://www.models.com/demo/models/table.vrml 88347136
Format: model/vrml
Polygons: 36
Importance: 40
Transform: -1.0 8.0 0.2 0.0 0.0 1.0 1.523 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

http://www.models.com/demo/models/table-detailed.vrml 88347136
Format: model/vrml
Polygons: 420
Importance: 20
Transform: 0.0 4.0 0.2 0.0 1.0 0.0 2.345 2.0 2.0 2.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

The programming API considers graphical models to be completely opaque. All it cares about
is that the visual renderer being used can understand the models created by the modeling tools
being used. The system itself never looks at what is in a graphical model. In particular, it is not
intended that an application dynamically modify models, but rather only e�ect the overall scene
graph by a�ecting the aspects of spThings (such as their Transforms) that are visible in the world
model. (However, through the de�nition of application speci�c spActions, one could get around
this restriction.)

24.1 spVisualDe�nitionNew

sp spVisualDefinitionNew(spFixedAscii URL)

URL - URL of the spVisualDe�nition to be created.
Return value - The newly constructed object.

Creates a new object of the class spVisualDe�nition, with the local process as its owner. In
addition, sets the URL of the spVisualDe�nition as speci�ed.

24.2 spVisualDe�nitionReadData (Internal)

void spVisualDefinitionReadData(sp Link)

Link - The spVisualDe�nition link whose data is to be read in.
Return value - There is no return value.

spVisualDe�nitionReadData does nothing, because there is no way to predict what the visual
renderer in use needs to have done. The visual rendering process must specify a local ReadData
operation via the spClassReadDataFn variable for spVisualDe�nition.

24.3 spVisualDe�nitionSelect

long spVisualDefinitionSelect(sp Link)

Link - The link for which a selection is to be made.
Return value - Returns zero.

spVisualDe�nitionSelect merely selects the �rst model returning zero. If a visual rendering
process wants to make any interesting kind of selection, it must specify a local Select operation via
the spClassSelectFn variable for spVisualDe�nition.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 139

25 spSound

public class spSound implements spMultilinking

An important feature of the API is a facility for prerecorded sound. This is intended to be
used for (usually short) things that get used over and over (like the sound of a door closing). Their
advantage is that the data can be prestored at the destination processes instead of having to be
transmitted every time it is used.

An instance of the class spSound is a link to a recorded block of sound data such as ambient
background sound or a sound e�ect. The data can be created using a number of standard tools
such as sound editors and written in �les in a number of standard formats. They are then referred
to using spSound links.

The shared class spSound inherits all the instance variables and functions of the class spMulti-
linking (Section 19). The class spSound de�nes the following instance variables, with the variables
in the external API in bold and the variables that are fundamental in the sense that they could
not be properly supported by an application programmer underlined:

spSoundC - Class descriptor (Section 15.1).
Duration - Time duration of data (Section 25.1).

The class spSound de�nes the following functions:

spSoundNew - Creates spSound given a URL (Section 25.2).
spSoundPlay - Plays stored sound (Section 25.3).

spSoundSelect - Selects sound to use (Section 25.4).
spSoundReadData - Reads stored sound data (Section 25.5).

The basic approach presented here for creating sound e�ects in a virtual world centers around
spSound and spSoundSource objects. The spSound objects specify what the various sound e�ects
sound like. The positions of the spSoundSources specify where sounds emanate. Getting a sound
e�ect to happen in a virtual world is a three step process.

(1) One �rst creates (or locates) sound �les in one of several common formats. This is done
using standard sound capture and editing tools.

(2) As discussed in detail below, one then creates an index �le that summarizes key features of
one or more versions of the sound.

(3) Finally, to get the sound into a particular virtual world, you create an spSound link whose
URL refers to the intermediate description �le. You then create one or more spSoundSource objects
and use spSoundPlay to play the sound at the right places and the right times. The following code
shows an example of this.

bang = spSoundNew("http://www.models.com/sounds/bang23.wav");
source = spAudioSourceNew();
spSetParent(bang, source);
spSoundPlay(bang, source, FALSE, 1.0);

MERL-TR-97-11 December, 1997

140 (Internal) Spline Version 3.0 API

The index �les for an spVisualDe�nition contain several pieces of information that are used as
a basis for selecting which model to use. It also contains information that speci�es how a given
model should be used. This additional information is introduced by the keywords:

Format: - The format of sound �le speci�ed using standard MIME types e.g., \audio/x-wav".
spFormat - An spFormat specifying the detailed format of the data in the �le.
Duration - Length of sound data in milliseconds. This value is needed so that the Duration

variable of an spSound can be set correctly even if the sound data itself is not read into
memory.

Bytes - Length of sound data in bytes.
Importance: - An integer from 1 to 100 specifying the relative importance of this sound. In

general, a renderer will try to play more important sounds at higher detail. (This is
optional and defaults to 0 indicating no information.)

It is expected that the various sound �les listed in an index �le will have di�erent encodings or
di�erent sample rates. For example, you might have 8 KHz �le for the use of low powered machines
and a 32 KHz high �delity version for more powerful machines. The process loading a sound is free
to choose whichever sound �le is most appropriate for it.

Continuing the example above, "http://www.models.com/sounds/bang23" might contain:

http://www.models.com/sounds/bang23.wav 88347136
Format: audio/x-wav
spFormat: 6638759684996246
Duration 123
Bytes: 4500
Importance: 75

http://www.models.com/sounds/bang23.aiff 72545754
Format: audio/x-aiff
spFormat: 5754345865388749
Duration 123
Bytes: 9000
Importance: 25

The programming API considers stored sounds to be completely opaque. All it cares about is
that the audio renderer being used can understand the sound �les created by the modeling tools
being used. The system itself never looks at what is in a sound �le.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 141

25.1 Duration

transient public int Duration; //* [spDuration] readonly

spDuration spSoundGetDuration(sp Object)

void spSoundiSetDuration(sp Object, spDuration X)

spDuration sqSoundGetDuration(sp Object)
void sqSoundSetDuration(sp Object, spDuration X)

spSound objects have a local instance variable call the Duration that records the period of time
corresponding to the sound data referred to. This is recorded in a variable so that processes other
than an audio renderer can reason about how much time is required to play back the data without
having to load the entire sound �le into memory. Among other things, this is needed for the proper
operation of the actions created by spSoundPlay. In order for simulations to reason about sounds,
they need to be able to observe spDoSoundPlay Actions and tell when they are done. For this to
work, the spDoSoundPlay actions need to know how long they should remain in existance. They
tell this by looking at the Duration of the spSound they are playing.

The Duration is a 32-bit integer of the type spDuration specifying the time in milliseconds. It
should be set by the spSound ReadData function based on the URL data even when the full sound
data is not read into memory. If the number of samples does not correspond to an exact integer
number of milliseconds, then the time is calculated by rounding it to the nearest millisecond. The
Duration should not be altered after that time. Information about the Duration is maintained
separately in each process.

25.2 spSoundNew

sp spSoundNew(spFixedAscii URL)

URL - URL of the spSound to be created.
Return value - The newly constructed object.

Creates a new object of the class spSound, with the local process as its owner. In addition, sets
the URL of the spSound as speci�ed.

25.3 spSoundPlay

sp spSoundPlay(sp Sound, sp Source, spBoolean Loop, float Gain)

Sound - The spSound to be played.
Source - The spAudioSource to play the sound through.
Loop - If True, play the sound endlessly.
Gain - Gain multiplier, 1.0 means no change.

Return value - The action created.

Causes a stored sound to be played through an spAudioSource. The key feature of spSoundPlay
is that it does not actually output the sound through the source, but rather creates an spDoSound-
Play action that simulates the receipt of the sound by each process that can hear it, without having
to send the sound data over the network.

MERL-TR-97-11 December, 1997

142 (Internal) Spline Version 3.0 API

The playing of sound continues until: the data runs out, the action object returned by spSound-
Play is removed, the source object is removed, the spSound object is removed, or some other sound
is played through the same spAudioSource. (You can only be playing one sound at a time through
a sound source.)

25.4 spSoundSelect

long spSoundSelect(sp Link)

Link - The link for which a selection is to be made.
Return value - Returns zero.

spSoundSelect merely selects no model returning -1, but setting the Duration to the duration of
the �rst sound. This is useful in situations where a process merely needs to know how long sounds
are, but is of no use to an audio renderer. An audio rendering process must specify a local Select
operation via the spClassSelectFn variable for spSound.

25.5 spSoundReadData (Internal)

void spSoundReadData(sp Link)

Link - The spSound link whose data is to be read in.
Return value - There is no return value.

spSoundReadData does nothing, because there is no way to predict what the audio renderer in
use needs to have done. The audio rendering process must specify a local ReadData operation via
the spClassReadDataFn variable for spSound.

26 spLocale (Fundamental)

public class spLocale implements spLinking, spBeaconing, spDisplaying

Locales break the world model up into pieces that are handled separately. They are the basis for
the scalability of the world model. They make it possible for both the size of the local world model
copy and the number of incoming messages that have to be handled per second to be dependent
only on the part of the virtual world that is `near' to the local process, rather than dependent on
the total size of the virtual world as a whole.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 143

In addition, each locale has a separate coordinate system and arbitrarily de�ned neighbor
relationships. This makes it easy to combine separately designed pieces into arbitrarily large virtual
worlds and to support a variety of interesting e�ects.

The shared class spLocale inherits all the instance variables and functions of the classes: spLink-
ing (Section 18), spBeaconing (Section 20) and spDisplaying (Section 17). The class spLocale de�nes
the following instance variables, with the variables in the external API in bold and the variables
that are fundamental in the sense that they could not be properly supported by an application
programmer underlined:

spLocaleC - Class descriptor (Section 15.1).
shared Boundary - 3D extent of locale (Section 26.2).

NumNeighbors - Number of neighbors (Section 26.3).

The class spLocale de�nes the following functions:

spLocaleNew - Creates spLocale given URL (Section 26.4).
spLocaleChoose - Determines appropriate locale for position (Section 26.5).

spLocaleExportMatrix - Retrieves export matrix (Section 26.6).
spLocaleReadData - Reads locale data (Section 26.7).

An in-depth discussion of the concepts underlying Locales can be found in [Barrus J.W., Waters
R.C., and Anderson D.B., \Locales: Supporting Large Multiuser Virtual Environments", IEEE
Computer Graphics and Applications, 16(6):50{57, November 1996.] spLocales embody the residue
of features described in the above paper that are not supported by spLocales.

Note locales are links (to data describing the relationship between locales), beacons (so that they
can easily be found), and spDisplaying objects (so that they can have an associated background).

26.1 How Locales Work

The key feature of locales is that every shared object is in exactly one locale. The locale
is determined by following the object's Parent link. In particular, every object other than an
spLocale needs to have a Parent. If the Parent of an object is a locale, then the object is in that
locale. Otherwise, the object is in whatever locale its Parent is in. Note that it is not possible to
have an application without at least one locale, because without locales there is no communication.

A locale is a link; however, two locales that are as identical as possible describe locales that
are nevertheless distinct. A locale has an owner that is the only process that can change it. If
the owner of a locale leaves the session, the locale will go away, turning all the objects in it into
orphans. All the information about the relationships between locales is stored in prede�ned data
�les and read in at run time.

The URL in an spLocale link identi�es the data describing the locale. The Tag serves as a
mnemonic name for the locale and identi�es the process that must act as both a Content-Based
Communication server for the locale object itself and a Locale-Based Communication server for
objects in the locale. Both the Tag and the URL must be speci�ed at the moment the locale is
de�ned and not changed later.

Each locale is associated with a server process that keeps track of what is going on in the locale.
The address of this process is speci�ed as part of the locale object.

MERL-TR-97-11 December, 1997

144 (Internal) Spline Version 3.0 API

Each locale is also associated with a particular set of communication addresses. Information
about objects in a locale is communicated only via those addresses. An orphaned object that is not
in any locale because it has no Parent is not communicated to anybody. The exact addresses to
use are chosen at run time from a range of suggested addresses that are speci�ed when the locale
is de�ned.

An important feature of a locale is its boundary. The boundary speci�es the three dimensional
extent of the locale. The boundary of an spLocale is typically speci�ed when the locale is �rst
created and not changed later.

It must be stressed that what locale an object is in for communication purposes is determined
by its Parent as discussed above, not any geometric considerations. However, in general, an object
should be placed in a locale only if its position is within the boundary of the locale. (A point is
within a boundary only if the Inside function of the boundary returns True when applied to the
boundary and the position of the object.)

In general, transferring an object form one locale to another involves nothing more complicated
than changing its Parent. However, it can be somewhat complicated to �gure out which locale an
object should be in. Determining this is facilitated by the function spPositioningLocalize. If an
object whose Parent is an spLocale is not within the boundary of the locale, and there is a nearby
locale whose boundary does contain the object, then spPositioningLocalize transfers the object to
the appropriate nearby locale.

A key concept above is what locales are neighbors of a given locale. This is statically speci�ed
when locales are designed. A set of locales that neighbor each other pairwise is called a scene. (One
can move incrementally step by step from one locale to another in a scene using spThingLocalize;
however, the only way to get from one scene to another is to teleport to the destination by explicitly
setting the Parent of the object to be moved.)

In an spLocale, the data variable is a vector of structures describing the relationship between
the locale and its neighbors. Each data structure for a neighbor N of locale L contains the following:

URL - URL of locale N. Critically, this is typically a relative hyperlink. Groups of locales
can be de�ned in a single �le. A full URL is only needed when referring to a neighbor in
a di�erent group of locales.

Locale - Locale object for N, if known.
Import matrix - The import matrix I is an spMatrix specifying how to convert a matrix T

relative to the coordinate system of N into a matrix S relative to the coordinate system
of L (i.e., S=IxT). This is used when one wants to know the position of something in N
relative to L.

Export matrix - The export matrix E is an spMatrix specifying how to convert a matrix S
relative to the coordinate system of L into a matrix T relative to the coordinate system
of N (i.e., T=ExS). The export matrix is used when transferring an object from one
locale to another. Typically E is the inverse of I; however, interesting special e�ects can
be obtained when this is not the case.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 145

The �le pointed to by the URL in a locale object must contain one or more locale descriptions
of the following form. Each description begins with a line of the form \NAME=name", where name

is the identifying name of the locale. This is followed by a line beginning \TAG=" that speci�es
the Tag of the locale. The DNS name and port in the Tag specify the server for the locale. This is
then optionally followed by a line beginning \MULTICASTRANGE=" which contains two Internet
addresses separated by a space. If omitted this range takes on a system speci�ed default. (ISTP
servers assign multicast addresses dynamically, from specifed ranges if any. Therefore, it is �ne not
to specify any ranges or to specify the same range for many di�erent locales.)

The above preamble lines are followed by three lines for each neighbor containing:
A) NEIGHBOR= followed by the (relative) hyperlink reference to the �le entry containing data

for the neighboring locale.
B) IMPORT= followed by the import spTransform (17
oats, X Y Z RX RY RZ RA SX SY

SZ SOX SOY SOZ SOA CX CY CZ separated by blanks). This spTransform is converted to an
spMatrix when the locale data �le is read in.

C) EXPORT= followed by the export spTransform (17
oats separated by blanks) which is
converted to an spMatrix when read in.

for example, you might have in the �le "http://www.BigRetailer.com/cyberstore"

NAME=MainRoom
TAG=//www.cybermall.com/BigBookstore
MULTICASTRANGE=225.0.0.0 225.0.0.255
NEIGHBOR=http://www.cybermall.com/locales#MainHall
IMPORT= 1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
EXPORT= -1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
NEIGHBOR=#BackRoom
IMPORT= 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
EXPORT= 0.0 -1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
NAME=BackRoom
TAG=//www.cybermall.com/BigBookstore-BackRoom
NEIGHBOR=#MainRoom
IMPORT= 0.0 -1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
EXPORT= 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0

Note the use of standard HTTP syntax when referring to individual locale entries. For example,
the data pointed to by "http://www.cybermall.com/locales" assumedly contains a reference to
"http://www.BigRetailer.com/cyberstore#MainRoom". Note also that while a �le of locales will
typically contain many links to locales in the same or nearby �les, it must contain at least one
absolute link to a locale in a far away �le in order to be connected to the rest of a large virtual
world.

Each locale de�nes a separate coordinate system. This coordinate system is the one used to
interpret the boundary of the locale and the transforms of spThings in the locale. The matrices in
the neighbor data structures relating locales are constants and cannot be rapidly changed. (Since
they are link data, it is possible to change them, but not quickly.) The Parent of a locale is Null.

MERL-TR-97-11 December, 1997

146 (Internal) Spline Version 3.0 API

26.2 Boundary

public spBoundary Boundary; //* [sp]

sp spLocaleGetBoundary(sp Object)
sp spLocaleGetOldBoundary(sp Object)
void spLocaleSetBoundary(sp Object, sp X)

sp sqLocaleGetBoundary(sp Object)
sp sqLocaleGetOldBoundary(sp Object)
void sqLocaleSetBoundary(sp Object, sp X)

The Boundary shared instance variable of an spLocale object speci�es the object describing
the boundary of the locale. The Boundary must be an spBoundary (Section 27) object. It is used
by spPositioningLocalize (Section 16.8) to determine when an object should be placed in a locale.
Information about the Boundary is shared between processes.

26.3 NumNeighbors (Internal)

transient public int NumNeighbors; //* [long] internal

long spLocaleiGetNumNeighbors(sp Object)
void spLocaleiSetNumNeighbors(sp Object, long X)

long sqLocaleGetNumNeighbors(sp Object)
void sqLocaleSetNumNeighbors(sp Object, long X)

The NumNeighbors local instance variable of an spLocale speci�es the number of neighboring
locales. The neighbors themselves are described in the Data instance variable of the locale.

The NumNeighbors variable is a 16-bit integer. It is set by spLocaleReadData when a locale is
loaded and cannot ever be changed. Information about the NumNeighbors is maintained separately
in each process.

26.4 spLocaleNew

sp spLocaleNew(spFixedAscii URL, spFixedAscii Tag)

URL - URL of the spLocale to be created.
Tag - Tag of the spLocale to be created.

Return value - The newly constructed object.

Creates a new object of the class spLocale, with the local process as its owner. In addition, sets
the URL and Tag of the spLocale as speci�ed. Neither the URL nor the Tag can be altered after
they are initially set. locales are the only built-in objects with two spFixedAscii variables.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 147

To create a locale, you might write the following. To insure proper communication of the
Boundary, the Parent of the Boundary must be set to be the locale. The same is true for the
background appearance.

sp L,B,background;
L = spLocaleNew("http://www.BigRetailer.com/locales#BackRoom");
B = spBoundaryNew("http://www.BigRetailer.com/boundaries/BackRoom");
background = spVisualDefinitionNew("http://www.models.com/demo/models/bookstore");
spLocaleSetBoundary(L,B);
spSetParent(B,L);
spDisplayingSetVisualDefinition(L, background);
spSetParent(background, L);

26.5 spLocaleChoose (Internal)

sp spLocaleChoose(sp L, spMatrix P)

L - Locale specifying coordinate system.
P - Position in relation to L.

Return value - Locale containing position, if any.

Takes a position speci�ed in a locale and determines whether it more naturally corresponds to
a position in a neighboring locale, returning the most appropriate containing locale, if any. (This
is a fundamental computation underlying spPositioningLocalize.)

Speci�cally, given a locale L and an spMatrix P specifying a position and orientation with respect
to the coordinate system speci�ed by L, spLocaleChoose checks L and all the locales neighboring
L to see which ones have boundaries that encompass P. If any of these locales contain P, then the
containing locale whose boundary has the smallest Volume is returned. Otherwise Null is returned.

26.6 spLocaleExportMatrix (Internal)

spMatrix spLocaleExportMatrix(sp L, sp Destination)

L - Source locale.
Destination - Destination Locale.

Return value - Export matrix from source to Destination. spMatrix to store
export matrix in.

Determines the export matrix relating two neighboring locales. (This is a fundamental compu-
tation underlying spPositioningLocalize.)

Speci�cally, given a locale L and another locale N that must be a neighbor of L and cannot
equal L, spLocaleExportMatrix returns the export matrix E that should be used to convert positions
relative to L into positions relative to N. (The matrix Q relative to N that speci�es the same position
as a matrix P relative to L is Q=ExP.) The matrix returned shares memory with the Locale data
for L and must not be modi�ed by an application.

Note that since E is multiplied on the left, you might well use it as the left operand of spMa-
trixMult. However, this argument gets modi�ed. Therefore, you must copy E before using it this
way in order not to destroy the Matrix stored with the locale L.

MERL-TR-97-11 December, 1997

148 (Internal) Spline Version 3.0 API

26.7 spLocaleReadData (Internal)

void spLocaleReadData(sp Link)

Link - The spLocale link whose data is to be read in.
Return value - There is no return value.

Fills in the data in an spLocale object based on the information in the �le speci�ed by the URL.
The system depends on this ReadData function always being used to load in locale data.

27 spBoundary

public class spBoundary implements spLinking

Boundaries encapsulate the basic concept of a machine manipulable description of a 3D volume.
Their primary use is in conjunction with spLocale objects. However, they can also be used in other
situations as well.

The shared class spBoundary inherits all the instance variables and functions of the class spLink-
ing (Section 18). The class spBoundary de�nes the following instance variables, with the variables
in the external API in bold and the variables that are fundamental in the sense that they could
not be properly supported by an application programmer underlined:

spBoundaryC - Class descriptor (Section 15.1).
Volume - Approximate volume of boundary (Section 27.1).

The class spBoundary de�nes the following functions:

spBoundaryNew - Creates spBoundary given URL (Section 27.2).
spBoundaryBelow - Calculates boundary intercept (Section 27.3).
spBoundaryAbove - Calculates boundary intercept (Section 27.4).
spBoundaryInside - Determines whether point is within boundary (Section 27.5).

spBoundaryReadData - Reads spBoundary data (Section 27.6).

The URL in an spBoundary link identi�es a �le containing a detailed description of the bound-
ary. In the case of spBoundary objects themselves, the description is an axis aligned bounding box.
Speci�cally, the �le identi�ed by the URL must contain one line of the form \VOLUME=
oat"
specifying the volume of the boundary followed by another line of text consisting of 6
oats sepa-
rated by spaces. The six
oats specify the minimum X value, minimum Y, minimum Z, maximum
X, maximum Y, and maximum Z values of the spBoundaries bounding box respectively. (These
numbers are stored in the Data variable of an spBoundary object.) For instance, the �le might
contain:

VOLUME=30.0
-1.0 2.5 0.0 9.0 5.5 1.0

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 149

The boundary information provided by an spBoundary object is very simple, and su�cient for
some applications. Subclasses of spBoundary are free to use more detailed representations such as
BSP trees.

spBoundary objects are separate objects from spLocales because they support a completely
separate concept. spLocales need spBoundaries to work, but spBoundaries can be useful without
spLocales. In particular, an spBoundary smaller than (or larger than) an spLocale can be used by
itself as part of controlling a motion, without wanting to have any e�ect on communication.

27.1 Volume

transient public float Volume; //* [float] readonly

float spBoundaryGetVolume(sp Object)

void spBoundaryiSetVolume(sp Object, float X)

float sqBoundaryGetVolume(sp Object)
void sqBoundarySetVolume(sp Object, float X)

The Volume local instance variable of an spBoundary object speci�es the approximate volume
(in cubic meters) enclosed by the boundary. The Volume is speci�ed by the boundary descriptor
�le. It is set by the ReadData function when a boundary is loaded. Information about the Volume
is maintained separately in each process.

