
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Genetic Programming for Pedestrians

Wolfgang Banzhaf

TR93-03 December 1993

Abstract

We propose an extension to the Genetic Programming paradigm which allows users of traditional
Genetic Algorithms to evolve computer programs. To this end, we have to introduce mechanisms
like transscription, editing and repairing into Genetic Programming. We demonstrate the feasi-
bility of the approach by using it to develop programs for the prediction of sequences of integer
numbers.

ICGA

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part
without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include
the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of
the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or
republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All
rights reserved.

Copyright c©Mitsubishi Electric Research Laboratories, Inc., 1993
201 Broadway, Cambridge, Massachusetts 02139

MERLCoverPageSide2

Publication History:{

1. First printing, TR93-03, February 1993

Recently, there is a surge in interest for the evolution of computer programs. The area develops
into two di�erent directions: One is the study of arti�cial ecologies, where computer programs
compete for access to resources inside the computer, like CPU-time or memory space. This
area has also been dubbed "Arti�cial Life" [1, 2] and leads to rich emergent phenomena, like
parasitism, symbiosis, arms races between di�erent software species. The other direction is the
study of systems which evolve according to user de�ned behavior. This area is generally known
as genetic or evolutionary programming [3, 4].

In the latter approach, one applies a sort of symbolic GA with the symbols being cho-
sen from a set of functions and terminals. From the set of accessible functions and terminals
computer programs can be composed by forming S-expressions. These symbolic programs are
subsequently compiled and evaluated using given input/output pairs for the anticipated behav-
ior of the targeted computer program or algorithm. Selection then singles out �tter programs
which are reproduced and mutated for a next generation of programs.

Here we consider a system similar in function but di�erent in the underlying mechanism. We
start out with a collection of binary strings (the population) which are subsequently interpreted
as computer programs. The interpretation is achieved by using a coding or transscription ta-
ble specifying which binary code of a given length corresponds to which element from the set
of functions and terminals available. We then proceed by evaluating and selecting programs
according to their respective performance. Variation of selected binary strings results in better
and better programs.

In adopting this method 1. we are able to draw from the rich experience which has accumu-
lated over the years in GAs in general, and 2. we encounter the necessity to introduce various
mechanisms also found in nature [5] for guaranteeing that the system works. Examples of those
mechanisms are editing, repairing and compiling of sequences in di�erent stages of the process,
besides the transscription already mentioned.

2.1 Basics

One can look at the basic algorithm as a kind of software production line. Programs are contin-
uously generated by varying the available stock of binary sequences. New sequences resulting
from mutation and recombination events or from outside origin translate into di�erent programs
with di�erent behavior. Finiteness of the population causes competition between programs. A

1

Binary Sequences

Fitness Evaluation:

Programs

 by

Feed-back

 selection

Behavior

Phenotypes:Genotypes:

Figure 1: The Generation of programs. Random binary sequences are the input that gets itera-
tively selected via a feed-back mechanism. Selection is controlled by the behavioral performance
of programs corresponding to bit sequences.

selection process determines which binary sequences are to be retained and reproduced for a
new generation and which sequences are to be discarded (see Fig. 1).

We make use of well known genetic mechanisms like point mutation or crossover on binary
strings [6, 7]. Operations actually used in our simulations will be listed below. The most
important part of the algorithm, however, is the mapping from genoype (binary string) to phe-
notype (working program) which requires a string to produce a grammatically correct program.

Koza [3] achieves correct programs by staying in the symbolic realm of s-expression which
are manipulated to yield new s-expressions. At the outset he generates valid s-expressions. In
our case, a di�erent procedure has to be applied, since initial random binary strings usually can
not be considered to be working programs. Even if they were, subsequently applied operations
would quickly destroy that feature of strings.

Figure 2 shows the procedure used here. Binary sequences are �rst transscribed into sym-
bolic form utilizing a transscription table that states what meaning has to be assigned to a
sequence of prede�ned length. We have used 5-bit codings of a selected number of symbolic
items constituting either terminals or functions. As in Koza [3], the problem domain dictates
the choice of functions and terminals.

2.2 The Problem Domain

As an exempli�cation of the algorithm we have chosen the problem of predicting sequences
of integer numbers. Based on the information derived from few given sequence instances, the
system should be able to produce the correct algorithm that enables it to predict the sequence
to arbritrary length (Koza discussed in Ref. [8] a similar application).

2

Binary Sequences

Translated Sequences

Begin

....

Evaluation

End

Begin
....

End

....

....

1: q

2: q

3: q

.

.

.

