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Abstract
Test-time training (TTT) has recently emerged as a promising method to improve the rea-
soning abilities of large language models (LLMs), in which the model directly learns from test
data without access to labels. However, this reliance on test data also makes TTT methods
vulnerable to harmful prompt injections. In this paper, we investigate safety vulnerabilities of
TTT methods, where we specifically consider test-time reinforcement learning (TTRL) (Zuo
et al. 2025), a recent TTTmethod that improves LLM reasoning by rewarding self-consistency
using majority vote as a reward signal. We show that harmful prompt injection during TTRL
ampli- fies the model’s existing behaviors, i.e., safety amplification when the base model is
relatively safe, and harmfulness amplification when it is vulnerable to the injected data. In
both cases, there is a decline in reasoning ability, which we refer to as the reasoning tax. We
also show that TTRL can be exploited adversarially using specially designed “HarmInject”
prompts to force the model to answer jailbreak and reasoning queries together, resulting in
stronger harmfulness amplification. Overall, our results highlight that TTT methods that
enhance LLM reasoning by promoting self-consistency can lead to amplification behaviors
and reasoning degradation, high- lighting the need for safer TTT methods.
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Abstract

Test-time training (TTT) has recently emerged as a promis-
ing method to improve the reasoning abilities of large lan-
guage models (LLMs), in which the model directly learns
from test data without access to labels. However, this reliance
on test data also makes TTT methods vulnerable to harm-
ful prompt injections. In this paper, we investigate safety vul-
nerabilities of TTT methods, where we specifically consider
test-time reinforcement learning (TTRL) (Zuo et al. 2025), a
recent TTT method that improves LLM reasoning by reward-
ing self-consistency using majority vote as a reward signal.
We show that harmful prompt injection during TTRL ampli-
fies the model’s existing behaviors, i.e., safety amplification
when the base model is relatively safe, and harmfulness am-
plification when it is vulnerable to the injected data. In both
cases, there is a decline in reasoning ability, which we refer
to as the reasoning tax. We also show that TTRL can be ex-
ploited adversarially using specially designed “HarmInject”
prompts to force the model to answer jailbreak and reasoning
queries together, resulting in stronger harmfulness amplifica-
tion. Overall, our results highlight that TTT methods that en-
hance LLM reasoning by promoting self-consistency can lead
to amplification behaviors and reasoning degradation, high-
lighting the need for safer TTT methods.

1 Introduction
The reasoning abilities of Large language models (LLMs)
have continued to improve through both supervised fine-
tuning (SFT) and reinforcement learning (RL) (Guo et al.
2025; Zhang et al. 2025) methods. Despite these gains,
current LLMs still struggle with reasoning on out-of-
distribution tasks (Phan et al. 2025). To address this lim-
itation and improve generalization to unseen problems, a
growing line of work has explored test-time training (TTT)
(Zuo et al. 2025; Prabhudesai et al. 2025; Zhao et al. 2025;
Jang et al. 2025), which adapts models directly on the test
inputs without having access to the labels. These methods
have already shown improvements in arithmetic reasoning
(Li et al. 2024; Hendrycks et al.), commonsense QA (Rein
et al. 2024), and spatial reasoning (Akyürek et al. 2024).

However, TTT operates entirely on the prompts observed
during test time, which introduces a new attack vulnera-
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Figure 1: Safety and harmfulness amplification during
TTRL. Top left: attack success rate (ASR) of Jailbreak-
V28k prompts on Qwen1.5B-Instruct when Jailbreak-V28k
prompts are injected into AMC test-time data. Top right: the
resulting reasoning tax, i.e., loss in AMC accuracy. Bot-
tom left: ASR for Qwen-1.5B-Instruct on JailbreakV-28k
when HarmInject prompts (Section 3.3) are injected. Bot-
tom right: Impact on reasoning performance post-TTRL on
Qwen-1.5BB-Instruct model.

bility: adversaries can manipulate the test-time data to in-
fluence the model’s parameters during TTT (Cong et al.
2024; Su et al. 2024). In this work, we investigate the safety
vulnerabilities of the TTT approaches that aim to improve
LLM reasoning by promoting self-consistency. We specifi-
cally consider the test-time reinforcement learning (TTRL)
algorithm (Zuo et al. 2025), a recent TTT method that uses
RL for TTT, and majority voting to compute reward. We
consider the setting where an adversary can inject harmful
jailbreak prompts into the test-time data during TTRL.