27.2 spBoundaryNew

sp spBoundaryNew(spFixedAscii URL)

URL - URL of the spBoundary to be created.
Return value - The newly constructed object.

Creates a new object of the class spBoundary, with the local process as its owner. In addition,
sets the URL of the spBoundary as speci�ed.

27.3 spBoundaryBelow

long spBoundaryBelow(sp Boundary, spVector P, spVector Q)

Boundary - The spBoundary used as the reference.
P - The point that may be above the boundary.
Q - Modi�ed to re
ect position below P on boundary.

Return value - Non-zero if there is a boundary point below the input position.

Given an (X,Y,Z) position P, this function determines whether a point P is above a boundary,
and if it is, the position on the boundary that is immediately below P. Speci�cally, spBoundaryBelow
casts a ray downward from P and determines whether and where this ray intersects the boundary.
Since `down' is de�ned to be along the negative Y axis, if there is a point below P on the boundary,
then this point has the same X and Z values as P, but an equal or a lessor Y value.

MERL-TR-97-11 December, 1997

150 (Internal) Spline Version 3.0 API

If there is not a point on the boundary below P, then zero is returned. Otherwise, non-zero is
returned. An integer is used as the return value so that subclasses of spBoundary can return more
complex results as long as they adhere to the requirement that 0 means false.

In addition, if the Q argument is not Null, then the X, Y, and Z components of Q are altered
so that they are equal to the coordinates of the boundary point below P. (It is permissible for the
two vector arguments of spBoundaryBelow to be identical.)

For the class spBoundary itself, the de�nition of Below is trivial. To determine whether the
ray case downward from P intersects the boundary, It merely has to determine if the X and Z
coordinates of P are within the X-Z bounds of the locale. If so the intersection point has the X and
Z coordinates of P and has a Y value that is largest of the Min or Max Y value of the boundary that
is less than the Y value of P. However, it is expected that the de�nitions of Below for subclasses of
spBoundary will do more detailed and complex calculations.

Since the X and Z coordinates of Q must be the same as P, it would have been possible for
spBoundaryBelow to return just a single
oat. However, it is convenient to allow Q to be the same
as P and therefore have P modi�ed. Also, there is no way to return both a
oat and a logical value
in the Java API.

27.4 spBoundaryAbove

long spBoundaryAbove(sp Boundary, spVector P, spVector Q)

Boundary - The spBoundary object used as a reference.
P - The point that may be below the boundary.
Q - Modi�ed to re
ect position above P on boundary.

Return value - Non-zero if there is a boundary point above the input point.

The Above function for a subclass of spBoundary is identical to the Below function except that
it determines whether there is a point on the boundary that is above the test point, rather than
below.

27.5 spBoundaryInside

long spBoundaryInside(sp Boundary, spVector P)

Boundary - The spBoundary used as the reference.
P - The point that may be within the boundary.

Return value - Non-zero if the input position is inside the boundary.

Given an (X,Y,Z) position P, this function determines whether a point P is on or inside the 3D
volume speci�ed by an spBoundary. If P is on or within the boundary, then non-zero is returned.
Otherwise, zero is returned.

For the class spBoundary itself, the de�nition of Inside is trivial. However, it is expected that the
de�nitions of Inside for subclasses of spBoundary will do more detailed and complex calculations.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 151

27.6 spBoundaryReadData (Internal)

void spBoundaryReadData(sp Link)

Link - The spBoundary link whose data is to be read in.
Return value - There is no return value.

Reads in the data in an spBoundary data �le and stores it in the Data variable as a vector of
six
oats. The other spBoundary methods depend on this ReadData function always being used
to load in spBoundary data.

28 spTerrain

public class spTerrain extends spBoundary

spTerrain is a specialization of spBoundary that allows much more complex boundaries to be
speci�ed very e�ciently. An spLocale can make use of either an spBoundary or an spTerrain.

The shared class spTerrain inherits all the instance variables and functions of the classes: sp-
Boundary (Section 27) and spLinking (Section 18). The class spTerrain de�nes the following in-
stance variables, with the variables in the external API in bold and the variables that are fun-
damental in the sense that they could not be properly supported by an application programmer
underlined:

spTerrainC - Class descriptor (Section 15.1).

The class spTerrain de�nes the following functions:

spTerrainNew - Creates spTerrain given its URL (Section 28.1).
spTerrainBelow - Calculates boundary intercept (Section 28.2).
spTerrainAbove - Calculates boundary intercept (Section 28.3).
spTerrainInside - Determines whether point is within terrain (Section 28.4).

spTerrainReadData - Reads spTerrain data (Section 28.5).

spTerrain objects are implemented as a collection of triangles that de�ne a
oor and/or ceiling.
A terrain model is quite similar to a 3D graphic model and can be computed from a graphic models.
However, a terrain model is organized in such a way that the methods Inside, Below and Above
can be implemented extremely e�ciently.

The triangles in a terrain can overlap so as to represent a multi-level
oor. In that case, the
points returned by spTerrainBelow and spTerrainAbove will depend on the altitude of the input
point.

The key virtue of spTerrains is that they allow very complex boundary outlines (including
volumetric holes) to be de�ned and yet allow the very rapid determination of the intersection of
vertical lines with the boundary. spTerrains are used for two quite di�erent things: supporting
terrain following and checking whether or not an object is within a boundary.

MERL-TR-97-11 December, 1997

152 (Internal) Spline Version 3.0 API

Another area where spTerrain goes beyond the basic spBoundary class is that each triangle in
an spTerrain can be associated with a tag value. The methods Below, Above, and Inside return
these tag values rather than just zero and one.

If a tag value is positive then it indicates that a triangle is part of the terrain. If a tag value
is zero, this indicates that the associated triangle should be ignored as if it did not exist. If a tag
value is negative then it indicates that a triangle acts as a barrier that hides the terrain from certain
points of view. As illustrated below, this is useful for creating certain kinds of holes in terrains.

spTerrainBelow locates the highest (along the Y axis) triangle with a non-zero tag that is below
the query point. If there is such a triangle and it has a positive tag, then this tag is returned.
Otherwise, zero is returned.

spTerrainAbove is identical to spTerrainBelow except that it locates the lowest (along the Y
axis) triangle with a non-zero tag that is above the query point and returns this tag if it is positive.

spTerrainInside determines whether a query point is in the interior of a terrain. If spTerrain-
Above and spTerrainBelow both return positive values given the query point, then spTerrainInside
returns what spTerrainBelow returned. Otherwise, zero is returned.

As an example, consider the two-dimensional terrain cross section illustrated below. spTerrain-
Below applied to the point X returns 3, while spTerrainBelow applied to Y returns 0. Therefore,
X is inside the terrain while Y is not.

4 4 4 4 4 4 4
X

3 3 3 3 3 3 3
-1 -1 -1 -1 -1 -1 -1

Y
-1 -1 -1 -1 -1 -1 -1
2 2 2 2 2 2 2

1 1 1 1 1 1 1

The �le speci�ed by the URL in an spTerrain has the following format. The �rst line speci�es
the volume of the terrain, which may be only approximate. The �rst part of the �le is a list of
points that are vertices of triangles. The second part of the �le is a list of triangles using these
points. The values X0, Y0, Z0, and so on are
oats specifying the X/Y/Z coordinates of points.

VOLUME=V
<integerNumPoints>
X0 Y0 Z0
X1 Y1 Z1
...
<integerNumTriangles>
T0P1 T0P2 T0P3 Tag0
T1P1 T1P2 T1P3 Tag1
...

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 153

The values T0P1, T0P2, T0P3, and so on are integers identifying points from the �rst part of
the �le. (Note that the identi�cation of points is zero based with the �rst point numbered zero.)
The values Tag0, Tag1, and so on are integer tag values. If a tag is omitted it defaults to one. (The
way negative tags are used was selected so that a terrain with no explicitly speci�ed tags is useful
as the boundary of a locale.

As an example, the following shows a trivial 2-triangle terrain.

VOLUME=0.25
4
0.0 0.0 0.0
0.0 0.0 1.0
1.0 0.0 0.0
0.0 1.0 0.0
2
0 1 2 1
4 1 2 4

28.1 spTerrainNew

sp spTerrainNew(spFixedAscii URL)

URL - URL of spTerrain to be created.
Return value - The newly constructed object.

Creates a new object of the class spTerrain, with the local process as its owner. In addition,
sets the URL of the spTerrain as speci�ed.

28.2 spTerrainBelow

long spTerrainBelow(sp Terrain, spVector P, spVector Q)

Terrain - The spTerrain used as the reference.
P - The point that may be above the terrain.
Q - Modi�ed to re
ect position below P on terrain.

Return value - Non-zero if there is a terrain point below the input position.

This is basically identical to spBoundaryBelow except that it operates on the more detailed and
complex information speci�ed by an spTerrain object. spTerrainBelow locates the highest (along
the Y axis) triangle with a non-zero tag that is below the query point. If there is such a tag and it
is positive, it is returned. Otherwise zero is returned.

MERL-TR-97-11 December, 1997

154 (Internal) Spline Version 3.0 API

28.3 spTerrainAbove

long spTerrainAbove(sp Terrain, spVector P, spVector Q)

Terrain - The spTerrain object used as a reference.
P - The point that may be below the terrain.
Q - Modi�ed to re
ect position above P on boundary.

Return value - Non-zero if there is a terrain point above the input point.

This is basically identical to spBoundaryAbove except that it operates on the more detailed and
complex information speci�ed by an spTerrain object. spTerrainAbove locates the lowest (along
the Y axis) triangle with a non-zero tag that is above the query point. If there is such a tag and it
is positive, it is returned. Otherwise zero is returned.

28.4 spTerrainInside

long spTerrainInside(sp Terrain, spVector P)

Terrain - The spTerrain used as the reference.
P - The point that may be within the terrain.

Return value - Non-zero if the input position is inside the boundary.

This is basically identical to spBoundaryInside except that it operates on the more detailed and
complex information speci�ed by an spTerrain object. spTerrainInside determines whether a query
point is in the interior of a terrain. If spTerrainAbove and spTerrainBelow both return non-zero
given the query point, then spTerrainInside returns what spTerrainBelow returned. Otherwise it
returns zero.

28.5 spTerrainReadData (Internal)

void spTerrainReadData(sp Link)

Link - The spTerrain link whose data is to be read in.
Return value - There is no return value.

Reads in terrain data and stores it in memory in an internal format. The other spTerrain
methods depend on this ReadData function always being used to load in spBoundary data.

29 spClass (Fundamental)

public class spClass implements spLinking

An spClass object describes the layout of the data in the memory representation of a shared
object class. The URL of an spClass object identi�es a �le that contains this information. This �le
is created by the SPOT (Section 1.6) Java preprocessor supporting the de�nition of shared classes.
The Data variable of an spClass object is a vector of instance variable descriptors that specify
information about the shared and native instance variables de�ned for the class.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 155

spClass objects are used extensively in the internal operation of the system. When writing
applications they have important uses as well, but primarily only as opaque identi�ers that are
passed as arguments to functions like spClassExamine (Section 29.23).

In addition, knowing the identity of the class descriptor of an object is very useful for runtime
dispatching in an application. For example, an application might perform the following test to
determine whether an object X is a direct instance of the class spThing.

spClassEq(spGetClass(X), spThingC())

(The above expression returns False if X is an instance of a subclass of spThing.) An application
can perform the following test to determine whether X is an instance of spThing or any subclass
of spThing.

spClassLeq(spGetClass(X),spThingC())

The shared class spClass inherits all the instance variables and functions of the class spLinking
(Section 18). The class spClass de�nes the following instance variables, with the variables in the
external API in bold and the variables that are fundamental in the sense that they could not be
properly supported by an application programmer underlined:

spClassC - Class descriptor (Section 15.1).
ClassName - Name string (Section 29.1).
LoadData - Triggers reading of link data (Section 29.2).

ReadDataFn - Data reading function (Section 29.3).
SelectFn - Action function (Section 29.4).

Superclasses - Containing class (Section 29.5).
NumSuperclasses - Number of superclasses (Section 29.6).

Size - Minimum memory size (Section 29.7).
Level - Depth of class in class hierarchy (Section 29.8).

LocalO�set - Local data o�set (Section 29.9).
SharedO�set - Shared data o�set (Section 29.10).

SharedBitNum - Highest shared bit used (Section 29.11).
LocalBitNum - Highest local bit used (Section 29.12).

TimeStampO�sets - O�sets of spTimeStamp variables in object (Section 29.13).
SendViaLocale - Indicates instances are communicate via locales (Section 29.14).
SendViaTCP - Indicates instances are communicate via TCP (Section 29.15).
NumVariables - Number of instance variables (Section 29.16).
MethodTable - Table of pointers to methods (Section 29.17).

MERL-TR-97-11 December, 1997

156 (Internal) Spline Version 3.0 API

The class spClass de�nes the following functions:

spClassNewObj - Creates object instance. (Section 29.18).
spClassNewLink - Creates link instance. (Section 29.19).

spClassNew - Creates spClass given URL (Section 29.20).
spClassEq - Tests if two classes are equal (Section 29.21).
spClassLeq - Tests if class is a subclass of another class (Section 29.22).

spClassExamine - Looks at current objects (Section 29.23).
spClassMonitor - Looks at current and future objects (Section 29.24).
spClassReadData - Reads class description (Section 29.25).

Note that the various instance variables above primarily specify information only about the
instance variables of a shared class as opposed to about methods. The reason for this is that shared
classes are primarily passive data structures. It is therefore better in many ways to view the world
model as a database rather than a collection of objects. The key focus is on communicating this
data, not on the complex interaction of methods. Users can de�ne new classes with as many new
data variables to be communicated as they like.

It is possible to de�ne methods when de�ning a new shared class; however, except for a vary few
methods that the system calls nothing will be done internally with these methods. (An application
may take good advantage of them, however.) As in any extendable object oriented environment
information is maintained at run time about which methods are associated with which classes so
that the can be accesses appropriately.

This document describes the various built-in shared classes. These built-in classes are speci�ed
in a special way and are automatically loaded when the world model is initialized. Except for a
few internal objects that are not visible to an application, the spClass objects corresponding to
these classes are the only objects that exist in the world model immediately after a world model is
created using spWMNew (Section 5.14).

New classes de�ned by an application are handled in exactly the same way as any other kind of
link object. They must be created by some process and are then communicated to other processes.
All the variables of the class spClass itself are local. Most of them are speci�ed by the spClass data
�le. A few can be speci�ed by the local process.

A peculiarity of the class hierarchy is that the class of the class spClass is spClass. This
circularity is a logical paradox, but does not present any practical problems.

29.1 ClassName

transient public String ClassName; //* [spAscii32:32] readonly

spAscii32 spClassGetClassName(sp Object)

void spClassiSetClassName(sp Object, spAscii32 X)

spAscii32 sqClassGetClassName(sp Object)
void sqClassSetClassName(sp Object, spAscii32 X)

For debugging convenience, spClass objects have a local instance variable called the ClassName

that contains an ASCII representation of the name of the class.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 157

The ClassName is a string no more than 31 characters long. It is set by spClassReadData
when a class is loaded from a class descriptor �le and cannot be changed. Information about the
ClassName is maintained separately in each process.

29.2 LoadData

transient public boolean LoadData; //* [spBoolean]

spBoolean spClassGetLoadData(sp Object)
void spClassSetLoadData(sp Object, spBoolean X)

spBoolean sqClassGetLoadData(sp Object)
void sqClassSetLoadData(sp Object, spBoolean X)

If an spClass object describes an spLinking class, then the LoadData local variable speci�es
whether the data corresponding to links in that class should be fetched and loaded into memory.
By default the LoadData bit is False, except that the system sets it to True for the classes spClass,
spLocale, spBoundary, and every subclass of these classes. LoadData must be True for these kinds
of links because the system itself uses the data pointed to by these links. If a process wants to use
the data in any other kind of link, it must �rst set LoadData True for that kind of link. Information
about the LoadData is maintained separately in each process.

29.3 ReadDataFn (Fundamental)

transient public int ReadDataFn; //* [void *] internal

void * spClassiGetReadDataFn(sp Object)
void spClassiSetReadDataFn(sp Object, void * X)

void * sqClassGetReadDataFn(sp Object)
void sqClassSetReadDataFn(sp Object, void * X)

Each kind of spLinking class de�nes a ReadData function that can be used to read the data
corresponding to a link. However, a local process may want to read the data in a special way. (For
example, spVisual has to read spVisualDe�nition link data into the scene graph representation
appropriate for the render being used.) An application can override the ReadData function de�ned
as part of a class by storing a pointer to a locally de�ned function in the ReadDataFn variable
of the associated spClass descriptor. This local function must take the same arguments as any
ReadData function and must obey the same restrictions.

The ReadDataFn is initially set to Null, indicating that the ReadData function de�ned by the
class should be used. An application can set it to a di�erent locally de�ned function. Information
about the ReadDataFn is maintained separately in each process.

MERL-TR-97-11 December, 1997

158 (Internal) Spline Version 3.0 API

29.4 SelectFn (Fundamental)

transient public int SelectFn; //* [void *] internal

void * spClassiGetSelectFn(sp Object)
void spClassiSetSelectFn(sp Object, void * X)

void * sqClassGetSelectFn(sp Object)
void sqClassSetSelectFn(sp Object, void * X)

Each kind of spMultilinking class de�nes a Select function that can be used to which data
corresponding to a multilink should be used. However, a local process may want to make a selection
in a special way. (For example, spVisual has to make a selection based on the capabilities of the
render being used.) An application can override the Select function de�ned as part of a class by
storing a pointer to a locally de�ned function in the SelectFn variable of the associated spClass
descriptor. This local function must take the same arguments as any Select function and must obey
the same restrictions.

The SelectFn is initially set to Null, indicating that the Select function de�ned by the class
should be used. An application can set it to a di�erent locally de�ned function. Information about
the SelectFn is maintained separately in each process.

29.5 Superclasses (Internal)

transient public int Superclasses; //* [void *] readonly internal

void * spClassiGetSuperclasses(sp Object)
void spClassiSetSuperclasses(sp Object, void * X)

void * sqClassGetSuperclasses(sp Object)
void sqClassSetSuperclasses(sp Object, void * X)

Except for the root class sp, every shared class has at least one superclass that is another shared
class. The superclasses are stored in a local instance variable called the Superclasses.

The Superclasses of an spClass object point to a vector of pointers to other spClass objects.
The only exception to this is that the Superclass of the class sp is Null. The Superclasses are set
by spClassReadData when a class is loaded from a class descriptor �le and cannot be changed.
Information about the Superclasses is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 159

29.6 NumSuperclasses (Internal)

transient public short NumSuperclasses; //* [short] readonly internal

short spClassiGetNumSuperclasses(sp Object)
void spClassiSetNumSuperclasses(sp Object, short X)

short sqClassGetNumSuperclasses(sp Object)
void sqClassSetNumSuperclasses(sp Object, short X)

Except for the root class sp, every shared class has at least one superclass that is another shared
class. The number of superclasses is stored in a local instance variable called the NumSuperclasses.

The NumSuperclasses of an spClass object is a non-negative integer. The NumSuperclasses is
set by spClassReadData when a class is loaded from a class descriptor �le and cannot be changed.
Information about the NumSuperclasses is maintained separately in each process.

29.7 Size (Internal)

transient public short Size; //* [short] internal

short spClassiGetSize(sp Object)
void spClassiSetSize(sp Object, short X)

short sqClassGetSize(sp Object)
void sqClassSetSize(sp Object, short X)

The Size local instance variable of an spClass speci�es the minimum amount of memory that
must be allocated when creating an object that is an instance of the class. The memory allocated
is divided into �ve parts as follows:

(1) Space for an old copy of the shared data.
(2) Space for the local data.
(3) Space for the Marker (Section 15.5), LocalPtr (Section 15.3) and NextPtr (Section 15.4).

(The pointer that identi�es a shared object points to this part of the memory for the object.)
(4) Space for the shared data. (The messages send between processes consist of this part of the

data plus an appropriate portion of the beginning of part (5) below.)
(5) Extra space for various purposes. One use of this space is to store spFixedAscii values.
The Size of a class is a 16-bit integer that is the sum of the lengths of parts (1) through (4)

above. It is set by spClassReadData when a class is loaded and cannot be changed. Information
about the Size is maintained separately in each process.

MERL-TR-97-11 December, 1997

160 (Internal) Spline Version 3.0 API

29.8 Level (Internal)

transient public short Level; //* [short] internal

short spClassiGetLevel(sp Object)
void spClassiSetLevel(sp Object, short X)

short sqClassGetLevel(sp Object)
void sqClassSetLevel(sp Object, short X)

The Level local instance variable of a class contains the minimum depth of the class in the class
hierarchy. It is used to speed up testing of whether one class is a subclass of another. It must be a
minimum because a given class can have several superclasses.

The Level instance variable of a class is a 16-bit integer. It is set by spClassReadData when
a class is loaded and cannot be changed. Information about the Level is maintained separately in
each process.

29.9 LocalO�set (Internal)

transient public short LocalOffset; //* [short] internal

short spClassiGetLocalOffset(sp Object)
void spClassiSetLocalOffset(sp Object, short X)

short sqClassGetLocalOffset(sp Object)
void sqClassSetLocalOffset(sp Object, short X)

The LocalO�set local instance variable of a class contains the number of bytes between the
beginning of the entire block of data corresponding to an instance of the class and the beginning
of the local data.

The LocalO�set of a class is a 16-bit integer. It is set by spClassReadData when a class is
loaded and cannot be changed. Information about the LocalO�set is maintained separately in each
process.

29.10 SharedO�set (Internal)

transient public short SharedOffset; //* [short] internal

short spClassiGetSharedOffset(sp Object)
void spClassiSetSharedOffset(sp Object, short X)

short sqClassGetSharedOffset(sp Object)
void sqClassSetSharedOffset(sp Object, short X)

The SharedO�set local instance variable of a class contains the number of bytes between the
beginning of the entire block of data corresponding to an instance of the class and the beginning
of the place where the LocalPtr and NextPtr reside.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 161

The SharedO�set of a class is a 16-bit integer. It is set by spClassReadData when a class is
loaded and cannot be changed. Information about the SharedO�set is maintained separately in
each process.

29.11 SharedBitNum (Internal)

transient public short SharedBitNum; //* [short] internal

short spClassiGetSharedBitNum(sp Object)
void spClassiSetSharedBitNum(sp Object, short X)

short sqClassGetSharedBitNum(sp Object)
void sqClassSetSharedBitNum(sp Object, short X)

The SharedBitNum local instance variable of a class is a bit mask that identi�es the highest used
bit in the SharedBits variable for the class. (This information is needed when de�ning subclasses
of the class in question.)

The SharedBitNum of a class is a 16-bit integer. It is set by spClassReadData when a class is
loaded and cannot be changed. Information about the SharedBitNum is maintained separately in
each process.

29.12 LocalBitNum (Internal)

transient public short LocalBitNum; //* [short] internal

short spClassiGetLocalBitNum(sp Object)
void spClassiSetLocalBitNum(sp Object, short X)

short sqClassGetLocalBitNum(sp Object)
void sqClassSetLocalBitNum(sp Object, short X)

The LocalBitNum local instance variable of a class is a bit mask that identi�es the highest used
bit in the LocalBits variable for the class. (This information is needed when de�ning subclasses of
the class in question.)