 1

 2

 3

Fitness of Programs

Programs

Transscription

Sequence editing
and repair

Figure 2: Mapping from genotype to phenotype. The population of binary sequences is transs-
cribed into a high level language using a transscription table. Resulting code segments are
checked on correct grammar and repaired. Sequences are edited to ensure that coded seg-
ments work properly if handed over to a compiler. Using a measure for the desirable behavior,
programs are evaluated and ranked according to �tness.

3

Thus, if we would give the following instances to the system:

1; 2; 3; 4; 5 (1)

we would expect it to learn counting and to continue with

6; 7; 8; 9; 10: (2)

For the sake of generality we allow arbitrary integer sequences

I(n+1) = f(I(n); n) (3)

where I(n+1) is the follower to I(n), n is a counter and f is an arbitrary function.

2.3 Implementation

Programs are going to receive two integer numbers I
(�)
0 ; I

(�)
1 as input in each input/output

example �, with I
(�)
1 being the actual number in the sequence and I

(�)
0 being merely a counter.

As output we expect a program to produce an integer O(�) for each instance of fI
(�)
0 ; I

(�)
1 g

O(�) = g(I
(�)
0 ; I

(�)
1) (4)

with g being a more or less complicated function encode by the corresponding binary string.

The evaluation function that shall control the selection process can now be stated as the
sum square error in producing the given sequence:

E =
X

�

(O(�) �O
(�)
0)2 (5)

where the target number O
(�)
0 = I(n+1) is identi�ed with the follower to I(n) = I

(�)
1 . By de�ni-

tion, E � 0, and we are looking for correct solutions with E = 0.

The terminal set T contains
T = fI0; I1; 0; 1; 2g (6)

where we have included the smallest natural numbers for internal computations. The function
set consists of basic operations possible with natural numbers, like addition, subtraction, mul-
tiplication, division, exponentiation, as well as the modulo and absolute value function and a
comparison function returning an integer value.

F = fPLUS;MINUS; TIMES;DIV; POW;ABSV;MODU; IFEQg (7)

All of these functions require two arguments, with the exception of the absolute value. We have
chosen to implement the default 2 argument function and to leave the second argument of the

4

String Code Transscription String Code Transscription

0 0 0 0 0 PLUS 1 0 0 0 0 I0

0 0 0 0 1 MINUS 1 0 0 0 1 I1

0 0 0 1 0 TIMES 1 0 0 1 0 1

0 0 0 1 1 DIV 1 0 0 1 1 I0

0 0 1 0 0 POW 1 0 1 0 0 I1

0 0 1 0 1 ABSV 1 0 1 0 1 1

0 0 1 1 0 IFEQ 1 0 1 1 0 0

0 0 1 1 1 MODU 1 0 1 1 1 2

0 1 0 0 0 MODU 1 1 0 0 0 I0

0 1 0 0 1 ABSV 1 1 0 0 1 I1

0 1 0 1 0 TIMES 1 1 0 1 0 1

0 1 0 1 1 POW 1 1 0 1 1 I0

0 1 1 0 0 DIV 1 1 1 0 0 I1

0 1 1 0 1 MINUS 1 1 1 0 1 1

0 1 1 1 0 PLUS 1 1 1 1 0 0

0 1 1 1 1 IFEQ 1 1 1 1 1 2

Table 1: Transscription table of binary strings into functions and terminals. 5-bit coding shown.
First bit (category bit) indicates whether a function or a terminal is coded.

absolute value function in place as a dummy variable.

Table 1 shows the 5-bit transscription of binary numbers. Notice the redundancy in coding
certain functions or terminals. By randomly placing transscriptions we have used the full 5-bit
set of possible codings. A technical detail is the �rst bit in our code which speci�es whether a
terminal ("1") or a function ("0") is coded.

Table 2 explains the corresponding actions taken by a program. Some of the operations
needed to be modi�ed in order to have valid numerical behavior for all possible arguments.

5

Function name Action Description

PLUS(a,b) a + b Integer Addition

MINUS(a,b) a - b Integer Subtraction

TIMES(a,b) a * b Integer Multiplication

DIV(a,b) a / b Integer Divisiona

POW(a,b) ab Integer Exponentiationb

ABSV(a,b) j a j Absolute Valuec

MODU(a,b) a modulo b Modulo Operation d

IFEQ(a,b) 1 if a = b , 0 otherwise Comparison Operation

aRound to next integer, division through 0 results in maxvalue=1000
b00 = 1
cb is dummy
db=0 returns a

Table 2: Description of functions used. Provisions have been taken for special cases.