The LocalBitNum of a class is a 16-bit integer. It is set by spClassReadData when a class is
loaded and cannot be changed. Information about the LocalBitNum is maintained separately in
each process.

MERL-TR-97-11 December, 1997

162 (Internal) Spline Version 3.0 API

29.13 TimeStampO�sets (Fundamental and Internal)

transient public int TimeStampOffsets; //* [int *] internal

int * spClassiGetTimeStampOffsets(sp Object)
void spClassiSetTimeStampOffsets(sp Object, int * X)

int * sqClassGetTimeStampOffsets(sp Object)
void sqClassSetTimeStampOffsets(sp Object, int * X)

The TimeStampO�sets local instance variable of a class is a pointer to a zero terminated vector
of o�sets of the instance variables of the class that contain spTimeStamp values or Null if the class
has no spTimeStamp instance variables. (This information is needed when adjusting time stamps
in messages received to correct for clock di�erences.)

The TimeStampO�sets is of type a pointer to 32-bit integer. It is set by spClassReadData when
a class is loaded and cannot be changed. Information about the TimeStampO�sets is maintained
separately in each process.

29.14 SendViaLocale (Fundamental and Internal)

transient public boolean SendViaLocale; //* [spBoolean] internal

spBoolean spClassiGetSendViaLocale(sp Object)
void spClassiSetSendViaLocale(sp Object, spBoolean X)

spBoolean sqClassGetSendViaLocale(sp Object)
void sqClassSetSendViaLocale(sp Object, spBoolean X)

The SendViaLocale local instance variable of a class speci�es whether instances of the class are
communicated by the ordinary locale-based communication methods.

The SendViaLocale instance variable of a class is a boolean value. It is set by spClassReadData
when a class is loaded and cannot be changed. Information about the SendViaLocale is maintained
separately in each process.

29.15 SendViaTCP (Fundamental and Internal)

transient public boolean SendViaTCP; //* [spBoolean] internal

spBoolean spClassiGetSendViaTCP(sp Object)
void spClassiSetSendViaTCP(sp Object, spBoolean X)

spBoolean sqClassGetSendViaTCP(sp Object)
void sqClassSetSendViaTCP(sp Object, spBoolean X)

The SendViaTCP local instance variable of a class speci�es whether instances of the class are
communicated by TCP to server processes. Exactly what kind of server a given class is sent to is
built into the system core. For example beacons and beacon examines are sent to beacon servers.
Note that some kinds of objects (e.g., interval callbacks) are not sent anywhere.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 163

The SendViaTCP instance variable of a class is a boolean value. It is set by spClassReadData
when a class is loaded and cannot be changed. Information about the SendViaTCP is maintained
separately in each process.

29.16 NumVariables (Internal)

transient public int NumVariables; //* [long] internal

long spClassiGetNumVariables(sp Object)
void spClassiSetNumVariables(sp Object, long X)

long sqClassGetNumVariables(sp Object)
void sqClassSetNumVariables(sp Object, long X)

The NumVariables local instance variable of a class contains the number of instance variables
de�ned for the class, including those inherited from the Superclasses. The NumVariables of a class
is a 16-bit integer. It is set by spClassReadData when a class is loaded and cannot be changed.
Information about the NumVariables is maintained separately in each process.

29.17 MethodTable (Fundamental and Internal)

transient public int MethodTable; //* [void *] readonly internal

void * spClassiGetMethodTable(sp Object)
void spClassiSetMethodTable(sp Object, void * X)

void * sqClassGetMethodTable(sp Object)
void sqClassSetMethodTable(sp Object, void * X)

The MethodTable local instance variable of a class points to a table of pointers to functions
implementing methods. This table includes those inherited from the Superclasses. The Method-
Table of a class is a pointer to a table of pointers to subroutines implementing methods. It (and
the table it points to) are initialized by spClassReadData when a class is loaded and cannot be
changed. Information about the MethodTable is maintained separately in each process.

29.18 spClassNewObj (Fundamental)

sp spClassNewObj(sp ClassDescriptor, long Extra)

ClassDescriptor - spClass of object to create.
Extra - Bytes of spFixedAscii storage needed.

Return value - The newly constructed object.

This is a general operation for creating an instance of any shared object class. Given an spClass
descriptor of a shared object class, spClassNewObj creates an instance of the class. If a shared
object class has (either directly or by inheritance) a string variable with the C type spFixedAscii,
storage for the string value must be allocated at the moment the object is created. The Extra
argument speci�es how many characters of storage are needed.

MERL-TR-97-11 December, 1997

164 (Internal) Spline Version 3.0 API

When the storage for an object has been allocated, the values of all instance variables are set
to all bits zero. After this, the Initialization functions are called for the class and all its ancestors
in order to properly initialize any variables that need to have non-zero values. The Initialization
functions are called starting with spInitialization and then working down to the most speci�c
class, so that the Initialization function for a class can override the Initialization function for its
Superclasses.

29.19 spClassNewLink (Fundamental)

sp spClassNewLink(sp ClassDescriptor, spFixedAscii URL)

ClassDescriptor - spClass of link object to create.
URL - URL of link object.

Return value - The newly constructed object.

This is a general operation for creating an instance of a subclass of spLinking or spMultilinking.
Given an spClass descriptor of a link class, spClassNewLink creates an instance of the class by
calling spClassNewObj. The URL argument speci�es the URL to use when creating the object.
This is stored in the link created and then the ReadData function for the link is called. This is
needed so that the Data in the link will be loaded immediately when the link is created. Just as
the New functions for objects in general should start by calling spClassNewObj, the New functions
for links should start by calling spClassNewLink.

29.20 spClassNew

sp spClassNew(spFixedAscii URL)

URL - URL of the spClass to be created.
Return value - The newly constructed object.

Creates a new object of the class spClass, with the local process as its owner. In addition, sets
the URL of the spClass as speci�ed.

29.21 spClassEq

spBoolean spClassEq(sp ClassA, sp ClassB)

ClassA - An spClass to compare.
ClassB - An spClass to compare.

Return value - True if the wo classes are equal.

This predicate tests whether two spClass objects represent the same class. True is returned if
the two spClasses being compared represent the same class, and False otherwise. This is not the
same as just using the operator == because two spClass objects with the same URL represent the
same class even if they are distinct objects. It is very important that == never be used to compare
spClass objects.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 165

29.22 spClassLeq

spBoolean spClassLeq(sp Subclass, sp Superclass)

Subclass - An spClass that might be a subclass.
Superclass - An spClass that might be a superclass.

Return value - True if class is equal to (a sublcass of) Superclass.

This predicate tests for subclass relationships between spClass class descriptors. True is returned
if the class being tested is either equal to Superclass or a descendent of Superclass in the shared
class hierarchy. For example:

spClassLeq(spGetClass(spAvatorNew()), spThingGetC()) == TRUE
spClassLeq(spThingGetC(), spThingGetC()) == TRUE
spClassLeq(spLinkGetC(), spThingGetC()) == FALSE

29.23 spClassExamine (Fundamental)

spBoolean spClassExamine(sp C, spMask Mask, spFn F, void * Data)

C - The class whose objects are to be examined.
Mask - spMask (Section 7) limiting the objects considered.

F - Operation (Section 6) used to examine the objects.
Data - Passed to the operation each time it is called (modi�able).

Return value - True if examining stopped because F returned True.

Applies an operation F to all the objects in a class. This includes objects that are instances of
subclasses of the class as well as instances of the class itself. However, it only includes objects that
are current in the local world model copy and it only includes objects that are compatible with
the speci�ed Mask. There is no guarantee of the order in which F will be applied to objects. If
F ever returns True, then examining ceases and spClassExamine returns True. Otherwise False is
returned.

29.24 spClassMonitor

sp spClassMonitor(sp C, spMask Mask, spFn F, void * Data)

C - Monitored objects are instances of this class or its subclasses.
Mask - spMask (Section 7) limiting the objects considered.

F - Operation (Section 6) used to monitor the objects.
Data - Passed to the operation each time it is called (modi�able).

Return value - The interval callback produced, if any.

Applies an operation to present and future objects in the local world model copy that are in
the indicated class (and its subclasses) and are compatible with Mask. If F ever returns True, then
monitoring ceases.

This is done by �rst examining the objects that currently exist and then creating an alerter
(Section 43) that applies F to objects that appear in the future. If a alerter is produced, it is
returned. If an alerter is returned, monitoring can be terminated by removing the alerter object.

MERL-TR-97-11 December, 1997

166 (Internal) Spline Version 3.0 API

The following shows how spClassMonitor is implemented using spClassExamine and a alerter.

sp spClassMonitor(sp C, spMask mask, spFn F, void * Data) {
sp A;
if (spClassExamine(C, Mask, F, Data)) return NULL;
A = spAlerterNew(C, -1, spJustNew, NULL, F, Data);
spAlerterSetMask(A, Mask);
return A;

}

29.25 spClassReadData (Fundamental and Internal)

void spClassReadData(sp Link)

Link - The spClass link whose Data is to be read in.
Return value - There is no return value.

Fills in the Data in an spClass object based on the information in the �le speci�ed by the
URL. This includes �lling in all the instance variables of an spClass (as distinct from a link in
general). The Data variable of an spClass object is a vector of instance variable descriptors that
specify information about the instance variables de�ned for the class. The system depends on this
ReadData function always being used to load in class data.

30 spThing

public class spThing implements spPositioning, spDisplaying

This class is used to represent objects in the virtual world created by an application, as opposed
to objects that are part of the way the software platform operates internally. The key de�ning
characteristics of spThing objects are that they have positions and visual de�nitions and occupy
volumes of space.

The shared class spThing inherits all the instance variables and functions of the classes: spPosi-
tioning (Section 16) and spDisplaying (Section 17). The class spThing de�nes the following instance
variables, with the variables in the external API in bold and the variables that are fundamental in
the sense that they could not be properly supported by an application programmer underlined:

spThingC - Class descriptor (Section 15.1).

The class spThing de�nes the following functions:

spThingNew - Create new spThing object. (Section 15.28).

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 167

31 spRoot

public class spRoot extends spThing

An spRoot is an spThing that corresponds to a logical whole. For example, if the torso was
the highest level object in an articulated humanoid �gure, then it should be created as an spRoot
object rather than merely an spThing. In addition, it is expected that in general, only spRoot
objects will have locales as their direct parents. (It is permissible to put an spRoot under another
object as long as it is logically possible that the object might sometimes move on its own.)

The class spRoot is included because of its fundamental signi�cance to computer simulations
that want to interact with assemblages of objects in the virtual world.

The shared class spRoot inherits all the instance variables and functions of the classes: spThing
(Section 30), spPositioning (Section 16) and spDisplaying (Section 17). The class spRoot de�nes
the following instance variables, with the variables in the external API in bold and the variables
that are fundamental in the sense that they could not be properly supported by an application
programmer underlined:

spRootC - Class descriptor (Section 15.1).

The class spRoot de�nes the following functions:

spRootNew - Create new spRoot object. (Section 15.28).

For the convenience of the application writer, spPositioningLocalize is automatically called
every cycle on every locally owned spRoot object. This is done with the Destination argument
Null and the ChooseSmallest argument False. In general, application writers can control when
spPositioningLocalize is called merely be deciding which objects should be spRoot objects. The
typical application need not contain any calls on spPositioningLocalize.

32 spAvatar

public class spAvatar extends spRoot

The class spAvatar is a specialization of spRoot that corresponds to an active entity. That is
to say, it is the avatar of a human user or the avatar of a computer simulated agent that wishes to
interact in more-or-less the same way as if it were a human user.

MERL-TR-97-11 December, 1997

168 (Internal) Spline Version 3.0 API

Internally, the system does nothing special with instances of the class spAvatar. Rather, the
class is included because of its fundamental signi�cance to computer simulations that want to
interact with human users and other computer simulated agents.

The shared class spAvatar inherits all the instance variables and functions of the classes: spRoot
(Section 31), spThing (Section 30), spPositioning (Section 16) and spDisplaying (Section 17). The
class spAvatar de�nes the following instance variables, with the variables in the external API in
bold and the variables that are fundamental in the sense that they could not be properly supported
by an application programmer underlined:

spAvatarC - Class descriptor (Section 15.1).
shared IsBot - True if avatar is not representing a person (Section 32.1).

The class spAvatar de�nes the following functions:

spAvatarNew - Create new spAvatar object. (Section 15.28).

32.1 IsBot

public boolean IsBot; //* [spBoolean]

spBoolean spAvatarGetIsBot(sp Object)
spBoolean spAvatarGetOldIsBot(sp Object)
void spAvatarSetIsBot(sp Object, spBoolean X)

spBoolean sqAvatarGetIsBot(sp Object)
spBoolean sqAvatarGetOldIsBot(sp Object)
void sqAvatarSetIsBot(sp Object, spBoolean X)

The IsBot shared instance variable of an spAvatar speci�es whether the avatar represents a
human being or a computer simulation. Speci�cally, if the IsBot bit is True, then the avatar
represents a computer simulation of some kind. If the IsBot bit is False, then the avatar represents
a human user.

The IsBot bit of an spAvatar is given a default value of False. Information about the IsBot bit
is shared between processes.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 169

33 spAudioSource (Fundamental)

public class spAudioSource implements spPositioning, spDisplaying, spAudioParameters

spAudioSource objects are used to represent sources of sound in the virtual world. They are
used in two primary ways. Most simply, you can connect up with a processes that captures sound
with a microphone by creating an spSpeaking object (Section 36). This indirectly leads to the
creation of an appropriate spAudioSource object. Alternatively, you can create spAudioSource
objects yourself and play sound e�ects through them using spSoundPlay (Section 25.3). Since
spAudioSource is a subclass of spPositioning, sound sources can be moved around and oriented like
any other spThing.

The shared class spAudioSource inherits all the instance variables and functions of the classes:
spPositioning (Section 16), spDisplaying (Section 17) and spAudioParameters (Section 23). The
class spAudioSource de�nes the following instance variables, with the variables in the external
API in bold and the variables that are fundamental in the sense that they could not be properly
supported by an application programmer underlined:

spAudioSourceC - Class descriptor (Section 15.1).
Duration - Duration of packets to be read (Section 33.1).

ExternalFormat - Format of sound data when communicated (Section 33.2).

The class spAudioSource de�nes the following functions:

spAudioSourceSetup - Prepares for writing (Section 33.3).
spAudioSourceWrite - Writes sound data through audio source (Section 33.4).
spAudioSourceRead - Reads sound data (Section 33.5).
spAudioSourceNew - Create new spAudioSource object. (Section 15.28).

spAudioSources can be localized point sources or di�use sources. This is speci�ed using the
InRadius and OutRadius variables inherited from spDisplaying. If the InRadius is zero (its default
value), then the source is considered to be a point source. Sound drops o� in intensity as you move
away and is localized to the direction of the source. If the InRadius is not zero, then the source is
treated as di�use|coming with equal intensity from every point within the InRadius of the source.
Outside the InRadius, the sound is localized to the direction of the source and drops o� to reach
zero at the OutRadius.

MERL-TR-97-11 December, 1997

170 (Internal) Spline Version 3.0 API

33.1 Duration

transient public int Duration; //* [spDuration] readonly

spDuration spAudioSourceGetDuration(sp Object)

void spAudioSourceiSetDuration(sp Object, spDuration X)

spDuration sqAudioSourceGetDuration(sp Object)
void sqAudioSourceSetDuration(sp Object, spDuration X)

spAudioSource objects have a shared instance variable called the Duration, which speci�es the
lengths of the chunks of sound data that can be read using spAudioSourceRead. This is speci�ed
in milliseconds.

The Duration is initialized to zero when an spAudioSource is created, which has the meaning
that audio is not being written or read via the spAudioSource. It is set by the system when spAu-
dioSourceSetup is called. It should not be modi�ed directly by application programs. Information
about the Duration is maintained separately in each process.

33.2 ExternalFormat (Internal)

transient public long ExternalFormat; //* [spFormat] internal

spFormat spAudioSourceiGetExternalFormat(sp Object)
void spAudioSourceiSetExternalFormat(sp Object, spFormat X)

spFormat sqAudioSourceGetExternalFormat(sp Object)
void sqAudioSourceSetExternalFormat(sp Object, spFormat X)

spAudioSource objects have a local instance variable called the ExternalFormat, which speci�es
the format (i.e., encoding, samples per second, etc.) used when communicating the data between
process.

This format is of type spFormat (Section 14). It is initialized to zero, which has the meaning
that audio is not being written or read via the spAudioSource. The ExternalFormat is set by
the system when spAudioSourceSetup is called and should not be modi�ed directly by application
programs. Information about the ExternalFormat is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 171

33.3 spAudioSourceSetup

void spAudioSourceSetup(sp S, spBoolean W, spBoolean R, spFormat F, spDuration D)

S - spAudioSource to be initialized.
W - True enables writing.
R - True enables reading.
F - Format to use for audio data in memory.
D - Audio chunk size in milliseconds.

Return value - There is no return value.

Sets up the bu�ering and communication that is needed to support audio I/O. If W is True,
the source must be owned by spWMGetMe and things are set up so that spAudioSourceWrite can
be called. If R is True, things are set up so that spAudioSourceRead can be called. If neither are
True, audio bu�ering and communication are shut down, which saves signi�cant system resources.

Things are set up so that the next chunk of data written and/or read will begin at the current
moment. If you want to cease writing and/or reading sound at some point, you can simply stop
calling spAudioSourceWrite and spAudioSourceRead. However, it is better to call spAudioSource-
Setup with the W and R arguments both False. In any event, you must call spAudioSourceSetup
again to resynchronize I/O with the current moment before resuming writing and/or reading.

The Format and Duration of the spAudioSource are set to F and D respectively. Either value
can be speci�ed as zero, in which case the system picks a reasonable value to use. For the Format,
this is spFormat8LINEAR16MONO (Section 14), which speci�es 8000, 16-bit, linearly encoded,
mono samples per second. The default Duration is 40 milliseconds. The ExternalFormat is set to
a reasonable value by the system, such as 8000, 8-bit, mu-law encoded, mono samples per second.

As discussed in [\Time Synchronization in Spline", MERL technical report 96-09, April 1996],
a critical requirement is that for every chunk of sound read or written the duration in milliseconds
must be a value that corresponds to an exact integer number of samples. If the rate is divisible by
1000, then this requirement is trivial to satisfy. However, when this is not the case, the restriction
can be signi�cant. For example, CD quality sound is at the rate 44100, which implies that the
Duration must be a multiple of 10 milliseconds.

To make bu�ering work e�ciently, it is further required that the Duration in an spAudioSource
must be a divisor of a specially chosen internal number (a week in milliseconds). Since this number
has many divisors, this places only a small additional constraint on durations (basically they cannot
have any large prime divisors).

Lastly, to make communication easy, the Duration is required to be short enough so that the
whole chunk of data will �t into a single UDP message.

If the Duration passed to spAudioSourceSetup does not meet the criteria above, it is changed
by to the nearest duration (above or below) that does meet the criteria.

MERL-TR-97-11 December, 1997

172 (Internal) Spline Version 3.0 API

33.4 spAudioSourceWrite

void spAudioSourceWrite(sp Source, char * Data)

Source - spAudioSource to write data through.
Data - Sound data to be sent.

Return value - There is no return value.

Writes a chunk of data through an spAudioSource. The source must be an spAudioSource
owned by spWMGetMe. The Format and Duration of the Data must be as speci�ed when spAu-
dioSourceSetup was called.

It is required that the data must be in the future i.e., begin now or later. However, due to
limited bu�er sizes, the data must in general end less than a second in the future.

Each time spAudioSourceWrite is called, it is assumed that the data being transmitted exactly
follows the previous data transmitted. You are responsible for supplying the data before the time
it is needed, (but not more than a second before) with a margin for error of not more than a few
milliseconds outside these bounds. (Note you can only be writing one sequence of data chunks at
a time through a source.)

33.5 spAudioSourceRead

char * spAudioSourceRead(sp Source)

Source - The spAudioSource to read data from.
Return value - The sound data read.

Reads a chunk of sound data from an spAudioSource. The data returned has the Format
and Duration speci�ed when spAudioSourceSetup was called. It is identical to the data that
was written through the spAudioSource by the owner of the spAudioSource object, except that a
format conversion may have been applied and periods of very quiet sound may have been forced to
be exactly zero. (Signi�cant bandwidth can be saved by omitting the communication of blocks of
data corresponding to silence.)

It is required that the data read must refer to the past i.e., end now or earlier. (For instance,
you must wait at least Duration milliseconds before reading the �rst chunk of data form an spAu-
dioSource after calling spAudioSourceSetup.) However, due to limited bu�er sizes, the data must
in general begin less than a second in the past.

Each time spAudioSourceRead is called, it is assumed that the data being requested exactly
follows the previous data requested. You are responsible for asking for the data after the time
it is ready, (but not more than a second after) with a margin for error of not more than a few
milliseconds beyond these bounds.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 173

34 spBeacon

public class spBeacon implements spBeaconing

This class is the minimal embodiment of spBeaconing. It is needed because one cannot directly
make an instance of spBeaconing itself. spBeacon is appropriate to use when one merely wants to
label something without specifying an other information. Various subclasses of spBeacon specify
additional information.

The shared class spBeacon inherits all the instance variables and functions of the class spBea-
coning (Section 20). The class spBeacon de�nes the following instance variables, with the variables
in the external API in bold and the variables that are fundamental in the sense that they could
not be properly supported by an application programmer underlined:

spBeaconC - Class descriptor (Section 15.1).

The class spBeacon de�nes the following functions:

spBeaconNew - Creates beacon given URL (Section 34.1).

34.1 spBeaconNew

sp spBeaconNew(spFixedAscii Tag)

Tag - The tag of the spBeacon to be created.
Return value - The newly constructed object.

Creates a new object of the class spBeacon, with the local process as its owner. In addition,
sets the tag of the spBeacon as speci�ed.

Beacon tags must include a DNS name speci�cation. To ensure this, the following default is
applied to the Tag string provided. If the tag begins with just one / or a colon : then it is pre�xed
with //<HostName>. Where <HostName> is the DNS name of the machine the process is running on.
If the tag does not begin with / or colon then it is pre�xed with //<HostName>/. That is to say:

//string => //string
/string => //<HostName>/string
:string => //<HostName>:string
string => //<HostName>/string
=> //<HostName>/

Note that the defaulting to <HostName> is only useful for beacons that are used to communicate
between (or within) processes on a single machine. If a beacon is to be used to communicate
between machines, an explicit host name must be speci�ed.

Note that in certain situations, e.g., when running as a high security Java plugin, it may not
be possible for the system to determine the local host name. However, in this situation, the name
\localhost" can be used and will su�ce.

MERL-TR-97-11 December, 1997

174 (Internal) Spline Version 3.0 API

35 spPositionedBeacon

public class spPositionedBeacon implements spBeaconing, spPositioning

This class extends spBeacon by adding positional information. It allows one to create a beacon
that speci�es a particular location, e.g., in a locale. This is the kind of beacon that is typically
used as the target of an spBeaconGoto.

The shared class spPositionedBeacon inherits all the instance variables and functions of the
classes: spBeaconing (Section 20) and spPositioning (Section 16). The class spPositionedBeacon
de�nes the following instance variables, with the variables in the external API in bold and the
variables that are fundamental in the sense that they could not be properly supported by an
application programmer underlined:

spPositionedBeaconC - Class descriptor (Section 15.1).

The class spPositionedBeacon de�nes the following functions:

spPositionedBeaconNew - Create new spPositionedBeacon object. (Section 15.28).

36 spSpeaking

public class spSpeaking extends spPositionedBeacon

The audio renderer has the built-in capability of creating a sound source corresponding to the
sound captured by the microphone on a machine. To use this capability, you create an spSpeaking
beacon. (The name is mnemonic for the fact that you use this kind of beacon as the `mouth' of
an avatar.) The Transform of an spSpeaking beacon speci�es the position and orientation of the
sound created by the user.

The shared class spSpeaking inherits all the instance variables and functions of the classes:
spPositionedBeacon (Section 35), spBeaconing (Section 20) and spPositioning (Section 16). The
class spSpeaking de�nes the following instance variables, with the variables in the external API in
bold and the variables that are fundamental in the sense that they could not be properly supported
by an application programmer underlined:

spSpeakingC - Class descriptor (Section 15.1).

The class spSpeaking de�nes the following functions:

spSpeakingNew - Creates microphone beacon (Section 36.1).

Upon seeing the creation of an spSpeaking beacon, the appropriate audio rendering process
creates an spAudioSource sound source with the Live bit set to True and makes this source be
a child of the beacon. The audio renderer then starts outputting all the sound captured by the
microphone through this source. Outputting continues until the beacon is removed. To change the
position of the source, one merely needs to change the position of the beacon that is its Parent.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 175

36.1 spSpeakingNew

sp spSpeakingNew(spFixedAscii HostName)

HostName - DNS name of the audio rendering machine.
Return value - The newly constructed object.

Creates an spSpeaking beacon with a tag of the form "//<HostName>/spAudio" where the Host-
Name is a DNS address string (e.g., "server.cs.hoople.und.edu"). If HostName is Null, the name
of the machine you are on is used in the tag created.

When an audio rendering process running on machine X notices an spSpeaking beacon with
the tag "//X/spAudio", it creates an appropriate spAudioSource and starts to output sound. (This
can be done for several spSpeaking beacons at once.)

37 spHearing

public class spHearing extends spPositionedBeacon implements spAudioParameters

The audio renderer has the built-in capability of creating a localized sound image and playing
it through the headphones connected to a machine. To use this capability, you create an spHearing
beacon. (The name is mnemonic for the fact that you use this kind of beacon as the `ears' of an
avatar.) The Transform of an spHearing beacon speci�es the position and orientation from which
sound is being observed.

The shared class spHearing inherits all the instance variables and functions of the classes:
spPositionedBeacon (Section 35), spAudioParameters (Section 23), spBeaconing (Section 20) and
spPositioning (Section 16). The class spHearing de�nes the following instance variables, with the
variables in the external API in bold and the variables that are fundamental in the sense that they
could not be properly supported by an application programmer underlined:

spHearingC - Class descriptor (Section 15.1).

The class spHearing de�nes the following functions:

spHearingNew - Creates headphones beacon (Section 37.1).

Upon seeing the creation of an spHearing beacon, the appropriate spAudio process creates an
spAudioObserver and makes it a child of the beacon. It then starts routing localized sound from
this observer to the headphones. This continues until the beacon is removed.

spHearing inherits from spAudio parameters so that an application can exercise control over
various audio rendering parameters. As far as possible, the rendering process attempts to follow
the suggests made by an application. The exact parameters it is using at any moment are re
ected
in the spAudioObserver it creates.

You can change the Focus, Live, and Format variables in an spHearing at any time, in which
case the change will be followed (with up to a second or so delay) by the audio renderer. To change
the position from which sound is being observed, you merely need to change the position of the
spHearing beacon.

MERL-TR-97-11 December, 1997

176 (Internal) Spline Version 3.0 API

37.1 spHearingNew

sp spHearingNew(spFixedAscii HostName)

HostName - DNS name of the audio rendering machine.
Return value - The newly constructed object.

Creates an spHearing beacon with a tag of the form "//<HostName>/spAudio" where the string
HostName is a DNS address string (e.g., "server.cs.hoople.und.edu"). If HostName is Null, the
name of the machine you are on is used in the tag created.

When an audio rendering process running on machine X notices an spHearing beacon with
the tag "//X/spAudio", it starts routing localized sound to the headphones. (Unless it is already
occupied supporting a previous spHearing beacon.)

38 spSeeing

public class spSeeing extends spPositionedBeacon implements spVisualParameters

The visual renderer has the built-in capability of rendered an image of the virtual world for the
user to see. To use this capability, one creates an spSeeing beacon. (The name is mnemonic for
the fact that you use this kind of beacon as the `eyes' of an avatar.) The Transform of an spSeeing
beacon speci�es the position and orientation from which the scene is being observed.

The shared class spSeeing inherits all the instance variables and functions of the classes: sp-
PositionedBeacon (Section 35), spVisualParameters (Section 22), spBeaconing (Section 20) and
spPositioning (Section 16). The class spSeeing de�nes the following instance variables, with the
variables in the external API in bold and the variables that are fundamental in the sense that they
could not be properly supported by an application programmer underlined:

spSeeingC - Class descriptor (Section 15.1).

The class spSeeing de�nes the following functions:

spSeeingNew - Creates spSeeing beacon (Section 38.1).

Upon seeing the creation of an spSeeing beacon, the appropriate spVisual process creates an
spVisualObserver and makes it a child of the beacon. It then starts creating rendered images. This
continues until the beacon is removed.

spSeeing inherits from spVisualParameters so that an application can exercise control over
various visual rendering parameters. As far as possible, the rendering process attempts to follow
the suggests made by an application. The exact parameters it is using at any moment are re
ected
in the spVisualObserver it creates.

You can change the Focus, Live, and Format variables in an spHearing at any time, in which
case the change will be followed (with up to a second or so delay) by the audio renderer.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 177

You can change the control variables in the spSeeing object at any time, in which case the
change will be followed as closely as possible (with up to a second or so delay) by the visual
renderer. To change the viewpoint, you merely need to change the position and orientation of the
spSeeing beacon.

38.1 spSeeingNew

sp spSeeingNew(spFixedAscii HostName)

HostName - DNS name of visual rendering machine.
Return value - The newly constructed object.

Creates an spSeeing beacon with a tag of the form "//<HostName>/spVisual" where the Host-
Name is a DNS address string (e.g., "server.cs.hoople.und.edu"). If HostName is Null, the name
of the machine you are on is used in the tag created.

When a visual rendering process running on machine X notices an spSeeing beacon with the tag
"//X/spVisual", it starts rendering. (Unless it is already occupied supporting a previous spSeeing
beacon.)

Note that the above basically assumes that there will only be one visual rendering processes
running on a given machine. Typically, this should be the case. However, at least for testing
applications, it can be convenient to have more than one application process/visual renderer pair
running on a single machine. To allow this to work, a given visual renderer will respond to an
spSeeing beacon only if no other visual renderer has responded to it. This allows multiple applica-
tion process/visual renderers to run correctly on a machine as long as one is completely started up
before another is started.

39 spSimulationObserver

public class spSimulationObserver implements spObserving

An spSimulationObserver triggers the receipt of information that a process supporting a sim-
ulation needs to know about the world model. This includes information about all the objects
in a locale. However, it does not include information that is required only for visual and audio
rendering. In particular, it does not trigger the receipt of streaming audio. In addition, it does not
have any parameters for summarizing what a render is doing since no renderer is involved.

The shared class spSimulationObserver inherits all the instance variables and functions of the
class spObserving (Section 21). The class spSimulationObserver de�nes the following instance
variables, with the variables in the external API in bold and the variables that are fundamental in
the sense that they could not be properly supported by an application programmer underlined:

spSimulationObserverC - Class descriptor (Section 15.1).

The class spSimulationObserver de�nes the following functions:

spSimulationObserverNew - Create new spSimulationObserver object. (Section 15.28).

MERL-TR-97-11 December, 1997

178 (Internal) Spline Version 3.0 API

40 spVisualObserver

public class spVisualObserver implements spObserving, spVisualParameters

spVisualObserver objects have two purposes, one internal in nature and one external. First,
spVisualObserver objects are created by the visual renderer spVisual in order to trigger the receipt
of appropriate information as the basis for rendering. No process other than a visual renderer
should ever create an spVisualObserver object. The spVisualObserver created by a renderer is
made the child of the spSeeing beacon the renderer is following, so that it will echo the position
and orientation of this beacon.

Second, the spVisualObserver object created can by spVisual can be observed by a user process
in order to determine exactly what the visual render is doing. That is to say, to observe rendering
parameters being used. Particularly, with regard to the Interval, this may di�erent from what was
requested using an spSeeing beacon.

The shared class spVisualObserver inherits all the instance variables and functions of the classes:
spObserving (Section 21) and spVisualParameters (Section 22). The class spVisualObserver de�nes
the following instance variables, with the variables in the external API in bold and the variables
that are fundamental in the sense that they could not be properly supported by an application
programmer underlined:

spVisualObserverC - Class descriptor (Section 15.1).

The class spVisualObserver de�nes the following functions:

spVisualObserverNew - Create new spVisualObserver object. (Section 15.28).

41 spAudioObserver (Fundamental)

public class spAudioObserver implements spObserving, spAudioParameters

spAudioObserver objects have two purposes, one internal in nature and one external. First,
spAudioObserver objects are created by the audio renderer spAudio in order to trigger the receipt
of appropriate information as the basis for rendering. Typically, no process other than an audio
renderer will ever create an spAudioObserver object. The spAudioObserver created by a renderer
is made the child of the spHearing beacon the renderer is following, so that it will echo the position
and orientation of this beacon.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 179

Second, the spAudioObserver object created by spAudio can be observed by a user process in
order to determine exactly what the audio render is doing. That is to say, to observe rendering
parameters being used. With regard to the Format, this may be di�erent from what was requested
using an spHearing beacon.

The shared class spAudioObserver inherits all the instance variables and functions of the classes:
spObserving (Section 21) and spAudioParameters (Section 23). The class spAudioObserver de�nes
the following instance variables, with the variables in the external API in bold and the variables
that are fundamental in the sense that they could not be properly supported by an application
programmer underlined:

spAudioObserverC - Class descriptor (Section 15.1).

The class spAudioObserver de�nes the following functions:

spAudioObserverInitialization - Sets Audio Bit to True. (Section 41.1).
spAudioObserverNew - Create new spAudioObserver object. (Section 15.28).

A key feature of spAudioObservers as opposed to spObserving objects in general is that spAu-
dioObserver objects set the Audio bit to True by default.

41.1 spAudioObserverInitialization (Internal)

void spAudioObserverInitialization(sp Object)

Object - spAudioObserver object to initialize.
Return value - There is no return value.

Initializes the Audio bit of an spAudioObserver to True.

MERL-TR-97-11 December, 1997

180 (Internal) Spline Version 3.0 API

42 spIntervalCallback

public class spIntervalCallback extends sp

The class spIntervalCallback makes it easy to trigger a locally de�ned operation on the basis
of time. Unlike other world model objects, spIntervalCallbacks are not communicated between
processes by Locale-Based Communication. As a result, they operate purely in the local process.
If you want an operation that is communicated between processes then you should de�ne an action
class (Section 46).

The shared class spIntervalCallback inherits all the instance variables and functions of the class
sp (Section 15). The class spIntervalCallback de�nes the following instance variables, with the
variables in the external API in bold and the variables that are fundamental in the sense that they
could not be properly supported by an application programmer underlined:

spIntervalCallbackC - Class descriptor (Section 15.1).
shared Interval - Triggering interval (Section 42.2).

F - Operation to apply (Section 42.3).
FState - State used with operation (Section 42.4).

NextTriggerTime - Time action will be considered for application (Section 42.5).
IntNext - Forward link in list of interval triggered actions (Section 42.6).
IntPrev - Back link in list of interval triggered actions (Section 42.7).

The class spIntervalCallback de�nes the following functions:

spIntervalCallbackNew - Creates an interval callback (Section 42.8).

Interval callbacks get triggered based on time under the control of the Interval variable. An
Interval value of N causes an action to be run every N milliseconds. A negative Interval value
means that time having elapsed should never cause the callback to run. When an interval callback
is triggered, it calls a user speci�ed operation F.

Interval callbacks inherit from the class sp because several of the variables of sp (e.g., Class)
and several operations of sp (e.g., Remove) are useful for callbacks as well. However, since callbacks
are not subject to Locale-Based Communication, it would otherwise have made sense for callbacks
to not inherit from sp.

42.1 Details of Callback processing

Interval callbacks are only called during calls on spWMUpdate. Speci�cally, in spWMUpdate,
after all actions have been called and just after all alerters that are triggered by changes in external
objects have been called, the world model is scanned looking for interval callbacks that should be
applied.

It is important to note that since alerters are also interval callbacks, the following applies to
them as well. In fact, during a single call on spWMUpdate, an alerter can get called both because
it is an alerter and then also because it is an interval callback.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 181

The following pseudo-code shows the logic of the operation of interval callbacks during sp-
WMUpdate processing.

for each spIntervalCallback C in the local world model copy {
if (spIntervalCallbackGetNextTriggerTime(C) <= UdateWorldModelStartTime()) {
spFn F = spIntervalCallbackGetF(C);
spDuration T = spIntervalCallbackGetNextTriggerTime(C) ;
if (spGetParent(C) && spIsRemoved(spGetParent(C))) spRemove(C);
else {
spWMSetMe(spGetOwner(C));
if (F(spGetParent(C), spIntervalCallbackGetFState(C))) spRemove(C);
else {
T = max(UdateWorldModelStartTime(),

T + spIntervalCallbackGetInterval(C));
spIntervalCallbackSetNextTriggerTime(C, T);

}
spWMSetMe(spWMGetSystemOwner());

}
}

}

There is no guarantee of the order in which interval callbacks will be considered. A list of
interval callbacks ordered in terms of their NextTriggerTimes is used to allow e�cient computation
of which interval callbacks are applicable when.

The value of spWMGetMe is altered during the application of an interval callback so that F is
prevented from changing objects owned by other processes.

An interval callback F operation is always applied to the Parent of the callback. This happens
even if the Parent is an spClass object. This is di�erent from the way alerters are handled. The
reason why this is done is to guarantee that F will absolutely be called when the Interval is up.
For example, it might seem more sensible to call F on every appropriate object in the class when
the Parent is a class object. However, it might be the case that there were no objects in the class,
in which case F would not be called at all. If the Parent is a class, F can call spClassExamine if it
wants to inspect individual objects of the class.

When an object X is removed, any interval callbacks that have X as their Parents are also
removed.

Since all interval callbacks are locally owned, it is not possible to �nd out about a callback
before �nding out about its Parent. It is conceivable for the Parent to later become unknown, but
this is considered unlikely and no special actions are taken.

There can be considerable sloppiness with regard to when an interval callback is called after its
Interval expires. However, the way the next trigger times are set based on the last desired trigger
time instead of on the current time leads to good average timing behavior as long as the requested
Intervals are relatively large.

The pseudo-code above shows the general way that interval callbacks are processed. The pseudo-
code does not illustrate the fact that special actions are taken so that interval callbacks created
by spVisual and spAudio are run at a later time, after all application code has been run. This is
supported by separating interval callbacks into two groups based on their owners.

MERL-TR-97-11 December, 1997

182 (Internal) Spline Version 3.0 API

42.2 Interval (Fundamental)

public int Interval; //* [spDuration]

spDuration spIntervalCallbackGetInterval(sp Object)
spDuration spIntervalCallbackGetOldInterval(sp Object)
void spIntervalCallbackSetInterval(sp Object, spDuration X)

spDuration sqIntervalCallbackGetInterval(sp Object)
spDuration sqIntervalCallbackGetOldInterval(sp Object)
void sqIntervalCallbackSetInterval(sp Object, spDuration X)

spIntervalCallbacks have a shared instance variable called the Interval that speci�es a time in
milliseconds after which the spIntervalCallback should be triggered. When an spIntervalCallback
is created, it is not immediately triggered, but rather only after the Interval has expired. If an
spIntervalCallback that was triggered due to its Interval expiring does not remove itself from the
world model, then it is requeued to trigger again after the Interval expires again. For example, an
spIntervalCallback in the world model with an Interval of 100 will be triggered 10 times per second.
An spIntervalCallback with an Interval of zero will be called every time spWMUpdate is called.
If the Interval for an spIntervalCallback is negative, then the spIntervalCallback is never triggered
based on time. (This is not useful for spIntervalCallback themselves, but is useful for spAlerters.)

The Interval for an spIntervalCallback is set when an action is created and cannot be altered
later. (This is essential for e�ciency. If you want to alter the value, you can do so by removing the
spIntervalCallback in question and creating a corresponding new spIntervalCallback with a new
value.) Information about the Interval is shared between processes.

(Actually, it is possible to alter the Interval for an spIntervalCallback, but only inside the F
operation and then only when the spIntervalCallback has been triggered due to the Interval. This
will e�ect the Interval used when requeuing the action for subsequent processing.)

An spIntervalCallback cannot be triggered by its Interval more often than once each time
spWMUpdate is called. As a result, if the Interval speci�ed for an spIntervalCallback is less than
the Interval between calls on spWMUpdate, it cannot possibly be satis�ed. Even if the Interval
speci�ed for an spIntervalCallback is greater than the Interval between calls on spWMUpdate, the
Interval can at best only be approximated, because the actual time the spIntervalCallback is called
must coincide with a call on spWMUpdate and there is considerably sloppiness in the underlying
timing mechanisms that the system relies on. However, the system insures that for su�ciently
large spIntervalCallback Intervals, the average timing error experienced by a repetitively applied
spIntervalCallback tends toward zero.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 183

42.3 F

transient public spFn F; //* [spFn] readonly

spFn spIntervalCallbackGetF(sp Object)

void spIntervalCallbackiSetF(sp Object, spFn X)

spFn sqIntervalCallbackGetF(sp Object)
void sqIntervalCallbackSetF(sp Object, spFn X)

spIntervalCallback objects have a local instance variable called F that holds the locally de�ned
operation (Section 6) to be called when the spIntervalCallback is applied. It must be set when an
spIntervalCallback is created and cannot be changed later. Information about the F is maintained
separately in each process.

Each time an interval callback C is run, F is applied to the Parent of C (which in simple interval
callbacks is Null) and the FState of C. F performs some computation possibly modifying the Parent
and possibly accumulating a value in the FState. If F ever returns True, the interval callback is
removed. Otherwise, it is requeued for execution the next time the interval expires.

The F operation for an spIntervalCallback should run quickly|i.e., in a few microseconds at
most|because it is being called from inside spWMUpdate and not in a separate thread.

42.4 FState

transient public int FState; //* [void *] readonly

void * spIntervalCallbackGetFState(sp Object)

void spIntervalCallbackiSetFState(sp Object, void * X)

void * sqIntervalCallbackGetFState(sp Object)
void sqIntervalCallbackSetFState(sp Object, void * X)

spIntervalCallback objects have a local instance variable called FState that holds state informa-
tion that is passed to the F operation when it is called. This must be set when an spIntervalCallback
is created and cannot be changed later. Information about the FState is maintained separately in
each process.

MERL-TR-97-11 December, 1997

184 (Internal) Spline Version 3.0 API

42.5 NextTriggerTime (Fundamental and Internal)

transient public int NextTriggerTime; //* [spTimeStamp] internal

spTimeStamp spIntervalCallbackiGetNextTriggerTime(sp Object)
void spIntervalCallbackiSetNextTriggerTime(sp Object, spTimeStamp X)

spTimeStamp sqIntervalCallbackGetNextTriggerTime(sp Object)
void sqIntervalCallbackSetNextTriggerTime(sp Object, spTimeStamp X)

spIntervalCallbacks have a local instance variable called the NextTriggerTime that speci�es the
absolute time at which the spIntervalCallback will next be triggered due to the Interval. This
time is reset after each time the spIntervalCallback is triggered due to the Interval. For e�ciency,
spIntervalCallbacks with non-negative Intervals are maintained in a queue ordered by their Next-
TriggerTimes.

The NextTriggerTime of an spIntervalCallback is maintained by the system and must not be
altered in any other way. Information about the NextTriggerTime is maintained separately in each
process.

42.6 IntNext (Fundamental and Internal)

transient public int IntNext; //* [void *] internal

void * spIntervalCallbackiGetIntNext(sp Object)
void spIntervalCallbackiSetIntNext(sp Object, void * X)

void * sqIntervalCallbackGetIntNext(sp Object)
void sqIntervalCallbackSetIntNext(sp Object, void * X)

For e�ciency, a time ordered queue is maintained containing all the spIntervalCallbacks that
can be triggered based on the passage of time. This queue makes it very fast to determine which
spIntervalCallbacks, if any, should be triggered at a given moment. The IntNext local instance
variable of an spIntervalCallback is used as a forward pointer when constructing this doubly linked
queue.

The IntNext variable is maintained by the system and cannot be manipulated by an application.
Information about the IntNext is maintained separately in each process.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 185

42.7 IntPrev (Fundamental and Internal)

transient public int IntPrev; //* [void *] internal

void * spIntervalCallbackiGetIntPrev(sp Object)
void spIntervalCallbackiSetIntPrev(sp Object, void * X)

void * sqIntervalCallbackGetIntPrev(sp Object)
void sqIntervalCallbackSetIntPrev(sp Object, void * X)

The IntPrev local instance variable of an spIntervalCallback is used as a backward pointer when
constructing the doubly linked, time ordered queue of interval callbacks that can be triggered due to
the passage of time. The IntPrev variable is maintained by the system and cannot be manipulated
by an application. Information about the IntPrev is maintained separately in each process.

42.8 spIntervalCallbackNew

sp spIntervalCallbackNew(spDuration Interval, spFn F, void * FState)

Interval - The desired interval.
F - Desired operation (Section 6).

FState - Passed to the operation each time it is called (modi�able).
Return value - The newly constructed object.

Creates an interval callback with the speci�ed Interval, F, and FState. The Parent of the
callback is set to Null. (Therefore, F will be called with Null as its �rst argument.) None of the
above can subsequently be changed. The Mask is set to spMaskNORMAL. You can change it to
a di�erent value. An spIntervalCallback can be prematurely terminated by using spRemove to get
rid of the spIntervalCallback object.

If the spIntervalCallback operation F returns False when it is called, then the spIntervalCallback
is automatically reinstalled for interval milliseconds in the future. Otherwise, it is removed.

To have an operation myFn called every ten seconds, you might do the following.

C = spIntervalCallbackNew(10000, myFn, NULL)

43 spAlerter

public class spAlerter extends spIntervalCallback

The class spAlerter lets you easily de�ne operations and tests locally and use them as event-
triggered operations that run only in the local process. In particular, an spAlerter object causes
an operation to be applied to the object(s) speci�ed by its Parent when an event occurs in the
future. The primary purpose of spAlerters is to e�ciently detect events that the main body of the
application can then act upon.

MERL-TR-97-11 December, 1997

186 (Internal) Spline Version 3.0 API

Since they are spIntervalCallbacks, spAlerters are not communicated between processes by
Locale-Based Communication. As a result, they operate purely in the local process. If you want
an operation that is communicated between processes then you should de�ne an action class (Sec-
tion 46).