Bitstrings are of length L = 225 transscribing into N = 45 symbols from the sets F and T .
Usually, the raw transscription of a string does not �t grammar. Two requirements have to be
ful�lled:

(i) The number of terminals NT must be larger than the number of functions NF

NT > NF (8)

and

(ii) each sequence should start with a function call.

In order to assure these requirements we scan each string by a repair operator that corrects
corresponding bits in the sequence. Resulting strings are subsequently parsed and the proper
number of parentheses is inserted. Finally, the standard function structure is added leaving
code that can be handed over to a compiler (see Figure 3). Note that, depending on the number
of arguments supplied by the string code, a shallowly nested or a deeply nested function results.

As mentioned before, bit strings of length 225 are used in simulations with the 5-bit code. The
wildcard symbol was not allowed in our simulations.

6

1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 0 0 . . .

Transscription

0 PLUS I0 1 I0 I0 I1 . . .

Repair

PLUS PLUS I0 1 I0 I0 I1 . . .

_ _ _ _ _ _ _

Parsing

PLUS (PLUS (I0 , 1) , I0)

Editing

function z1 (I0 , I1)

z1 = PLUS (PLUS (I0 , 1) , I0)

return

Figure 3: Typical example of the mapping from genotype to phenotype. Underlined bits are
category bits determining the character of a 5-bit sequence. In the repair step, the very �rst
bit is changed to yield a function call.

7

3.1 GA operators

The operators employed to constantly vary the population were taken from the following set
(probabilities in parentheses):

(1) 1-bit mutation (p1)

(2) n-bit mutation (p2)

(3) 1-bit shift right, only category bits (p3)

(4) 1-bit shift right, all bits (p4)

(5) 1-bit shift left, only category bits (p5)

(6) 1-bit shift left, all bits (p6)

(7) 1-point crossover, only at category bits (p7)

Three operators have been depicted schematically in Figure 4.

1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 1 1 1 . . .

0 1 1 1 0 1 1 1 1 0 0 0 0 1 1 1 1 1 . . .

1-bit shift right, category bits only

_ _ _ _

_ _ _ _

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

_ _ _ . . . 0 0 1 1 1 0 1 0 1 1 1 1 1 1 . . .

. . . 0 0 1 1 1 0 1 0 0 1 1 1 1 1 . . . _ _ _

1-bit mutation

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1-point crossover

Figure 4: Three genetic operators. In 1-point crossover, the string enclosed in boxes results
from the combination of 2 strings.

We performed generational selection in a population of M = 100 binary strings. Both,
the parent generation and 100 o�springs were ranked and the 100 best were taken as a new
generation of parents. The selection was constrained by the requirement that at least 50 had
to consist of o�spring.

8

3.2 Problems and general performance

Table 4 lists the 9 test problem sequences we have used for an evalution of the algorithm.

Problem Description Number Sequence Performance

1 Count 1,2,3,4,5,6,7,8,9,10,11 very good

2 Count and jump 1,3,5,7,9,11,13,15,17,19,21 very good

3 Oscillate 2,-2,2,-2,2,-2,2,-2,2,-2,2 very good

4 Square 1,4,9,16,25,36,49,64,81,100,121 good

5 Combine (I) 3,7,13,21,31,43,57,73,91,111,133 good

6 Combine (II) 1,5,16,46,113,241,460,806,1321,2053,3056 weak

7 Dilute 1,2,5,6,9,10,13,14,17,18,21 fair

8 Faculty 1,2,6,24,120,720,5040,40320 good

9 Prime 2,3,5,7,11,13,17,19,23,29,31 weak

Table 4: General overview of problems. Performance measures are given in terms of how many
di�erent sets of operators / initial conditions led to correct solutions. Very good: almost all; good:
most; fair: some; weak: none

Table 5 gives a more detailed account of the performances of di�erent runs. The weak
performance for problem 9 is reasonable as no algorithm can predict prime numbers correctly.
This is not the case for problem 6, where one solution is clearly possible. In some runs, however,
convergence was premature due to our use of a particular generational GAs.

O-set Problem

1 2 3 4 5 6 7 8 9

A 5 0 4 7.3 4 8.8 4 23.5 3 12.7 0 - 0 - 2 16 0 -

B 5 0 5 2.8 5 1.6 4 17.8 3 30 0 - 2 33 5 9.4 0 -

C 5 1 4 5.0 5 2.2 3 26.3 3 26 0 - 1 42 5 10.6 0 -

Table 5: Performance of three di�erent collections of operators A;B; C working on 5 di�erent initial
conditions for each problem. Each entry contains two numbers, how many cases (out of 5) resulted in
correct solutions within 50 generations, and in which generation on average, the �rst correct solution
was found. Probabilities for operators were chosen as: A = fp1 = 0:9; p7 = 0:1g ; B = fp2 = 0:7; p3 =
0:1; p5 = 0:1; p7 = 0:1g ; C = fp1 = 0:7; p4 = 0:1p6 = 0:1; p7 = 0:1g.