The shared class spAlerter inherits all the instance variables and functions of the classes: spIn-
tervalCallback (Section 42) and sp (Section 15). The class spAlerter de�nes the following instance
variables, with the variables in the external API in bold and the variables that are fundamental in
the sense that they could not be properly supported by an application programmer underlined:

spAlerterC - Class descriptor (Section 15.1).
P - Predicate determining applicability (Section 43.2).

PState - State used in conjunction with predicate (Section 43.3).
shared Mask - Visibility mask of objects to act on (Section 43.4).

ChgNext - Forward link in list of change triggered actions (Section 43.5).
ChgPrev - Back link in list of change triggered actions (Section 43.6).

The class spAlerter de�nes the following functions:

spAlerterNew - Creates an alerter (Section 43.7).
spAlerterInitialization - Initialize object (Section 43.8).

spAlerters are triggered based on intervals (because they are spIntervalCallbacks) and by events.
Whenever the Interval expires, F is applied. In addition, Whenever there has been a change in the
shared instance variables of a relevant object, the spAlerter predicate P is applied to the changed
object to determine whether an event of interest has occurred.

Triggering based on events is controlled by the Parent and Mask variables as well as the predicate
P. Basically, the alerter is triggered when an object speci�ed by the Parent matches the Mask and
satis�es the test. If the Parent is Null, then the alerter is never triggered based on any events. If
an alerter has both a non-negative Interval and a Parent, then it is triggered whenever either the
Interval is satis�ed or the event has occurred.

spAlerters attach special meaning to the Parent variable. If the Parent is a class descriptor,
then the alerter is potentially applied to every object in that class (or its subclasses). If the Parent
is not a class descriptor, then the alerter is only applied to the one object that is the Parent. The
above notwithstanding, if an alerter is triggered by an Interval, then the action is applied to the
Parent itself, be it a class, an object, or Null.

If the spAlerter predicate P returns True, then F is applied to the object in question as well. If
F returns True, then the spAlerter is removed. If not, the spAlerter continues its monitoring.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 187

For example, to be noti�ed whenever any spSeeing object in the local world model moves, you
might do the following.

A = spAlerterNew(spSeeingC(), -1, spChangedTransform, NULL, myFn, NULL)

You could turn this o� as follows.

spRemove(A);

To be noti�ed when any spSeeing object in the local world model moves, but in any event after
ten seconds, you might do the following.

A = spAlerterNew(spSeeingC(), 10000, spChangedTransform, NULL, myFn, NULL)

To be noti�ed purely based on an interval, use an spIntervalCallback.

43.1 Details of alerter processing

Alerters are only called during calls on spWMUpdate. Speci�cally, in spWMUpdate, just after
all actions have been called and just before interval callbacks are applied, alerters that are triggered
by changes in external objects are called. Later, after all application code has been run, alerters
that are triggered by changes in local objects are called.

The following pseudo-code shows the logic of the operation of alerters during spWMUpdate
processing. It is important to note that since alerters are also interval callbacks, they are also pro-
cessed like any other interval callback (Section 42.1). In fact, during a single call on spWMUpdate,
an alerter can get called both because it is an alerter and then also because it is an interval callback.

loop as long as any object has the Change bit set {
sp X = an object with the Change bit set;
sp * (A1 A2 ... An) = all alerters relevant to X;
void * Old = X.Old (the old values associated with X);
ProcessAlerters(X, Old, (C1 ... Cn));
spSetIsNew(X, FALSE);
X.Old = X.Current;

}

boolean RelevantToObject(sp A, sp X) {
return CompatibleWithMask(X, spAlerterGetMask(A)) &&

(X == spGetParent(A) ||
(spGetParent(A) != NULL &&
spClassEq(spGetClass(spGetParent(A)), spClassC()) &&
spClassLeq(spGetClass(X), spGetParent(A))));

}

MERL-TR-97-11 December, 1997

188 (Internal) Spline Version 3.0 API

ProcessAlerters(X, Old, (A1 ... An)) {
Current = X.Current;
spSetChanged(X, FALSE);
For i = 1 to n {
if (!spGetIsRemoved(Ai)) {

spFn P = spAlerterGetP(Ai);
spFn F = spAlerterGetF(Ai);
X.Old = Old
spWMSetMe(spGetOwner(Ai));
if (P(X, spAlerterGetPState(Ai))) {

if (F(X, spAlerterGetFState(Ai))) spRemove(Ai);
}
spWMSetMe(spWMGetSystemOwner());
if (spGetChanged(X)) ProcessAlerters(X, Current, (A1 ... Ai));
if (spGetIsRemoved(X) && X == spGetParent(Ai)) spRemove(Ai);

}
}

}

In addition to specifying when alerters are triggered, the pseudo-code speci�es exactly when
the Change and IsNew bits are reset and exactly when the old values of the shared variables are
set. These things only have clear values during the evaluation of alerter predicates and functions.
In ordinary application code, they are of little or not bene�t.

A central reason why the code above has the structure shown is to insure that the old values
have an easily understood meaning. Consider a particular object X and a particular alerter A.
When the predicate P or function F of A are applied to X, the Change bit is False (but must have
just been true) and the old values associated with X record what the shared values were the last
time P was applied to X. If A was created since the last time alerters had an opportunity to be
applied to X, then the old values record the �nal shared values after the last time alerters had an
opportunity to be applied to X. If X was created since the last time alerters had an opportunity to
be applied to objects like X, then the old values record the initial shared values associated with X
and the IsNew bit is True.

Looked at naively, the above suggests that each object has to have separate old value storage
for each alerter relevant to it. The trick of the above code is that it arranges to have one set of
stored values for each object su�ce by saving these values only when a single set of values is correct
for every alerter relevant to the object.

The main loop just keeps running alerters on objects until every object has the Change bit o�.
This allows all changes to propagate from one alerter to another completely in a single update time.
It is advisable that there be no such propagation. If there isn't, then each changed object only has
to be processed once. If there is propagation, then the programmer must take care to ensure that
the propagation will terminate. Fortunately, since every alerter must be locally created, all alerter
interaction is directly under the control of the programmer.

As noted above, alerters are actually called on external and local objects separately. This is
achieved by restricting the main loop above to one group of objects at a time. When the main loop
terminates, the old and current shared values are equal for every object considered.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 189

The subroutine RelevantToObject speci�es which alerters are relevant to which objects. The
test CompatibleWithMask is presented in the discussion of spMask values (Section 7). In order to
reduce processing time, the actual implementation does not call a subroutine like RelevantToObject
, but rather uses highly e�cient indexing based on the Parents of alerters.

Given an object X, a set of old values, and a set of alerters A1...An, ProcessAlerters runs these
alerters until a situation is reached where spGetChanged(X) is False and every alerter has been
given a chance to run on the �nal state of the object. Note that each time an alerter is tested
for running, the old values are the shared values that existed the last time that particular alerter
was tested. Critically, the old values are never later values nor earlier values. As a result, alerters
don't fail to �re and don't �re twice when they should only �re once. (Handling the old values right
requires a stack of saved old value sets associated with the recursive invocations of ProcessAlerters.)

Note that if the alerters A1...An refrain from modifying shared values of X, then each alerter
will only be tested once and (at most) run once. (Note also that if none of the Ai have the same
owner as X, then no modi�cation of X is possible and copying to temporarily save old values is not
necessary.)

As is the case in the main loop, the termination of ProcessAlerters is not assured. The program-
mer must take care. In general, it is best for alerters to refrain from making any modi�cation that
could trigger another alerter. If there are no such modi�cations then each alerter is only processed
once and only one copy of current to old values is required.

43.2 P

transient public spFn P; //* [spFn] readonly

spFn spAlerterGetP(sp Object)

void spAlerteriSetP(sp Object, spFn X)

spFn sqAlerterGetP(sp Object)
void sqAlerterSetP(sp Object, spFn X)

spAlerter objects have a local instance variable called P that holds the locally de�ned predicate
(Section 6.1) to be called when testing whether the spAlerter should be applied. It must be set
when an spAlerter is created and cannot be changed later. Information about the P is maintained
separately in each process.

Alerter event processing proceeds as follows. Each time spWMUpdate is called, each alerter is
considered for possible event-driven triggering. For a given alerter A, the system �rst determines
the set of objects compatible with the Parent of A. If the Parent is an spClass object, this is every
object that is in that class or any of its subclasses. If the Parent is an ordinary object then this
is the only object that needs to be considered. If the Parent is Null then there are no compatible
objects and no events ever get triggered.

MERL-TR-97-11 December, 1997

190 (Internal) Spline Version 3.0 API

The set of compatible objects is then re�ned as follows. Every object that does not have some
shared variable that has changed since the last call on spWMUpdate (i.e., every object that does
not have the Change bit set to True) is discarded. Then, every object that is not compatible with
the alerters mask is discarded. The predicate P is then applied to each of the remaining objects,
and every object for which P returns False is also discarded. The function F is then applied to
every object that remains. (For example, the predicate P might specify that F be applied only
when the position of the object under consideration has changed.)

The predicate P for an alerter should be purely a function, not having any side-e�ects anywhere.
In addition, it is very important that P run quickly|i.e., in a few microseconds at most|because
it is being called from inside spWMUpdate and not in a separate thread.

43.3 PState

transient public int PState; //* [void *] readonly

void * spAlerterGetPState(sp Object)

void spAlerteriSetPState(sp Object, void * X)

void * sqAlerterGetPState(sp Object)
void sqAlerterSetPState(sp Object, void * X)

spAlerter objects have a local instance variable called PState that holds state information that
is passed to the P operation when it is called. This must be set when an spAlerter is created and
cannot be changed later. Information about the PState is maintained separately in each process.

43.4 Mask (Fundamental)

public int Mask; //* [spMask]

spMask spAlerterGetMask(sp Object)
spMask spAlerterGetOldMask(sp Object)
void spAlerterSetMask(sp Object, spMask X)

spMask sqAlerterGetMask(sp Object)
spMask sqAlerterGetOldMask(sp Object)
void sqAlerterSetMask(sp Object, spMask X)

spAlerters have a shared instance variable called the Mask that controls which objects the
alerter can be applied to. The Mask is a world model visibility mask (Section 7). Events that
trigger the alerter must involve an object that matches the Mask of the alerter.

The default value of the Mask is spMaskNORMAL, which is appropriate for most situations.
It can be changed to any other spMask value. Information about the Mask is shared between
processes.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 191

43.5 ChgNext (Fundamental and Internal)

transient public int ChgNext; //* [void *] internal

void * spAlerteriGetChgNext(sp Object)
void spAlerteriSetChgNext(sp Object, void * X)

void * sqAlerterGetChgNext(sp Object)
void sqAlerterSetChgNext(sp Object, void * X)

For e�ciency, an index is created of spAlerters. This index makes if very fast to determine
which spAlerters could possibly be triggered due to a change in a given object. The ChgNext local
instance variable of an spAlerter is used as a forward pointer when constructing doubly linked lists
of alerters in this index.

The ChgNext variable is maintained by the system and cannot be manipulated by an applica-
tion. Information about the ChgNext is maintained separately in each process.

43.6 ChgPrev (Fundamental and Internal)

transient public int ChgPrev; //* [void *] internal

void * spAlerteriGetChgPrev(sp Object)
void spAlerteriSetChgPrev(sp Object, void * X)

void * sqAlerterGetChgPrev(sp Object)
void sqAlerterSetChgPrev(sp Object, void * X)

The ChgPrev local instance variable of an spAlerter is used as a back pointer in the doubly
linked lists of alerters that can be triggered by changes in a given object. The ChgPrev variable
is maintained by the system and cannot be manipulated by an application. Information about the
ChgPrev is maintained separately in each process.

43.7 spAlerterNew (Fundamental)

sp spAlerterNew(sp X, spDuration I, spFn P, void * PState, spFn F, void * FState)

X - Desired parent.
I - The desired interval.
P - Desired test (Section 6.1).

PState - Desired test state.
F - Desired operation (Section 6).

FState - Desired operation state.
Return value - The newly constructed object.

Creates as spAlerter with the speci�ed Parent X, Interval I, P, PState, F, and FState. None of
the above can subsequently be changed. The Mask is set to spMaskNORMAL. You can change it
to a di�erent value. The alerter can be terminated by removing the alerter object.

MERL-TR-97-11 December, 1997

192 (Internal) Spline Version 3.0 API

43.8 spAlerterInitialization (Internal)

void spAlerterInitialization(sp Action)

Action - spAction to initialize.
Return value - There is no return value.

Initializes the Mask in an alerter to spMaskNORMAL.

44 spBeaconMonitor (Fundamental)

public class spBeaconMonitor extends spAlerter

Applies an operation to every beacon (Section 20.1) whose Tag matches an indicated Pattern.
This is done by �rst applying the speci�ed operation to every matching beacon currently in the
local world model copy. The spBeaconMonitor alerter then applies the operation in the future
to every matching beacon that appears, changes, or is removed. In addition, a request is sent to
the appropriate Content-Based Communication server. This request is initially answered by the
server sending descriptions of every currently existing beacon matching the Pattern so that they
can be entered in the local world model copy. Modi�cations to these beacons (including removal)
and information about newly created beacons is communicated at later times by the server as
long as the spBeaconMonitor alerter remains in e�ect. This process terminates only when the
spBeaconMonitor object is removed.

The shared class spBeaconMonitor inherits all the instance variables and functions of the classes:
spAlerter (Section 43), spIntervalCallback (Section 42) and sp (Section 15). The class spBeacon-
Monitor de�nes the following instance variables, with the variables in the external API in bold and
the variables that are fundamental in the sense that they could not be properly supported by an
application programmer underlined:

spBeaconMonitorC - Class descriptor (Section 15.1).
shared Pattern - Query pattern (Section 44.1).

The class spBeaconMonitor de�nes the following functions:

spBeaconMonitorNew - Creates beacon monitor (Section 44.2).

The Pattern variable of spBeaconMonitor object speci�es which beacons are to be monitored.
The Pattern of an spBeaconMonitor is a URL and is exactly the same as the Pattern of an spBea-
coning, except that it can contain instances of the wild card character asterisk (*). There must be
a DNS/port part of the Pattern present and this part of the Pattern cannot contain a wild card
character. The rest of the Pattern can contain one or more wild card characters. A beacon is
deemed to match an spBeaconMonitor if (and only if) the Tag of the beacon matches the pattern.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 193

Wild card matching operates in the standard way. For example, you might have beacons with
the Tags "//myhost/bicycle/EBF", "//myhost/bicycle/RCW", and "//myhost/unicycle/RCW". In that
case, an spBeaconMonitor with Pattern "//myhost/bicycle/"" matches the �rst two tags while
"//myhost/*RCW" matches the last two Tags. (When matching a Tag and a Pattern, things are
simple as long as the Pattern contains only one wild card. However, if there are multiple wild
cards, then things become more complex and greater computation is required to decided which
Tags match which Patterns.)

44.1 Pattern

public String Pattern; //* [spFixedAscii]

spFixedAscii spBeaconMonitorGetPattern(sp Object)
void spBeaconMonitorSetPattern(sp Object, spFixedAscii X)

spFixedAscii sqBeaconMonitorGetPattern(sp Object)
void sqBeaconMonitorSetPattern(sp Object, spFixedAscii X)

The key feature of beacons is that a global name service is maintained that maps from Tags
to the beacon objects so that beacons can be accessed based on their Tags no matter where they
are located. To allow many di�erent people to create Tags that do not con
ict with each other,
beacon Tags are URLs. It is generally not a good idea to have lots of beacons with the same Tag,
but there can be several beacons with the same Tag.

The central instance variable of an spBeaconMonitor is a shared variable called the Pattern.
This is identical to a beacon Tag, except that it can contain asterisks as wild card characters and
acts as a query instead of a label. The DNS/port part of a Pattern URL (which must be present
and must not contain a wild card character) selects the process that provides beacon service for
the beacon.

An spBeaconMonitor Pattern is a string of type spFixedAscii. It must be less than 500 charac-
ters in length, so that the containing object can �t into a single UDP message. It must be speci�ed
when a beacon monitor is initially created and cannot be changed after that time. Information
about the Pattern is shared between processes.

MERL-TR-97-11 December, 1997

194 (Internal) Spline Version 3.0 API

44.2 spBeaconMonitorNew

sp spBeaconMonitorNew(spFixedAscii Pattern, spFn F, void * S, spDuration I)

Pattern - Pattern for Tag of beacons to be monitored.
F - Operation (Section 6) to be applied to every beacon with tag.
S - Passed to the operation each time it is called (modi�able).
I - Time after which the monitoring should stop.

Return value - The newly constructed object.

Creates a beacon monitor object with the indicated Pattern, F, Fstate (S), and Interval (I). It
is an error for the DNS name part of an spBeaconMonitor Pattern to contain a *. If the operation
F ever returns True, the spBeaconMonitor is removed and monitoring ceases. If a non-negative
Interval is speci�ed, then monitoring will cease after that time. You can terminate monitoring at
any time by removing the spBeaconMonitor object. In the spBeaconMonitor created, the Parent
is the class spBeaconing.

An spBeaconMonitor alerter uses a predicate P that tests whether an spBeaconing object has
a matching Tag and is not an spBeaconMonitor itself. If the Interval expires, F is called with
spBeaconingC as its argument.

spBeaconMonitor Patterns must include a DNS name speci�cation. To ensure this, the following
default is applied to the Pattern string provided. If the Pattern begins with just one / or a colon
: then it is pre�xed with //<HostName>. Where <HostName> is the DNS name of the machine the
process is running on. If the Pattern does not begin with / or colon then it is pre�xed with
//<HostName>/. That is to say:

//string => //string
/string => //<HostName>/string
:string => //<HostName>:string
string => //<HostName>/string
=> //<HostName>/

Note that the defaulting to <HostName> is only useful for spBeaconMonitors that are used to
communicate between (or within) processes on a single machine. If an spBeaconMonitor is to be
used to communicate between machines, an explicit host name must be speci�ed.

Monitoring happens in three stages. First, at the moment the spBeaconMonitor object is
created, an spClassExamine is done to locate any beacons in the local world model copy with
matching Tags. If F returns True during this process, then examining is terminated and the
spBeaconMonitor object created is removed before it is returned.

Second, if the examination of the objects currently in the world model does not cause F to
return True, then F is used as the F value of the spBeaconMonitor alerter created. The appropriate
Content-Based Communication server is contacted to obtain information about all beacons that
currently exist that match the Pattern in the global world model. Monitoring continues on the
beacons that come from the Content-Based Communication server.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 195

Since the server has no knowledge about what beacons the local process does and does not have
in its world model, it sends complete information about all beacons that match the Pattern to the
local process. This includes duplicate information about the beacons currently in the world model.
However, this duplicate information is �ltered out because the messages do not have Counter values
larger than those used on the objects in the world model already. Therefore, the spBeaconMonitor
alerter will not be triggered a second time on the objects it was initially triggered on in the �rst
phase above. (The key reason that the �rst phase is needed, is that even though this duplicate
data arrives, it does not cause world model changes that can trigger the spBeaconMonitor alerter.)

Third, as long as the spBeaconMonitor continues to exist, the Content-Based Communication
server will inform the local process about relevant beacon information. The interval value in an
spBeaconMonitor can be used to remove the spBeaconMonitor after a speci�ed amount of time.

45 spBeaconGoto

public class spBeaconGoto extends spBeaconMonitor

Places an spPositioning object either under, or beside a beacon with a particular Tag. It does
this by �nding a beacon with the tag and then appropriately positioning the object. It is expected
that, the object must be an spObserving or have an spObserving as one of its descendants. The
spObserving descendant is necessary in order to trigger the receipt of information about the Parent
of the beacon.

As with spBeaconMonitor, if the beacon exists, it is located no matter what locale it is in. The
Object is made a brother of the beacon with the same Transform as the beacon. This is the proper
way to teleport an avatar to a place speci�ed by a beacon. It is necessary if you wish the avatar to
move around the locale and into neighboring locales under its own control.

An operation is called after the Object has been properly positioned or an interval has timed
out. In general, spBeaconGoto is best used when there is only one beacon in existence with the
tag. If there are more, then the �rst one encountered will be used.

The shared class spBeaconGoto inherits all the instance variables and functions of the classes:
spBeaconMonitor (Section 44), spAlerter (Section 43), spIntervalCallback (Section 42) and sp (Sec-
tion 15). The class spBeaconGoto de�nes the following instance variables, with the variables in the
external API in bold and the variables that are fundamental in the sense that they could not be
properly supported by an application programmer underlined:

spBeaconGotoC - Class descriptor (Section 15.1).
Object - The object to be placed beside the beacon found (Section 45.1).

The class spBeaconGoto de�nes the following functions:

spBeaconGotoNew - Creates spBeaconGoto given a pattern (Section 45.2).

MERL-TR-97-11 December, 1997

196 (Internal) Spline Version 3.0 API

spBeaconGoto operates in essentially the same way as spBeaconMonitor. However, once having
found a beacon, it copies the Parent, Locale, and Transform of the beacon into the Object. Because
it uses internal operations, it could do this without needing to wait until the Parent object appears.
However, it waits until the Parent object appears before calling the speci�ed operation so that the
application can inspect the Parent if it wants to.

45.1 Object

transient public spObserving Object; //* [sp] readonly

sp spBeaconGotoGetObject(sp Object)

void spBeaconGotoiSetObject(sp Object, sp X)

sp sqBeaconGotoGetObject(sp Object)
void sqBeaconGotoSetObject(sp Object, sp X)

The Object local instance variable of an spBeaconGoto object records the spPositioning object
that is to become a brother of the beacon to be located.

45.2 spBeaconGotoNew

sp spBeaconGotoNew(spFixedAscii P, sp Object, spFn F, void * S, spDuration I)

P - Pattern of beacon to be found.
Object - Object to be positioned beside the beacon.

F - Operation (Section 6) to be applied after spObserving positioned.
S - Passed to the operation each time it is called (modi�able).
I - Time after which searching should stop.

Return value - The newly constructed object.

Creates an spBeaconGoto object with the indicated Object, Pattern (P), and Interval (I). The
Pattern of an spBeaconGoto defaults in exactly the same way as any other spBeaconMonitor
(Section 44.2).

The speci�ed F and FState (S) do not directly become the F and FState values of the spBea-
conGoto alerter created. Rather, a special operation is used that calls the user speci�ed F once the
object has been properly placed beside a beacon. A special predicate operation is used that locates
a beacon matching the speci�ed Pattern.

The special predicate and function position the object in two steps. The predicate �rst looks
for a beacon matching the Pattern. When the beacon is found, the Parent, Locale, and Transforms
are copied from the beacon to the Object. (This can be done even when the Parent is not in the
locale world model via the use of internal operations.) In order to avoid ugly transitions, the Object
is not modi�ed until it can all Parent, Locale and Transform can all be given correct �nal values.
(The beacon is saved in the PState for future reference, and to indicate that the second step of
processes should commence.)

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 197

If the Object is (or has a descendant that is) an spObserving, this triggers the subsequent
acquisition of information about the Parent of the beacon. The spBeaconGoto alerter continues
in operation until the predicate observes that the Parent of the beacon has appeared. Once this
happens, F is called with the beacon as its argument. If the Interval expires before all this can be
accomplished, F is called with spBeaconingC as its argument.

46 spAction (Fundamental)

public abstract class spAction extends sp

Action objects contain functions that are executed during calls on spWMUpdate. spAction
objects are communicated to other processes using Locale-Based Communication just like any
other object. The key use of actions is to reduce communication costs by making it possible to
infrequently send small programs that make it unnecessary to frequently send data updates. For
example, this is used to support the smooth motion (Section 16.13) of objects.

The class spAction is in the external API so that application writers can create new subclasses
of spAction that support new kinds of activities. In order to lay the groundwork for devising new
actions, the following subsection (Section 46.1) describes how actions operate in detail. There are
several prede�ned subclasses of spActions, but only one is part of the external API.

The shared class spAction inherits all the instance variables and functions of the class sp (Sec-
tion 15). The class spAction de�nes the following instance variables, with the variables in the
external API in bold and the variables that are fundamental in the sense that they could not be
properly supported by an application programmer underlined:

spActionC - Class descriptor (Section 15.1).

The class spAction de�nes the following functions:

spActionFunction - Performs remote action (Section 46.2).

It is not possible to create instances of the class spAction. Rather, one can only create instances
of particular subclasses of the class spAction.

Every time spWMUpdate is called, every action in the world model is run. This is done by
applying the Function method to the action object and its Parent.

As in any object, the Parent variable of an action also controls what locale the action is in and
therefore how it will be communicated to other processes. In particular, if the Parent is Null then
an action will not be communicated to any other processes. In addition, if the Parent is an spClass
object, then the action will not be communicated anywhere except in the unlikely event that the
spClass has a Parent that puts it in a locale.

If the object that is the Parent of an action is removed, then the action itself will also be
removed the next time spWMUpdate is called.

MERL-TR-97-11 December, 1997

198 (Internal) Spline Version 3.0 API

46.1 Details of Action Processing

Actions are only called during calls on spWMUpdate. Speci�cally, in spWMUpdate, just after
all messages describing changes in the world model have been processed, the world model is scanned
looking for actions that should be applied.

The following pseudo-code shows the logic of the operation of actions during spWMUpdate
processing.

for each action A in the local world model copy {
method Function = Function method corresponding to A;
spWMSetMe(spGetOwner(A));
inhibitMessagingExcept(A));
if (spGetParent(A) not present in world model) do nothing;
elseif (spGetIsRemoved(spGetParent(A))) remove A from the locale world model copy;
elseif (Function(A, spGetParent(A))) remove A from the locale world model copy;
allowNormalMessaging();
spWMSetMe(spWMGetSystemOwner());

}

There is no guarantee of the order in which actions will be considered. An index of actions is
used to make retrieving them faster.

The value of spWMGetMe is altered during the application of an action so that the Function is
prevented from changing objects owned by other processes. The operation inhibitMessagingExcept
sets
ags so that altering �elds of any object other than A itself will not cause the MessageNeeded
bit to be set.

An action Function is always applied to the Parent of the action.
When an object X is removed, any actions that have X as their Parents are also removed.
It is possible for an action created by another process that has a Parent to be communicated to

the local world model before its Parent is. In this situation, the Parent will appear to an application
program to be Null. The action Function is not applied until after the Parent appears. (Note that
while an application cannot tell the di�erence between the Parent having not arrived yet and having
been removed, the system core can discriminate between these two cases.)

46.2 spActionFunction

spBoolean spActionFunction(sp Action, sp Parent)

Action - Action being applied.
Parent - Parent of the action.

Return value - True causes action to be removed from the local world model.

Each action class is associated with a Function that performs the action in question. In particu-
lar, the Function is called whenever the action is triggered. The Function does not exist in the class
spAction itself. It is described here to show how the Function methods for subclasses of spAction
must be de�ned. In particular, they must take the arguments shown and return a boolean value.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 199

On each call to spWMUpdate, every action is run once. When an action is run, the Function is
called on its Parent. The purpose of the Function is to perform some operation, typically modifying
the Parent. (For example, an action supporting smooth motion might interpolate between positions
at particular times to determine intermediate positions.) Subclasses of spAction typically contain
additional instance variables for the purpose of representing state information.

The Function may well call a Set accessor on the target object (or some other). Two things are
important to note. First, if an object is modi�ed, it must have the same owner as the action. This
is the only situation where a program running in a process can modify an object that is not owned
by that process. The action can be looked at as a proxy of the actual owner of the object, acting
on the owner's behalf.

Second, Set accessors typically have two special side e�ects. They tell the system core that an
object has been changed so that appropriate alerters will be run on the object and they tell the
system core that a message should be sent out describing the change in the object. When used
inside the Function of an spAction, Set accessors have the former e�ect, but they do not have
the latter e�ect except when the action itself is being modi�ed. To understand this, consider the
following. Suppose that an spAction is controlling the position of its target object. A key virtue of
actions in that situation is that communicating one action can compactly specify a long sequence
of positions. This bene�t would be canceled if an additional message was sent whenever the action
changed the position of the object. However, it is occasionally bene�cial for an spAction to modify
itself causing the updated action to be communicated. (Note that Set accessors operate normally
in interval callbacks and alerters.)

As a general matter, action Functions should never delete or create objects. (Note that if an
object were created it would have a name from the name space of one owner, but an the owner id
from another owner.)

The return value of Function speci�es what should happen to the action after it is applied to an
object. If Function returns True, then the action is removed, but only from the local world model
copy. In particular, even if the action is being applied in the process that owns it, the removal
occurs only in the local world model copy with no e�ect on the world model in any other process.
This is important so that the copies of the action in other processes can run to normal completion
without having their existence terminated prematurely.

It is very important that Function run quickly|i.e., in much less than 1 Millisecond|because
it is being called from inside spWMUpdate and not in a separate thread. If you have a computation
intensive thing to do, the application should perform the within itself, exporting the results, rather
than exporting the computation to other processes.

MERL-TR-97-11 December, 1997

200 (Internal) Spline Version 3.0 API

47 spOwnershipRequest

public class spOwnershipRequest implements spAction

Each shared object has only one owner and only the owner can alter any of the shared instance
variables of an object. This is an important restriction that is essential for achieving consistent
real-time interaction. However, it can be constricting when groups of users wish to exercise joint
control over an object. To facilitate joint control of objects, the ownership of an object can be
transferred easily from one process to another by merely setting the Owner variable. However, this
can only be done by the present owner.

To further facilitate the transfer of ownership, a handshaking protocol centered around a special
shared object called an spOwnershipRequest is provided to make it easy for a process to ask for
and obtain ownership of an object. The basic protocol (Section 47.1) is that someone who wishes
to get ownership of an object creates an spOwnershipRequest whose Parent is the object. The
current owner of the object can choose to grant the request, in which case ownership is transferred.

The shared class spOwnershipRequest inherits all the instance variables and functions of the
class spAction (Section 46). The class spOwnershipRequest de�nes the following instance variables,
with the variables in the external API in bold and the variables that are fundamental in the sense
that they could not be properly supported by an application programmer underlined:

spOwnershipRequestC - Class descriptor (Section 15.1).
F - Operation to apply (Section 47.2).

FState - State used with operation (Section 47.3).
shared Timeout - Timeout interval (Section 47.4).

TimeAlive - Time request has been in existance (Section 47.5).

The class spOwnershipRequest de�nes the following functions:

spOwnershipRequestNew - Creates ownership request (Section 47.6).
spOwnershipRequestFunction - Applies F to newly owned object (Section 47.7).
spOwnershipRequestGrant - Satis�es ownership request (Section 47.8).

The object that is the target of the ownership request is indicated by making it be the Parent
of the ownership request object. The Parent is set when the ownership request is �rst made and
should not be changed thereafter.

spOwnershipRequest objects are communicated between processes, but the speci�ed operation
is only called in the creating process.

47.1 Ownership Transfer

The owner of an object can force the object on another process. However, the transfer of
ownership of an object typically involves two processes: a requesting process that decides it wants
to obtain ownership and the current owner who is the only one that can change who the owner
is. Moreover, once the owner has been changed, the old owner can no longer do anything with the
object. Therefore, the new owner must realize that it has become the owner and take over.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 201

In recognition of the above, the ownership transfer protocol operates in three basic steps.
(1) A process that wants to gain ownership creates a request. The request must be left in

existence for a substantial time (seconds) because otherwise, the request might come and go in the
world model so quickly that a slowly reacting owner might never notice its existence.

(2) A process that owns an object it might be willing to give up monitors the world model
looking for the appearance of appropriate ownership requests. To grant a request, the owner calls
spOwnershipRequestGrant, which e�ects the change. After that time, the old owner need take no
further action.

Being on the lookout for appropriate ownership requests is best done with an alerter. In
particular, the alerter predicate spRelevantOwnershipRequest (Section 6.1) exists to make this
easy. Using this alerter predicate causes the alerter operation to be applied whenever a new alerter
request appears that is asking for an object owned by the local process. For example you might
write:

spAlerterNew(spOwnershipRequestC(),-1,spRelevantOwnershipRequest, NULL, F, NULL);

If it is possible that there are preexisting spOwnershipRequests that are relevant, then you
should do an spClassExamine to �nd them before setting up the alerter above.

(3) The process that wants to gain ownership must monitor the world model to determine
whether the request is granted. This is done by the spOwnershipRequest action itself.

(It is worthy of note that joint control over an object can also be obtained by having a central
neutral broker that controls the object in response to requests from other processes. This might
be a convenient way to handle the ball in a virtual soccer game, especially in situations where the
ball is far from any player. However, it has the problem that it increases the latency of interaction
with the object in comparison to having the processes that is e�ecting the object most at any given
moment be the owner of the object and e�ect it directly.)

Since a reliable communication protocol is used, the ownership transfer protocol can rely on the
fact that the original owner of an object will be informed of any ownership requests on the object
and that if a request is granted, the requester (and every other process) will be informed of the
change. This simpli�es the implementation of the ownership transfer protocol.

However, the underlying communication protocol puts no limits on the length of time that a
message can take in transit. As a result, there is a race condition in the ownership transfer protocol.

A process may observe and grant an ownership request, but due to delays, the noti�cation of the
change may not reach the requester until a time when the request is no longer in e�ect. This could
happen either because the request timed out shortly after (or before) it was granted or because the
request was removed by the requester shortly after (or before) it was granted.

In either case, the situation could arise that the requester was no longer expecting to get
ownership but did anyway. Which in turn could lead to the situation that no application thought
that it was responsible for the object. (Due to the reliability of the underlying communication, the
system in the requesting process will realize that it had ownership of the object, but the application
might not.)

MERL-TR-97-11 December, 1997

202 (Internal) Spline Version 3.0 API

To ameliorate this race condition, the ownership transfer protocol operates as follows. Care
is taken to make sure that the spOwnershipRequest remains in existence in the creating process
substantially longer than in other processes. This is done by having the spOwnershipRequest be in
e�ect for a second longer in the process that creates it than in remote processes. (To allow for this
the timeout interval is required to be at least 2 seconds.) This makes it unlikely in practice that
the request can be granted without the spOwnershipRequest alerter being triggered. However, the
probability is not zero.

As a result, applications that wish to share an object between processes should be written
so that they can deal with unexpected ownership changes. In particular, they should be written
so that each participating process always considers ownership requests for objects they own even
if they do not realize that they own the objects in question. That is to say, they should have
a blanket alerter on spOwnershipRequests always in force, rather than only putting alerters on
spOwnershipRequests for particular objects they think they are responsible for.

Note that it is impossible for the situation to arise where two processes both think they own
a given object. The reason for this is that no process can think that ownership has changed until
after the original owner no longer thinks that it owns the object. (It can happen that two processes
disagree on who the owner of an object is, because one hears of a change before the other; however,
at most one of the processes can think that it is the owner.)

Actually changing the ownership of an object is trivial. The owner merely changes the Owner
variable and sends a message describing the change to other processes. (This is the only situation
where a process sends a message about an object it does not currently own.)

The above discusses how ownership transfer is achieved. It must also be considered, when
ownership transfer is sensible. To start with transferring ownership of an object A from X to Y
only makes sense when X and Y both know about A. In particular, it does not make sense for
alerters because only the original creator even knows a given alerter exists. In addition, if X and Y
both know about A, they do not necessarily know exactly the same things about A. In particular,
while X and Y agree on the shared variables of A, they do not agree on the local variables of A.
Fortunately, this often does not matter. For example, spThings have a GraphicsNode variable that
will have di�erent pointer values on di�erent machines, but nevertheless have equivalent values on
di�erent machines. In particular, what the value is has no need to change when ownership changes.
There are however, situations where this is not true and therefore ownership change is complex.

A good example of the problems that can be involved with ownership transfer is spMover
objects. These objects have a local variable Queue, which holds information about future motions.
However, this information is represented only on the owning machine. On other machines the Queue
is always empty and the only information is about the present (and immediate future) motion of
the object. If an spMover object has its owner changed, the information about far future motions
will be lost. Any change of ownership of spMover objects must take this into account. In general,
it is better to change the ownership of a thing and then make a new spMover object, rather than
attempt to change ownership of the spMover object.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 203

47.2 F

transient public spFn F; //* [spFn] readonly

spFn spOwnershipRequestGetF(sp Object)

void spOwnershipRequestiSetF(sp Object, spFn X)

spFn sqOwnershipRequestGetF(sp Object)
void sqOwnershipRequestSetF(sp Object, spFn X)

SpOwnershipRequest objects have a local instance variable called F that holds the locally de�ned
operation (Section 6) to be called when the ownership request succeeds or times out. It must be
set when an SpOwnershipRequest is created and cannot be changed later. Information about the
F is maintained separately in each process.

47.3 FState

transient public int FState; //* [void *] readonly

void * spOwnershipRequestGetFState(sp Object)

void spOwnershipRequestiSetFState(sp Object, void * X)

void * sqOwnershipRequestGetFState(sp Object)
void sqOwnershipRequestSetFState(sp Object, void * X)

spOwnershipRequest objects have a local instance variable called FState that holds state infor-
mation that is passed to the F operation when it is called. This must be set when an spOwner-
shipRequest is created and cannot be changed later. Information about the FState is maintained
separately in each process.

47.4 Timeout

public int Timeout; //* [spDuration]

spDuration spOwnershipRequestGetTimeout(sp Object)
spDuration spOwnershipRequestGetOldTimeout(sp Object)
void spOwnershipRequestSetTimeout(sp Object, spDuration X)

spDuration sqOwnershipRequestGetTimeout(sp Object)
spDuration sqOwnershipRequestGetOldTimeout(sp Object)
void sqOwnershipRequestSetTimeout(sp Object, spDuration X)

The Timeout shared instance variable of an spOwnershipRequest speci�es how long the request
should be in e�ect before it automatically times out. A negative value indicates that the request
will never time out.

The Timeout value is a time in milliseconds. It should be set when an spOwnershipRequest is
initially created and should not be changed later. Information about the Timeout is shared between
processes.

MERL-TR-97-11 December, 1997

204 (Internal) Spline Version 3.0 API

47.5 TimeAlive (Internal)

transient public int TimeAlive; //* [spDuration]

spDuration spOwnershipRequestGetTimeAlive(sp Object)
void spOwnershipRequestSetTimeAlive(sp Object, spDuration X)

spDuration sqOwnershipRequestGetTimeAlive(sp Object)
void sqOwnershipRequestSetTimeAlive(sp Object, spDuration X)

The TimeAlive local instance variable of an spOwnershipRequest records how long the request
has been in existance. This is used to control when the request terminates itself. If the Timeout is
positive then: on a remote machine the request terminates when TimeAlive becomes greater than
1 second less than the Timeout; on the local machine the request times out when the TimeAlive
becomes greater than the Timeout.

The TimeAlive value is a time in milliseconds. It is maintained by the action Function and
should not be modi�ed by an application. Information about the Timeout is maintained separately
in each process.

47.6 spOwnershipRequestNew

sp spOwnershipRequestNew(sp Object, spFn F, void * FState, spDuration Timeout)

Object - Object you want to own.
F - Op (Section 6) applied when request is satis�ed or times out.

FState - Passed to the operation each time it is called (modi�able).
Timeout - Interval in milliseconds to wait for ownership to be granted.

Return value - The newly constructed object.

Creates an spOwnershipRequest object seeking ownership of an object. It is up to the current
owner of the object to decide whether to grant a given ownership request.

The spOwnershipRequest action created applies F to the target object either when the timeout
interval is reached or when the owner of the object changes to spWMGetMe. It is up to F to detect
which has occurred (by looking at the owner variable of Object) and decide what to do next.

In either case, the spOwnershipRequest removes itself as soon as it is triggered. A negative
Timeout causes the request to never Timeout. It the Timeout is not negative, it should be at least
several seconds. The request is removes itself on remote machines 1 second before the timeout
interval is reached. On the local machine, the request times out, calling F when the Timeout
interval is reached.

In the spOwnershipRequest created, the Parent is the target object. Note that ownership
request objects are communicated between processes. However, the operation F is only called in
the process that created the spOwnershipRequest.

(It is possible to cancel an ownership request by removing the spOwnershipRequest object.
However, this is unwise because you might then fail to notice that another process granted the
request just before you removed it.)

If a process creates an ownership request whose target is an object it already owns, then ev-
erything proceeds in the same way as above. How long it takes before F is applied to the object
depends on whether the process grants ownership of the object to itself or not.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 205

47.7 spOwnershipRequestFunction (Internal)

spBoolean spOwnershipRequestFunction(sp Action, sp Object)

Action - Action being applied.
Object - Object whose ownership you want.

Return value - Always returns True.

If running in a process other than the one that owns the spOwnershipRequest action, the
Function merely monitors the passage of time and returns True, terminating the action, one second
before the Timeout interval expires.

If running in the process that owns the spOwnershipRequest action, the Function monitors the
passage of time and whether the ownership of the target object. If the owner of the target object
changes to be the same as the owner of the request or the Timeout interval expires, then F is
applied to the target object and True is returned, terminating the request.

47.8 spOwnershipRequestGrant

void spOwnershipRequestGrant(sp Request)

Request - The ownership request to be granted.
Return value - There is no return value.

If the process owning an object decides to grant an ownership request, it does so by calling
spOwnershipRequestGrant on the spOwnershipRequest object in question. If the process does not
wish to grant the request, then it need not take any action.

spOwnershipRequestGrant operates by merely changing the Owner of the object to be the same
as the owner of the ownership request.

48 spDoSoundPlay (Internal)

public class spDoSoundPlay implements spAction

This specialization of spAction supports the remote playback of a recorded sound. It does
this by simulating the receipt of sound as if it had been played through the spAudioSource that
is the Parent of the spDoSoundPlay object. spDoSoundPlay actions are created by the function
spSoundPlay.

The shared class spDoSoundPlay inherits all the instance variables and functions of the class
spAction (Section 46). The class spDoSoundPlay de�nes the following instance variables, with the
variables in the external API in bold and the variables that are fundamental in the sense that they
could not be properly supported by an application programmer underlined:

spDoSoundPlayC - Class descriptor (Section 15.1).
shared Sound - The sound to be played (Section 48.1).
shared Loop - Causes the sound to loop (Section 48.2).
shared Gain - Gain applied to sound (Section 48.3).

MERL-TR-97-11 December, 1997

206 (Internal) Spline Version 3.0 API

The class spDoSoundPlay de�nes the following functions:

spDoSoundPlayFunction - Plays recorded sound e�ect (Section 48.4).
spDoSoundPlayNew - Create new spDoSoundPlay object. (Section 15.28).

48.1 Sound (Internal)

public spSound Sound; //* [sp] internal

sp spDoSoundPlayiGetSound(sp Object)
sp spDoSoundPlayiGetOldSound(sp Object)
void spDoSoundPlayiSetSound(sp Object, sp X)

sp sqDoSoundPlayGetSound(sp Object)
sp sqDoSoundPlayGetOldSound(sp Object)
void sqDoSoundPlaySetSound(sp Object, sp X)

The Sound shared instance variable of an spDoSoundPlay is the spSound to be played. It is set
when the spDoSoundPlay is created and cannot be changed later. Information about the Sound is
shared between processes.

48.2 Loop (Internal)

public boolean Loop; //* [spBoolean] internal

spBoolean spDoSoundPlayiGetLoop(sp Object)
spBoolean spDoSoundPlayiGetOldLoop(sp Object)
void spDoSoundPlayiSetLoop(sp Object, spBoolean X)

spBoolean sqDoSoundPlayGetLoop(sp Object)
spBoolean sqDoSoundPlayGetOldLoop(sp Object)
void sqDoSoundPlaySetLoop(sp Object, spBoolean X)

The Loop bit shared instance variable of an spDoSoundPlay speci�es whether the sound should
be played just once, or continuously. It is set when the spDoSoundPlay is created and cannot be
changed later. Information about the Loop bit is shared between processes.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 207

48.3 Gain (Internal)

public float Gain; //* [float] internal

float spDoSoundPlayiGetGain(sp Object)
float spDoSoundPlayiGetOldGain(sp Object)
void spDoSoundPlayiSetGain(sp Object, float X)

float sqDoSoundPlayGetGain(sp Object)
float sqDoSoundPlayGetOldGain(sp Object)
void sqDoSoundPlaySetGain(sp Object, float X)

The Gain shared instance variable of an spDoSoundPlay is the gain to be used when playing
back the sound. A value of 1.0 means no gain. The Gain value is set when the spDoSoundPlay is
created and cannot be changed later. Information about the Gain is shared between processes.

48.4 spDoSoundPlayFunction (Fundamental and Internal)

spBoolean spDoSoundPlayFunction(sp Action, sp Object)

Action - Action being applied.
Object - Source to play sound through.

Return value - Returns True when sound �nished playing.

Plays a recorded sound as coming from an spAudioSource.

49 spMover (Internal)

public class spMover implements spAction

This specialization of spAction supports the smooth motion of objects. It does this by interpo-
lating between spTransform values using Catmul Rom interpolation. The Parent of the spMover
is the object being moved. spMover actions are created by the smooth motion operations (Sec-
tion 16.13).

The shared class spMover inherits all the instance variables and functions of the class spAction
(Section 46). The class spMover de�nes the following instance variables, with the variables in the
external API in bold and the variables that are fundamental in the sense that they could not be
properly supported by an application programmer underlined:

spMoverC - Class descriptor (Section 15.1).
shared X - spTransform interpolation points (Section 49.1).
shared T - Times of corresponding interpolation points (Section 49.2).

Queue - Queue of interpolation points (Section 49.3).

The class spMover de�nes the following functions:

spMoverFunction - Calculates spTransform via interpolation (Section 49.4).
spMoverNew - Create new spMover object. (Section 15.28).

MERL-TR-97-11 December, 1997

208 (Internal) Spline Version 3.0 API

49.1 X (Internal)

public float[] X; //* [spTransform6:102] internal

spTransform6 spMoveriGetX(sp Object)
spTransform6 spMoveriGetOldX(sp Object)
void spMoveriSetX(sp Object, spTransform6 X)

spTransform6 sqMoverGetX(sp Object)
spTransform6 sqMoverGetOldX(sp Object)
void sqMoverSetX(sp Object, spTransform6 X)

The X shared instance variable of an spMover records six spTransform values that are the basis
of calculating an interpolated object position. It is manipulated by the smooth motion software
and should not be directly modi�ed by an application. Information about the X is shared between
processes.