9

Problem Solution E

1 PLUS(POW(0,I1),I1) 0

2 PLUS(I1,POW(2,1)) 0

3 MINUS(0,TIMES(I1,1)) 0

4 PLUS(PLUS(DIV(PLUS(ABSV(1,I1),I0),ABSV(1,POW(1,
ABSV(I1,I0)))),I1),I0)

0

5 PLUS(ABSV(PLUS(MODU(2,I1),TIMES(I0,2)),2),I1) 0

6 ABSV(PLUS(ABSV(PLUS(I1,2),ABSV(I1,I0)),PLUS(MODU(MINUS
(1,MINUS(DIV(POW(I0,2),1),2)),PLUS(2,I1)),ABSV(I1,I0))),2)

1236598

7 PLUS(TIMES(PLUS(2,TIMES(I0,IFEQ(2,MODU(0,I1)))),I0),
MODU(1,TIMES(POW(I1,0),TIMES(MODU(I1,2),PLUS(0,1)))))

0

8 ABSV(PLUS(I1,TIMES(I0,I1)),DIV(ABSV(IFEQ(I1,MODU(MODU
(MODU(0,TIMES(MINUS(POW(1,1),I0),PLUS(I1,PLUS(PLUS(I0,
ABSV(2,I0)),DIV(I1,1))))),TIMES(I0,I1)),0)),POW(1,IFEQ
(MODU(0,1),1))),I0))

0

9 PLUS(PLUS(1,2),POW(I1,MODU(1,I0))) 18

Table 6: Sample of the best solutions found for each problem. Shown are the functions that are later
edited to yield programs. E is the solution quality de�nded in eq. 5

3.3 Discussion

Our �nal Table 6 lists one solution found (either correct or best) for each problem. The algo-
rithm was quite e�ective in �nding a path toward one of the correct solutions. If we concentrate
on the failures we should look at problems 6 and 9 only. In almost all runs with problem 6, the
algorithm converged prematurely leaving no chance to improve a still bad solution. We have
evidence that only special sets of operators could work (run not included here).

Problem 9, on the other hand, does not have an algorithm as solution. The program we
could come up with is, interestingly enough, a heuristic which adds 3 to each precedessor.
Indeed, the average distance of prime numbers between 2 and 30 is 2.9. We conclude, that the
program has optimized for the average distance between prime numbers which is clearly range
speci�c.

We have shown in a speci�c problem instance, how the aims of genetic programming can be
achieved with a usual GA. Building on the idea of genetic programming, our main extension
was the mapping algorithm from binary strings representing genotypes of the population to

10

programs representing the phenotypes. With a rather simple set of processing stages we have
shown to arrive at workable programs which subsequently can undergo the competitive processes
that characterize evolving populations in GAs. Given the rather graceful behavior of the
algorithm, the next question to be addressed is, how to �nd a working transscription code
for problems of various sorts.

[1] Langton, C.G., (ed.), Arti�cial Life, Santa Fe Institute Studies on the Sciences of
Complexity, Proc. Vol. VI, Addison-Wesley, Reading, MA, 1989

[2] Ray, T.S. Is it alive or is it GA? Proc. 3rd Int. Conf. on Genetic Algorithms, San
Diego, 1991, Belew, R.K. and Booker, L.B. (Eds.), Morgan Kau�man, San Mateo,
1991, p. 527

[3] Koza, J.R., Genetic Programming, MIT Press, Cambridge, MA, 1992

[4] Fogel, D.B, Atmar, W. (Eds.), Proc. 1st annual Conference on Evolutionary Pro-
gramming, San Diego, 1992

[5] Lewin, B., Genes, Wiley, New York, 1987

[6] Holland, J.H., Adaptation in natural and arti�cial systems, University of Michigan
Press, Ann Arbor, 1975

[7] Goldberg, D.E., Genetic Algorithms in Search, Optimization & machine Learning,
Adison-Wesley, New York, 1989

[8] Koza, J.R., Hierarchical Genetic Algorithms operating on populations of computer

programs, Proc. 11th IJCAI,1989, Morgan Kau�man, San Mateo, CA, 1989

11

	Title Page
	Title Page
	page 2

	Genetic Programming for Pedestrians
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12