49.2 T (Internal)

public int [] T; //* [spTimeStamp6:6] internal

spTimeStamp6 spMoveriGetT(sp Object)
spTimeStamp6 spMoveriGetOldT(sp Object)
void spMoveriSetT(sp Object, spTimeStamp6 X)

spTimeStamp6 sqMoverGetT(sp Object)
spTimeStamp6 sqMoverGetOldT(sp Object)
void sqMoverSetT(sp Object, spTimeStamp6 X)

The T shared instance variable of an spMover record six time values that correspond to the six
spTransform values in the X variable. Together, the X and T variables operate as a ring bu�er.
The T variable is manipulated by the smooth motion software and should not be directly modi�ed
by an application. Information about the T is shared between processes.

49.3 Queue (Internal)

transient public int Queue; //* [spPath] internal

spPath spMoveriGetQueue(sp Object)
void spMoveriSetQueue(sp Object, spPath X)

spPath sqMoverGetQueue(sp Object)
void sqMoverSetQueue(sp Object, spPath X)

The queue local instance variable of an spMover contains a queue of future motions for an
object. It is manipulated by the smooth motion software and should not be directly modi�ed by
an application. Information about the queue is maintained separately in each process.

49.4 spMoverFunction (Internal)

spBoolean spMoverFunction(sp Action, sp Object)
Action - The spMover action being applied.
Object - Object to move.

Return value - Returns True when motion over.

Uses interpolation to calculate the Transform of an object at the current moment.

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 209

A Java Declaration File

The following shows a Java de�nition appropriate for input to SPOT (Section 1.6) that cor-
responds to the (Internal) Spline Version 3.0 API presented in this document. Since all of the
functions are part of the system core, they are all native. The functions spWMRegister and sp-
WMDeregister are not included in the Java below, because they are not part of the Java API and
cannot be expressed in Java.

The Java code below is included both as an extended example of SPOT input and as a concise
summary of what is available in the (Internal) Spline Version 3.0 API. Discussions of the variables
and functions shown can be found by looking them up in the table of contents of this documentation.
They appear in the same order below as in the table of contents.

public class spApp {
native public static String ChooseServer();
//* [char * spAppChooseServer()]

native public static void Init();
//* [void spAppInit()]

native public static boolean Body();
//* [spBoolean spAppBody()]

native public static void Finish();
//* [void spAppFinish()]

}

public class spVisual extends spApp {
native public final static void Init();
//* [void spVisualInit()]

native public final static void Finish();
//* [void spVisualFinish()]

}

public class spAudio extends spApp {
native public final static void Init();
//* [void spAudioInit()]

native public final static void Finish();
//* [void spAudioFinish()]

}

MERL-TR-97-11 December, 1997

210 (Internal) Spline Version 3.0 API

public class spWM {
transient int CPtr;
public static int Me; //* [spName]
public static int MainOwner; //* [spName] readonly
public static int SystemOwner; //* [spName] internal
public static String Error; //* [char *:500]
public static String LastError; //* [char *:500] readonly
public static int Interval; //* [spDuration] readonly
public static int DesiredInterval; //* [spDuration]
public static int Week; //* [long] readonly
public static int Msec; //* [spDuration] readonly
public static int Window; //* [spWindow]
public static String DNSName; //* [char *:500] readonly
public static short Port; //* [short] readonly
public static int MsgRejectionQueue; //* [void *] internal
native private static int New(String Server, int V);
//* [spWM spWMNew(char * Server, spTransferVector V)]

native public final static void Remove();
//* [void spWMRemove()]

native public final static void Update();
//* [void spWMUpdate()]

native public final static int GenerateOwner();
//* [spName spWMGenerateOwner()]

native public final static void ReportError(sp Object, int Code, String Description);
//* [void spWMReportError(sp Object, long Code, char *:500 Description)]

}

public abstract class spFn {
public abstract boolean F(sp object);

}

public class spMask {
public static final int MINE = 1; //* [spMask]
public static final int OTHERS = 2; //* [spMask]
public static final int NORMAL = 3; //* [spMask]
public static final int SYSTEM = 8; //* [spMask] internal
public static final int CALLBACKS = 16; //* [spMask] internal
public static final int ALL = -1; //* [spMask] internal

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 211

public class spTransform {
public static final int X = 0; //* [long]
public static final int Y = 1; //* [long]
public static final int Z = 2; //* [long]
public static final int RX = 3; //* [long]
public static final int RY = 4; //* [long]
public static final int RZ = 5; //* [long]
public static final int RA = 6; //* [long]
public static final int SX = 7; //* [long]
public static final int SY = 8; //* [long]
public static final int SZ = 9; //* [long]
public static final int SOX = 10; //* [long]
public static final int SOY = 11; //* [long]
public static final int SOZ = 12; //* [long]
public static final int SOA = 13; //* [long]
public static final int CX = 14; //* [long]
public static final int CY = 15; //* [long]
public static final int CZ = 16; //* [long]
native public final static float[] Copy(float[] Destination, float[] Source);
//* [spTransform:17 spTransformCopy(spTransform:17 Destination, spTransform:17 Source)]

native public final static float[] FromIdent(float[] Transform);
//* [spTransform:17 spTransformFromIdent(spTransform:17 Transform)]

native public final static float[] GetTranslation(float[] Transform);
//* [spVector:3 spTransformGetTranslation(spTransform:17 Transform)]

native public final static float[] SetTranslation(float[] Transform, float[] Translation);
//* [spTransform:17 spTransformSetTranslation(spTransform:17 Transform, spVector:3 Translation)]

native public final static float[] GetRotation(float[] Transform);
//* [spRotation:4 spTransformGetRotation(spTransform:17 Transform)]

native public final static float[] SetRotation(float[] Transform, float[] Rotation);
//* [spTransform:17 spTransformSetRotation(spTransform:17 Transform, spRotation:4 Rotation)]

native public final static float[] GetScale(float[] Transform);
//* [spVector:3 spTransformGetScale(spTransform:17 Transform)]

native public final static float[] SetScale(float[] Transform, float[] Vector);
//* [spTransform:17 spTransformSetScale(spTransform:17 Transform, spVector:3 Vector)]

native public final static float[] GetScaleOrientation(float[] Transform);
//* [spRotation:4 spTransformGetScaleOrientation(spTransform:17 Transform)]

native public final static float[] SetScaleOrientation(float[] Transform, float[] R);
//* [spTransform:17 spTransformSetScaleOrientation(spTransform:17 Transform, spRotation:4 R)]

native public final static float[] GetCenter(float[] Transform);
//* [spVector:3 spTransformGetCenter(spTransform:17 Transform)]

native public final static float[] SetCenter(float[] Transform, float[] Center);
//* [spTransform:17 spTransformSetCenter(spTransform:17 Transform, spVector:3 Center)]

}

MERL-TR-97-11 December, 1997

212 (Internal) Spline Version 3.0 API

public class spVector {
public static final int X = 0; //* [long]
public static final int Y = 1; //* [long]
public static final int Z = 2; //* [long]
public static final float[] ZERO = {0.0, 0.0, 0.0};

//* [spVector:3=((spVector)spVectorDataZero)]
public static final float[] AXISX = {1.0, 0.0, 0.0};

//* [spVector:3=((spVector)spVectorDataAxisX)]
public static final float[] AXISY = {10.0, 1.0, 0.0};

//* [spVector:3=((spVector)spVectorDataAxisY)]
public static final float[] AXISZ = {10.0, 0.0, 1.0};

//* [spVector:3=((spVector)spVectorDataAxisZ)]
native public final static float[] Copy(float[] Destination, float[] Source);
//* [spVector:3 spVectorCopy(spVector:3 Destination, spVector:3 Source)]

native public final static float[] SetFromScalar(float[] Vector, float Scalar);
//* [spVector:3 spVectorSetFromScalar(spVector:3 Vector, float Scalar)]

native public final static boolean Equals(float[] A, float[] B);
//* [spBoolean spVectorEquals(spVector:3 A, spVector:3 B)]

native public final static boolean EqualsDelta(float[] A, float[] B, float Tolerance);
//* [spBoolean spVectorEqualsDelta(spVector:3 A, spVector:3 B, float Tolerance)]

native public final static float[] Add(float[] A, float[] B);
//* [spVector:3 spVectorAdd(spVector:3 A, spVector:3 B)]

native public final static float[] Subtract(float[] A, float[] B);
//* [spVector:3 spVectorSubtract(spVector:3 A, spVector:3 B)]

native public final static float[] MultiplyByScalar(float[] Vector, float Scalar);
//* [spVector:3 spVectorMultiplyByScalar(spVector:3 Vector, float Scalar)]

native public final static float[] DivideByScalar(float[] Vector, float Scalar);
//* [spVector:3 spVectorDivideByScalar(spVector:3 Vector, float Scalar)]

native public final static float[] CrossProduct(float[] A, float[] B);
//* [spVector:3 spVectorCrossProduct(spVector:3 A, spVector:3 B)]

native public final static float DotProduct(float[] A, float[] B);
//* [float spVectorDotProduct(spVector:3 A, spVector:3 B)]

native public final static float[] ComposeScales(float[] A, float[] B);
//* [spVector:3 spVectorComposeScales(spVector:3 A, spVector:3 B)]

native public final static float Length(float[] Vector);
//* [float spVectorLength(spVector:3 Vector)]

native public final static float[] Normalize(float[] Vector);
//* [spVector:3 spVectorNormalize(spVector:3 Vector)]

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 213

public class spRotation {
public static final int X = 0; //* [long]
public static final int Y = 1; //* [long]
public static final int Z = 2; //* [long]
public static final int A = 3; //* [long]
native public final static float[] Copy(float[] Destination, float[] Source);
//* [spRotation:4 spRotationCopy(spRotation:4 Destination, spRotation:4 Source)]

native public final static float[] FromIdent(float[] Rotation);
//* [spRotation:4 spRotationFromIdent(spRotation:4 Rotation)]

native public final static float[] GetAxis(float[] Rotation);
//* [spVector:3 spRotationGetAxis(spRotation:4 Rotation)]

native public final static float[] SetAxis(float[] Rotation, float[] Axis);
//* [spRotation:4 spRotationSetAxis(spRotation:4 Rotation, spVector:3 Axis)]

native public final static float GetAngle(float[] Rotation);
//* [float spRotationGetAngle(spRotation:4 Rotation)]

native public final static float[] SetAngle(float[] Rotation, float Angle);
//* [spRotation:4 spRotationSetAngle(spRotation:4 Rotation, float Angle)]

native public final static float[] ToQuat(float[] Rotation, float[] Quat);
//* [spQuaternion:4 spRotationToQuat(spRotation:4 Rotation, spQuaternion:4 Quat)]

native public final static float[] FromQuat(float[] Rotation, float[] Quat);
//* [spRotation:4 spRotationFromQuat(spRotation:4 Rotation, spQuaternion:4 Quat)]

native public final static float[] ToAngles(float[] Rotation, float[] Vector);
//* [spVector:3 spRotationToAngles(spRotation:4 Rotation, spVector:3 Vector)]

native public final static float[] FromAngles(float[] Rotation, float[] Angles);
//* [spRotation:4 spRotationFromAngles(spRotation:4 Rotation, spVector:3 Angles)]

native public final static float[] Mult(float[] A, float[] B);
//* [spRotation:4 spRotationMult(spRotation:4 A, spRotation:4 B)]

native public final static float[] LookAt(float[] R, float[] From, float[] To, float[] Up);
//* [spRotation:4 spRotationLookAt(spRotation:4 R, spVector:3 From, spVector:3 To, spVector:3 Up)]

}

public class spQuaternion {
native public final static float[] Copy(float[] Destination, float[] Source);
//* [spQuaternion:4 spQuaternionCopy(spQuaternion:4 Destination, spQuaternion:4 Source)]

native public final static float[] FromIdent(float[] Quaternion);
//* [spQuaternion:4 spQuaternionFromIdent(spQuaternion:4 Quaternion)]

native public final static float[] Mult(float[] A, float[] B);
//* [spQuaternion:4 spQuaternionMult(spQuaternion:4 A, spQuaternion:4 B)]

}

MERL-TR-97-11 December, 1997

214 (Internal) Spline Version 3.0 API

public class spMatrix {
native public final static float[] Copy(float[] Destination, float[] Source);
//* [spMatrix:16 spMatrixCopy(spMatrix:16 Destination, spMatrix:16 Source)]

native public final static float[] FromIdent(float[] Matrix);
//* [spMatrix:16 spMatrixFromIdent(spMatrix:16 Matrix)]

native public final static float[] GetTranslation(float[] Matrix);
//* [spVector:3 spMatrixGetTranslation(spMatrix:16 Matrix)]

native public final static float[] SetTranslation(float[] Matrix, float[] Translation);
//* [spMatrix:16 spMatrixSetTranslation(spMatrix:16 Matrix, spVector:3 Translation)]

native public final static float[] FromTransform(float[] Matrix, float[] Transform);
//* [spMatrix:16 spMatrixFromTransform(spMatrix:16 Matrix, spTransform:17 Transform)]

native public final static float[] ToTransform(float[] Matrix, float[] Transform);
//* [spTransform:17 spMatrixToTransform(spMatrix:16 Matrix, spTransform:17 Transform)]

native public final static float[] Inverse(float[] spMatrix);
//* [spMatrix:16 spMatrixInverse(spMatrix:16 spMatrix)]

native public final static float[] Mult(float[] A, float[] B);
//* [spMatrix:16 spMatrixMult(spMatrix:16 A, spMatrix:16 B)]

native public final static float[] MultVector(float[] Matrix, float[] Vector);
//* [spVector:3 spMatrixMultVector(spMatrix:16 Matrix, spVector:3 Vector)]

}

public class spPath {
transient int CPtr;
native private static int New();
//* [spPath spPathNew()]

native public final static int AppendTransform(int Path, float[] Point, int Duration);
//* [spPath spPathAppendTransform(spPath Path, spTransform:17 Point, spDuration Duration)]

native public final static int GetTransform(int Path, int Index, float[] Transform);
//* [spDuration spPathGetTransform(spPath Path, long Index, spTransform:17 Transform)]

native public final static int Copy(int Path);
//* [spPath spPathCopy(spPath Path)]

native public final static void Save(int Path, String Name, String File);
//* [void spPathSave(spPath Path, char * Name, char * File)]

native public final static int Load(int Path, String Name, String File);
//* [spPath spPathLoad(spPath Path, char * Name, char * File)]

native public final static int ChangeStartPoint(int Path, float[] Transform);
//* [spPath spPathChangeStartPoint(spPath Path, spTransform:17 Transform)]

native public final static int Thin(int Path, float Tolerance);
//* [spPath spPathThin(spPath Path, float Tolerance)]

}

public class spFormat {
public static final long LINEAR8MONO16 = 0x1F40000000100001L; //* [spFormat]
public static final long LINEAR16MONO16 = 0x3E80000000100001L; //* [spFormat]
public static final long LINEAR32MONO16 = 0x7D00000000100001L; //* [spFormat]
native public final static int DurationFromLength(long Format, int Bytes);
//* [spDuration spFormatDurationFromLength(spFormat Format, long Bytes)]

native public final static int LengthFromDuration(long Format, int Duration);
//* [long spFormatLengthFromDuration(spFormat Format, spDuration Duration)]

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 215

public interface sp {
transient int CPtr;
public static final float DEGREES = 0.0174532925199; //* [float]
transient public int LocalPtr; //* [void *] internal
transient public int NextPtr; //* [void *] internal
transient public int Marker; //* [long] internal
public short DescriptionLength; //* [short] internal
public short Counter; //* [short] internal
public int Name; //* [spName] internal
public spClass Class; //* [sp] readonly
public int Owner; //* [spName]
public spLocale Locale; //* [sp] internal
public int SharedBits; //* [long] internal
public sp Parent; //* [sp]
public boolean IsRemoved; //* [spBoolean] readonly
public boolean ForceReliable; //* [spBoolean] internal
public boolean InhibitReliable; //* [spBoolean] internal
transient public short LocalBits; //* [short] internal
transient public boolean IsNew; //* [spBoolean] readonly
transient public int AppData; //* [void *]
transient public boolean MessageNeeded; //* [spBoolean] internal
transient public boolean Change; //* [spBoolean] internal
transient public int OldPtr; //* [void *] internal
transient public int JavaPtr; //* [void *] internal
transient public int Referrers; //* [spNameInfoPtr] internal
transient public int Alerters; //* [void *] internal
transient public int Msgs; //* [void *] internal
transient public int LastUpdateTime; //* [spTimeStamp] internal
native public void Initialization();
//* [void spInitialization(sp Object)]

native public final void Remove();
//* [void spRemove(sp Object)]

native public final void ExamineChildren(int Mask, spFn F);
//* [void spExamineChildren(sp Object, spMask Mask, spFn F, void * Data)]

native public final void ExamineDescendants(int Mask, spFn F);
//* [void spExamineDescendants(sp Object, spMask Mask, spFn F, void * Data)]

native public final sp Topmost();
//* [sp spTopmost(sp Object)]

native public final void Print();
//* [void spPrint(sp Object)]

native public final boolean LocallyOwned();
//* [spBoolean spLocallyOwned(sp Object)]

native public final void SetParent(sp Parent);
//* [void spSetParent(sp Object, sp Parent)]

}

MERL-TR-97-11 December, 1997

216 (Internal) Spline Version 3.0 API

public interface spPositioning extends sp {
public float[] Transform; //* [spTransform:17]
transient public float[] Matrix; //* [spMatrix:16] internal
transient public boolean MatrixOK; //* [spBoolean] internal
transient public float[] MatrixInverse; //* [spMatrix:16] internal
transient public boolean MatrixInverseOK; //* [spBoolean] internal
native public final float[] Matrix();
//* [spMatrix:16 spPositioningMatrix(sp Object)]

native public final float[] MatrixInverse();
//* [spMatrix:16 spPositioningMatrixInverse(sp Object)]

native public final boolean Localize(spLocale Destination, boolean ChooseSmallest);
//* [spBoolean spPositioningLocalize(sp Object, sp Destination, spBoolean ChooseSmallest)]

native public final float[] RelativeMatrix(spPositioning Object, float[] Matrix);
//* [spMatrix:16 spPositioningRelativeMatrix(sp X, sp Object, spMatrix:16 Matrix)]

native public final float[] RelativeVector(spPositioning X, float[] Vector);
//* [spVector:3 spPositioningRelativeVector(sp Object, sp X, spVector:3 Vector)]

native public final float Distance(spPositioning X);
//* [float spPositioningDistance(sp Object, sp X)]

native public final void LookAt(spPositioning Target);
//* [void spPositioningLookAt(sp Object, sp Target)]

native public final void GoThru(float[] Transform, int Time);
//* [void spPositioningGoThru(sp Object, spTransform:17 Transform, spDuration Time)]

native public final void StopAt(float[] Transform, int Time);
//* [void spPositioningStopAt(sp Object, spTransform:17 Transform, spDuration Time)]

native public final void Stop();
//* [void spPositioningStop(sp Object)]

native public final void FollowPath(int Path);
//* [void spPositioningFollowPath(sp Object, spPath Path)]

native public final int MotionTimeLeft();
//* [spDuration spPositioningMotionTimeLeft(sp Object)]

native public final int GetMotionQueue();
//* [spPath spPositioningGetMotionQueue(sp Object)]

native public final void FlushMotionQueue();
//* [void spPositioningFlushMotionQueue(sp Object)]

native public final void SetTransform(float[] Transform);
//* [void spPositioningSetTransform(sp Object, spTransform:17 Transform)]

native public void Initialization();
//* [void spPositioningInitialization(sp Object)]

}

public interface spDisplaying extends sp {
public spVisualDefinition VisualDefinition; //* [sp]
public float InRadius; //* [float]
public float OutRadius; //* [float]
transient public int GraphicsNode; //* [void *] internal

}

public interface spLinking extends sp {
public String URL; //* [spFixedAscii] readonly
public int Checksum; //* [long] internal
transient public String FileName; //* [char *]
transient public int Data; //* [void *] readonly
native public final void URLAltered();
//* [void spLinkingURLAltered(sp Link)]

native public void ReadData();
//* [void spLinkingReadData(sp Link)]

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 217

public interface spMultilinking extends spLinking {
transient public int Multipart; //* [long] internal
transient public String IndexName; //* [char *]
native public int New(v URL);
//* [sp spMultilinkingNew(v URL)]

native public int Select();
//* [long spMultilinkingSelect(sp Link)]

}

public interface spBeaconing extends sp {
public String Tag; //* [spFixedAscii] readonly
public boolean Suppress; //* [spBoolean]

}

public interface spObserving extends sp {
public boolean Audio; //* [spBoolean]
public boolean IgnoreNearby; //* [spBoolean]

}

public interface spVisualParameters extends sp {
public float FarClip; //* [float]
public float NearClip; //* [float]
public float Field; //* [float]
public int Interval; //* [spDuration]

}

public interface spAudioParameters extends sp {
public spAudioSource Focus; //* [sp]
public boolean Live; //* [spBoolean]
public long Format; //* [spFormat]

}

public class spVisualDefinition implements spMultilinking {
native private static int New(String URL);
//* [sp spVisualDefinitionNew(spFixedAscii URL)]

native public void ReadData();
//* [void spVisualDefinitionReadData(sp Link)]

native public int Select();
//* [long spVisualDefinitionSelect(sp Link)]

}

public class spSound implements spMultilinking {
transient public int Duration; //* [spDuration] readonly
native private static int New(String URL);
//* [sp spSoundNew(spFixedAscii URL)]

native public final spAction Play(spAudioSource Source, boolean Loop, float Gain);
//* [sp spSoundPlay(sp Sound, sp Source, spBoolean Loop, float Gain)]

native public int Select();
//* [long spSoundSelect(sp Link)]

native public void ReadData();
//* [void spSoundReadData(sp Link)]

}

MERL-TR-97-11 December, 1997

218 (Internal) Spline Version 3.0 API

public class spLocale implements spLinking, spBeaconing, spDisplaying {
public spBoundary Boundary; //* [sp]
transient public int NumNeighbors; //* [long] internal
native private static int New(String URL, String Tag);
//* [sp spLocaleNew(spFixedAscii URL, spFixedAscii Tag)]

native public final spLocale Choose(float[] P);
//* [sp spLocaleChoose(sp L, spMatrix:16 P)]

native public final float[] ExportMatrix(spLocale Destination);
//* [spMatrix:16 spLocaleExportMatrix(sp L, sp Destination)]

native public void ReadData();
//* [void spLocaleReadData(sp Link)]

}

public class spBoundary implements spLinking {
transient public float Volume; //* [float] readonly
native private static int New(String URL);
//* [sp spBoundaryNew(spFixedAscii URL)]

native public int Below(float[] P, float[] Q);
//* [long spBoundaryBelow(sp Boundary, spVector:3 P, spVector:3 Q)]

native public int Above(float[] P, float[] Q);
//* [long spBoundaryAbove(sp Boundary, spVector:3 P, spVector:3 Q)]

native public int Inside(float[] P);
//* [long spBoundaryInside(sp Boundary, spVector:3 P)]

native public void ReadData();
//* [void spBoundaryReadData(sp Link)]

}

public class spTerrain extends spBoundary {
native private static int New(String URL);
//* [sp spTerrainNew(spFixedAscii URL)]

native public final int Below(spTerrain Terrain, float[] P, float[] Q);
//* [long spTerrainBelow(sp Terrain, spVector:3 P, spVector:3 Q)]

native public final int Above(float[] P, float[] Q);
//* [long spTerrainAbove(sp Terrain, spVector:3 P, spVector:3 Q)]

native public int Inside(float[] P);
//* [long spTerrainInside(sp Terrain, spVector:3 P)]

native public void ReadData();
//* [void spTerrainReadData(sp Link)]

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 219

public class spClass implements spLinking {
transient public String ClassName; //* [spAscii32:32] readonly
transient public boolean LoadData; //* [spBoolean]
transient public int ReadDataFn; //* [void *] internal
transient public int SelectFn; //* [void *] internal
transient public int Superclasses; //* [void *] readonly internal
transient public short NumSuperclasses; //* [short] readonly internal
transient public short Size; //* [short] internal
transient public short Level; //* [short] internal
transient public short LocalOffset; //* [short] internal
transient public short SharedOffset; //* [short] internal
transient public short SharedBitNum; //* [short] internal
transient public short LocalBitNum; //* [short] internal
transient public int TimeStampOffsets; //* [int *] internal
transient public boolean SendViaLocale; //* [spBoolean] internal
transient public boolean SendViaTCP; //* [spBoolean] internal
transient public int NumVariables; //* [long] internal
transient public int MethodTable; //* [void *] readonly internal
native public int NewObj(int Extra);
//* [sp spClassNewObj(sp ClassDescriptor, long Extra)]

native public int NewLink(String URL);
//* [sp spClassNewLink(sp ClassDescriptor, spFixedAscii URL)]

native private static int New(String URL);
//* [sp spClassNew(spFixedAscii URL)]

native public final boolean Eq(spClass ClassB);
//* [spBoolean spClassEq(sp ClassA, sp ClassB)]

native public final boolean Leq(spClass Superclass);
//* [spBoolean spClassLeq(sp Subclass, sp Superclass)]

native public final boolean Examine(int Mask, spFn F);
//* [spBoolean spClassExamine(sp C, spMask Mask, spFn F, void * Data)]

native public final spIntervalCallback Monitor(int Mask, spFn F);
//* [sp spClassMonitor(sp C, spMask Mask, spFn F, void * Data)]

native public void ReadData();
//* [void spClassReadData(sp Link)]

}

public class spThing implements spPositioning, spDisplaying {
}

public class spRoot extends spThing {
}

public class spAvatar extends spRoot {
public boolean IsBot; //* [spBoolean]

}

MERL-TR-97-11 December, 1997

220 (Internal) Spline Version 3.0 API

public class spAudioSource implements spPositioning, spDisplaying, spAudioParameters {
transient public int Duration; //* [spDuration] readonly
transient public long ExternalFormat; //* [spFormat] internal
native public final void Setup(boolean W, boolean R, long F, int D);
//* [void spAudioSourceSetup(sp S, spBoolean W, spBoolean R, spFormat F, spDuration D)]

native public final void Write(String Data);
//* [void spAudioSourceWrite(sp Source, char * Data)]

native public final String Read();
//* [char * spAudioSourceRead(sp Source)]

}

public class spBeacon implements spBeaconing {
native private static int New(String Tag);
//* [sp spBeaconNew(spFixedAscii Tag)]

}

public class spPositionedBeacon implements spBeaconing, spPositioning {
}

public class spSpeaking extends spPositionedBeacon {
native private static int New(String HostName);
//* [sp spSpeakingNew(spFixedAscii HostName)]

}

public class spHearing extends spPositionedBeacon implements spAudioParameters {
native private static int New(String HostName);
//* [sp spHearingNew(spFixedAscii HostName)]

}

public class spSeeing extends spPositionedBeacon implements spVisualParameters {
native private static int New(String HostName);
//* [sp spSeeingNew(spFixedAscii HostName)]

}

public class spSimulationObserver implements spObserving {
}

public class spVisualObserver implements spObserving, spVisualParameters {
}

public class spAudioObserver implements spObserving, spAudioParameters {
native public void Initialization(spAudioObserver Object);
//* [void spAudioObserverInitialization(sp Object)]

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 221

public class spIntervalCallback extends sp {
public int Interval; //* [spDuration]
transient public spFn F; //* [spFn] readonly
transient public int FState; //* [void *] readonly
transient public int NextTriggerTime; //* [spTimeStamp] internal
transient public int IntNext; //* [void *] internal
transient public int IntPrev; //* [void *] internal
native private static int New(int Interval, spFn F);
//* [sp spIntervalCallbackNew(spDuration Interval, spFn F, void * FState)]

}

public class spAlerter extends spIntervalCallback {
transient public spFn P; //* [spFn] readonly
transient public int PState; //* [void *] readonly
public int Mask; //* [spMask]
transient public int ChgNext; //* [void *] internal
transient public int ChgPrev; //* [void *] internal
native private static int New(sp X, int I, spFn P, spFn F);
//* [sp spAlerterNew(sp X, spDuration I, spFn P, void * PState, spFn F, void * FState)]

native public void Initialization();
//* [void spAlerterInitialization(sp Action)]

}

public class spBeaconMonitor extends spAlerter {
public String Pattern; //* [spFixedAscii]
native private static int New(String Pattern, spFn F, int I);
//* [sp spBeaconMonitorNew(spFixedAscii Pattern, spFn F, void * S, spDuration I)]

}

public class spBeaconGoto extends spBeaconMonitor {
transient public spObserving Object; //* [sp] readonly
native private static int New(String P, spObserving Object, spFn F, int I);
//* [sp spBeaconGotoNew(spFixedAscii P, sp Object, spFn F, void * S, spDuration I)]

}

public interface spAction extends sp {
native public boolean Function(sp Parent);
//* [spBoolean spActionFunction(sp Action, sp Parent)]

}

public class spOwnershipRequest implements spAction {
transient public spFn F; //* [spFn] readonly
transient public int FState; //* [void *] readonly
public int Timeout; //* [spDuration]
transient public int TimeAlive; //* [spDuration]
native private static int New(sp Object, spFn F, int Timeout);
//* [sp spOwnershipRequestNew(sp Object, spFn F, void * FState, spDuration Timeout)]

native public final boolean Function(sp Object);
//* [spBoolean spOwnershipRequestFunction(sp Action, sp Object)]

native public final void Grant();
//* [void spOwnershipRequestGrant(sp Request)]

}

MERL-TR-97-11 December, 1997

222 (Internal) Spline Version 3.0 API

public class spDoSoundPlay implements spAction {
public spSound Sound; //* [sp] internal
public boolean Loop; //* [spBoolean] internal
public float Gain; //* [float] internal
native public final boolean Function(spAudioSource Object);
//* [spBoolean spDoSoundPlayFunction(sp Action, sp Object)]

}

public class spMover implements spAction {
public float[] X; //* [spTransform6:102] internal
public int [] T; //* [spTimeStamp6:6] internal
transient public int Queue; //* [spPath] internal
native public final boolean Function(spThing Object);
//* [spBoolean spMoverFunction(sp Action, sp Object)]

}

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 223

B Quick Function Reference

The following is a quick reference and index for the complex functions in the (Internal) Spline
Version 3.0 API. In the interest of brevity, it does not include: variable access functions, functions
of the form spKC() for obtaining class descriptors, and zero-argument creation functions of the
form spKNew().

Each entry consists of two lines. The �rst line indicates which function in which class is being
summarized and the page on which the function is described in detail. The second line shows the
complete signature of the function.

For greater convenience in looking up the functions, the entries are ordered alphabetically based
on the �rst line of each entry. That is to say, the entries are sorted primarily on the name of the
method itself and secondarily on the name of the class that contains the method. For Example,
spClassExamine is ordered primarily by \Examine" and only secondarily by \spClass".

Above in spBoundary on page 150
long spBoundaryAbove(sp Boundary, spVector P, spVector Q)

Above in spTerrain on page 154
long spTerrainAbove(sp Terrain, spVector P, spVector Q)

Add in spVector on page 65
spVector spVectorAdd(spVector A, spVector B)

AppendTransform in spPath on page 81
spPath spPathAppendTransform(spPath Path, spTransform Point, spDuration Duration)

Below in spBoundary on page 149
long spBoundaryBelow(sp Boundary, spVector P, spVector Q)

Below in spTerrain on page 153
long spTerrainBelow(sp Terrain, spVector P, spVector Q)

Body in spApp on page 36
spBoolean spAppBody()

ChangeStartPoint in spPath on page 82
spPath spPathChangeStartPoint(spPath Path, spTransform Transform)

Choose in spLocale on page 147
sp spLocaleChoose(sp L, spMatrix P)

ChooseServer in spApp on page 35
char * spAppChooseServer()

ComposeScales in spVector on page 66
spVector spVectorComposeScales(spVector A, spVector B)

Copy in spMatrix on page 77
spMatrix spMatrixCopy(spMatrix Destination, spMatrix Source)

Copy in spPath on page 81
spPath spPathCopy(spPath Path)

Copy in spQuaternion on page 74
spQuaternion spQuaternionCopy(spQuaternion Destination, spQuaternion Source)

Copy in spRotation on page 71
spRotation spRotationCopy(spRotation Destination, spRotation Source)

MERL-TR-97-11 December, 1997

224 (Internal) Spline Version 3.0 API

Copy in spTransform on page 59
spTransform spTransformCopy(spTransform Destination, spTransform Source)

Copy in spVector on page 64
spVector spVectorCopy(spVector Destination, spVector Source)

CrossProduct in spVector on page 66
spVector spVectorCrossProduct(spVector A, spVector B)

Deregister in spWM on page 50
void spWMDeregister(sp * Pointer)

Distance in spPositioning on page 110
float spPositioningDistance(sp Object, sp X)

DivideByScalar in spVector on page 66
spVector spVectorDivideByScalar(spVector Vector, float Scalar)

DotProduct in spVector on page 66
float spVectorDotProduct(spVector A, spVector B)

DurationFromLength in spFormat on page 84
spDuration spFormatDurationFromLength(spFormat Format, long Bytes)

Eq in spClass on page 164
spBoolean spClassEq(sp ClassA, sp ClassB)

Equals in spVector on page 65
spBoolean spVectorEquals(spVector A, spVector B)

EqualsDelta in spVector on page 65
spBoolean spVectorEqualsDelta(spVector A, spVector B, float Tolerance)

Examine in spClass on page 165
spBoolean spClassExamine(sp C, spMask Mask, spFn F, void * Data)

ExamineChildren in sp on page 103
void spExamineChildren(sp Object, spMask Mask, spFn F, void * Data)

ExamineDescendants in sp on page 103
void spExamineDescendants(sp Object, spMask Mask, spFn F, void * Data)

ExportMatrix in spLocale on page 147
spMatrix spLocaleExportMatrix(sp L, sp Destination)

Finish in spApp on page 36
void spAppFinish()

Finish in spAudio on page 38
void spAudioFinish()

Finish in spVisual on page 37
void spVisualFinish()

FlushMotionQueue in spPositioning on page 113
void spPositioningFlushMotionQueue(sp Object)

FollowPath in spPositioning on page 112
void spPositioningFollowPath(sp Object, spPath Path)

Free in spPath on page 80
void spPathFree(spPath Path)

FromAngles in spRotation on page 73
spRotation spRotationFromAngles(spRotation Rotation, spVector Angles)

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 225

FromIdent in spMatrix on page 77
spMatrix spMatrixFromIdent(spMatrix Matrix)

FromIdent in spQuaternion on page 75
spQuaternion spQuaternionFromIdent(spQuaternion Quaternion)

FromIdent in spRotation on page 71
spRotation spRotationFromIdent(spRotation Rotation)

FromIdent in spTransform on page 60
spTransform spTransformFromIdent(spTransform Transform)

FromQuat in spRotation on page 72
spRotation spRotationFromQuat(spRotation Rotation, spQuaternion Quat)

FromTransform in spMatrix on page 78
spMatrix spMatrixFromTransform(spMatrix Matrix, spTransform Transform)

Function in spAction on page 198
spBoolean spActionFunction(sp Action, sp Parent)

Function in spDoSoundPlay on page 207
spBoolean spDoSoundPlayFunction(sp Action, sp Object)

Function in spMover on page 208
spBoolean spMoverFunction(sp Action, sp Object)

Function in spOwnershipRequest on page 205
spBoolean spOwnershipRequestFunction(sp Action, sp Object)

GenerateOwner in spWM on page 48
spName spWMGenerateOwner()

GetAngle in spRotation on page 71
float spRotationGetAngle(spRotation Rotation)

GetAxis in spRotation on page 71
spVector spRotationGetAxis(spRotation Rotation)

GetCenter in spTransform on page 62
spVector spTransformGetCenter(spTransform Transform)

GetMotionQueue in spPositioning on page 113
spPath spPositioningGetMotionQueue(sp Object)

GetRotation in spTransform on page 60
spRotation spTransformGetRotation(spTransform Transform)

GetScale in spTransform on page 61
spVector spTransformGetScale(spTransform Transform)

GetScaleOrientation in spTransform on page 61
spRotation spTransformGetScaleOrientation(spTransform Transform)

GetTransform in spPath on page 81
spDuration spPathGetTransform(spPath Path, long Index, spTransform Transform)

GetTranslation in spMatrix on page 77
spVector spMatrixGetTranslation(spMatrix Matrix)

GetTranslation in spTransform on page 60
spVector spTransformGetTranslation(spTransform Transform)

GoThru in spPositioning on page 111
void spPositioningGoThru(sp Object, spTransform Transform, spDuration Time)

MERL-TR-97-11 December, 1997

226 (Internal) Spline Version 3.0 API

Grant in spOwnershipRequest on page 205
void spOwnershipRequestGrant(sp Request)

Init in spApp on page 35
void spAppInit()

Init in spAudio on page 38
void spAudioInit()

Init in spVisual on page 37
void spVisualInit()

Initialization in sp on page 102
void spInitialization(sp Object)

Initialization in spAlerter on page 192
void spAlerterInitialization(sp Action)

Initialization in spAudioObserver on page 179
void spAudioObserverInitialization(sp Object)

Initialization in spPositioning on page 114
void spPositioningInitialization(sp Object)

Inside in spBoundary on page 150
long spBoundaryInside(sp Boundary, spVector P)

Inside in spTerrain on page 154
long spTerrainInside(sp Terrain, spVector P)

Inverse in spMatrix on page 78
spMatrix spMatrixInverse(spMatrix spMatrix)

Length in spVector on page 66
float spVectorLength(spVector Vector)

LengthFromDuration in spFormat on page 84
long spFormatLengthFromDuration(spFormat Format, spDuration Duration)

Leq in spClass on page 165
spBoolean spClassLeq(sp Subclass, sp Superclass)

Load in spPath on page 82
spPath spPathLoad(spPath Path, char * Name, char * File)

Localize in spPositioning on page 108
spBoolean spPositioningLocalize(sp Object, sp Destination, spBoolean ChooseSmallest)

LocallyOwned in sp on page 104
spBoolean spLocallyOwned(sp Object)

LookAt in spPositioning on page 110
void spPositioningLookAt(sp Object, sp Target)

LookAt in spRotation on page 73
spRotation spRotationLookAt(spRotation R, spVector From, spVector To, spVector Up)

Matrix in spPositioning on page 108
spMatrix spPositioningMatrix(sp Object)

MatrixInverse in spPositioning on page 108
spMatrix spPositioningMatrixInverse(sp Object)

Monitor in spClass on page 165
sp spClassMonitor(sp C, spMask Mask, spFn F, void * Data)

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 227

MotionTimeLeft in spPositioning on page 113
spDuration spPositioningMotionTimeLeft(sp Object)

Mult in spMatrix on page 79
spMatrix spMatrixMult(spMatrix A, spMatrix B)

Mult in spQuaternion on page 75
spQuaternion spQuaternionMult(spQuaternion A, spQuaternion B)

Mult in spRotation on page 73
spRotation spRotationMult(spRotation A, spRotation B)

MultVector in spMatrix on page 79
spVector spMatrixMultVector(spMatrix Matrix, spVector Vector)

MultiplyByScalar in spVector on page 65
spVector spVectorMultiplyByScalar(spVector Vector, float Scalar)

New in sp on page 101
sp spNew()

New in spAlerter on page 191
sp spAlerterNew(sp X, spDuration I, spFn P, void * PState, spFn F, void * FState)

New in spBeacon on page 173
sp spBeaconNew(spFixedAscii Tag)

New in spBeaconGoto on page 196
sp spBeaconGotoNew(spFixedAscii P, sp Object, spFn F, void * S, spDuration I)

New in spBeaconMonitor on page 194
sp spBeaconMonitorNew(spFixedAscii Pattern, spFn F, void * S, spDuration I)

New in spBoundary on page 149
sp spBoundaryNew(spFixedAscii URL)

New in spClass on page 164
sp spClassNew(spFixedAscii URL)

New in spHearing on page 176
sp spHearingNew(spFixedAscii HostName)

New in spIntervalCallback on page 185
sp spIntervalCallbackNew(spDuration Interval, spFn F, void * FState)

New in spLinking on page 121
sp spLinkingNew(spFixedAscii URL)

New in spLocale on page 146
sp spLocaleNew(spFixedAscii URL, spFixedAscii Tag)

New in spMultilinking on page 125
sp spMultilinkingNew(v URL)

New in spOwnershipRequest on page 204
sp spOwnershipRequestNew(sp Object, spFn F, void * FState, spDuration Timeout)

New in spPath on page 80
spPath spPathNew()

New in spSeeing on page 177
sp spSeeingNew(spFixedAscii HostName)

New in spSound on page 141
sp spSoundNew(spFixedAscii URL)

MERL-TR-97-11 December, 1997

228 (Internal) Spline Version 3.0 API

New in spSpeaking on page 175
sp spSpeakingNew(spFixedAscii HostName)

New in spTerrain on page 153
sp spTerrainNew(spFixedAscii URL)

New in spVisualDe�nition on page 138
sp spVisualDefinitionNew(spFixedAscii URL)

New in spWM on page 46
spWM spWMNew(char * Server, spTransferVector V)

NewLink in spClass on page 164
sp spClassNewLink(sp ClassDescriptor, spFixedAscii URL)

NewObj in spClass on page 163
sp spClassNewObj(sp ClassDescriptor, long Extra)

Normalize in spVector on page 67
spVector spVectorNormalize(spVector Vector)

Play in spSound on page 141
sp spSoundPlay(sp Sound, sp Source, spBoolean Loop, float Gain)

Print in sp on page 104
void spPrint(sp Object)

Read in spAudioSource on page 172
char * spAudioSourceRead(sp Source)

ReadData in spBoundary on page 151
void spBoundaryReadData(sp Link)

ReadData in spClass on page 166
void spClassReadData(sp Link)

ReadData in spLinking on page 122
void spLinkingReadData(sp Link)

ReadData in spLocale on page 148
void spLocaleReadData(sp Link)

ReadData in spSound on page 142
void spSoundReadData(sp Link)

ReadData in spTerrain on page 154
void spTerrainReadData(sp Link)

ReadData in spVisualDe�nition on page 138
void spVisualDefinitionReadData(sp Link)

Register in spWM on page 49
void spWMRegister(sp * Pointer)

RelativeMatrix in spPositioning on page 109
spMatrix spPositioningRelativeMatrix(sp X, sp Object, spMatrix Matrix)

RelativeVector in spPositioning on page 110
spVector spPositioningRelativeVector(sp Object, sp X, spVector Vector)

Remove in sp on page 102
void spRemove(sp Object)

Remove in spWM on page 46
void spWMRemove()

MERL-TR-97-11 December, 1997

Waters, Anderson, et al. 229

ReportError in spWM on page 49
void spWMReportError(sp Object, long Code, char * Description)

Save in spPath on page 81
void spPathSave(spPath Path, char * Name, char * File)

Select in spMultilinking on page 126
long spMultilinkingSelect(sp Link)

Select in spSound on page 142
long spSoundSelect(sp Link)

Select in spVisualDe�nition on page 138
long spVisualDefinitionSelect(sp Link)

SetAngle in spRotation on page 72
spRotation spRotationSetAngle(spRotation Rotation, float Angle)

SetAxis in spRotation on page 71
spRotation spRotationSetAxis(spRotation Rotation, spVector Axis)

SetCenter in spTransform on page 62
spTransform spTransformSetCenter(spTransform Transform, spVector Center)

SetFromScalar in spVector on page 64
spVector spVectorSetFromScalar(spVector Vector, float Scalar)

SetParent in sp on page 104
void spSetParent(sp Object, sp Parent)

SetRotation in spTransform on page 61
spTransform spTransformSetRotation(spTransform Transform, spRotation Rotation)

SetScale in spTransform on page 61
spTransform spTransformSetScale(spTransform Transform, spVector Vector)

SetScaleOrientation in spTransform on page 61
spTransform spTransformSetScaleOrientation(spTransform Transform, spRotation R)

SetTransform in spPositioning on page 114
void spPositioningSetTransform(sp Object, spTransform Transform)

SetTranslation in spMatrix on page 78
spMatrix spMatrixSetTranslation(spMatrix Matrix, spVector Translation)

SetTranslation in spTransform on page 60
spTransform spTransformSetTranslation(spTransform Transform, spVector Translation)

Setup in spAudioSource on page 171
void spAudioSourceSetup(sp S, spBoolean W, spBoolean R, spFormat F, spDuration D)

Stop in spPositioning on page 112
void spPositioningStop(sp Object)

StopAt in spPositioning on page 111
void spPositioningStopAt(sp Object, spTransform Transform, spDuration Time)

Subtract in spVector on page 65
spVector spVectorSubtract(spVector A, spVector B)

Thin in spPath on page 82
spPath spPathThin(spPath Path, float Tolerance)

ToAngles in spRotation on page 72
spVector spRotationToAngles(spRotation Rotation, spVector Vector)

MERL-TR-97-11 December, 1997

230 (Internal) Spline Version 3.0 API

ToQuat in spRotation on page 72
spQuaternion spRotationToQuat(spRotation Rotation, spQuaternion Quat)

ToTransform in spMatrix on page 78
spTransform spMatrixToTransform(spMatrix Matrix, spTransform Transform)

Topmost in sp on page 103
sp spTopmost(sp Object)

URLAltered in spLinking on page 122
void spLinkingURLAltered(sp Link)

Update in spWM on page 46
void spWMUpdate()

Write in spAudioSource on page 172
void spAudioSourceWrite(sp Source, char * Data)

MERL-TR-97-11 December, 1997

	Title Page
	Title Page
	page 2

	The ANSI C (Internal) Spline Version 3.0 Application Program Interface
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168
	page 169
	page 170
	page 171
	page 172
	page 173
	page 174
	page 175
	page 176
	page 177
	page 178
	page 179
	page 180
	page 181
	page 182
	page 183
	page 184
	page 185
	page 186
	page 187
	page 188
	page 189
	page 190
	page 191
	page 192
	page 193
	page 194
	page 195
	page 196
	page 197
	page 198
	page 199
	page 200
	page 201
	page 202
	page 203
	page 204
	page 205
	page 206
	page 207
	page 208
	page 209
	page 210
	page 211
	page 212
	page 213
	page 214
	page 215
	page 216
	page 217
	page 218
	page 219
	page 220
	page 221
	page 222
	page 223
	page 224
	page 225
	page 226
	page 227
	page 228
	page 229
	page 230
	page 231
	page 232
	page 233
	page 234
	page 235
	page 236