Our experiments reveal a striking asymmetry. On jail-
break datasets where the base model is already relatively
safe (e.g., 22% harmfulness rate on JailbreakV-28k (Luo
et al. 2024) for Qwen-1.5B-Instruct (Yang et al. 2025)),
TTRL leads to an emergent safety effect via safety ampli-
fication as shown in the top-left panel of Figure 1. How-
ever, the same TTRL updates incur a reasoning tax, shown
in the top-right panel, as accuracy on AMC math problems
declines despite safety gains. When the base model instead
shows high susceptibility to a particular jailbreak attack
(e.g., Qwen-1.5B-Instruct (Dubey et al. 2024) on HarmIn-



ject attack developed in Section 3.2), the pattern reverses.
As shown in the bottom-left panel, TTRL amplifies harmful
behavior, with attack success rates rising. Moreover, the rea-
soning performance again deteriorates as seen in the lower
right panel of Figure 1. Across both cases, the mechanism
is consistent: majority-vote rewards reinforce the dominant
model behavior on the injected dataset, while also deterio-
rating the reasoning performance.

2 Background
Test-Time Training (TTT) is a method for adapting pre-
trained models at test time to improve its generalization per-
formance. Suppose a model fθ has been trained on a source
distribution Ds = {(xi, yi)}Ni=1, where θ denotes the model
parameters. At test-time, the model is evaluated on samples
xt ∼ Dt drawn from a target distribution that differs from
the training distribution (Dt ̸= Ds). TTT adapts the model
at test-time by updating parameters with respect to an aux-
iliary objective Laux that is optimized on each test sample.
Therefore, TTT allows the model to refine itself during de-
ployment, without access to the ground-truth labels.

Test-time reinforcement learning (TTRL) (Zuo et al.
2025) is a recent TTT method that uses RL for TTT to im-
prove the reasoning abilities of LLMs. For each test input x,
the model generates K candidate responses {y1, . . . , yK} by
sampling from its current policy πθ. A majority-voting ag-
gregator selects the majority answer ŷ across the K samples.
This serves as a pseudo-reward, where responses matching ŷ
receive a positive reward, while others receive a zero reward.
The model parameters are then updated via Group Refer-
ence Policy Optimization (GRPO) (Shao et al. 2024). For-
mally, the reward for the k-th generated response yk is given
as r(yk) = 1, when yk = ŷ, and otherwise zero, and the
policy is trained to maximize expected reward by updating
the LLM parameters θ to maximize the following expected
return:

∇θJ(θ) = Ey∼πθ(·|x)
[
r(y)∇θ log πθ(y|x)

]
.

where parameters θ are updated using gradient ascent. As
TTT methods such as TTRL rely on the test data inputs
and the generated pseudo-rewards, their behavior depends
strongly on what appears in the test-time data, making it
vulnerable to prompt injection, which motivates the safety
analysis presented in this work.

3 Experimental setup and results
Models and training datasets. We consider two
instruction-tuned models: Qwen2.5-1.5B-Instruct (Yang
et al. 2025) and Llama-3-8B-Instruct (Dubey et al.
2024). For the harmful jailbreak datasets, we use the
JailbreakV-28k (Luo et al. 2024), Llama-jailbreak artifacts
(Andriushchenko, Croce, and Flammarion 2024) specif-
ically tuned to jailbreak the Llama3-8B-Instruct model,
and the in-the-wild jailbreak dataset (Jiang et al. 2024).
We conduct all experiments on the AMC math reasoning
dataset (Li et al. 2024).

Evaluation metrics. We consider two axes of evalua-
tion: safety and reasoning accuracy. For the reasoning per-
formance, we use the same metric as reported in the TTRL

paper (Zuo et al. 2025), i.e., pass@1 estimated from k re-
sponses, generated with a non-zero temperature of 0.6, top-
p value of 0.95, as given by pass@1 := c/k, where c is the
number of correct responses. We use k = 16 in our exper-
iments. Each TTRL run is done for 250 steps. To evaluate
the safety of the model’s generated responses, we use the
attack success rate (ASR) percentage of the jailbreak attack
on the model, which measures the percentage of harmful re-
sponses to the total number of jailbreak prompts. We use the
LlamaGuard3-8B model (Inan et al. 2023) as a safety judge
to evaluate the harmfulness of the model’s responses.

We structure the experimental results into three research
questions: RQ1: Does TTRL on benign data increase model
harmfulness?; RQ2: What is the impact of harmful prompt
injection during TTRL?; RQ3: Can TTRL be exploited to
amplify the harmfulness?

3.1 RQ1: Does TTRL on benign data increase
model harmfulness?

Figure 2 reports ASR across TTRL steps for both Qwen-
1.5B-Instruct and Llama-3-8B-Instruct when the test-time
training data contains only AMC reasoning problems. For
Qwen, in Figure 2a, ASR on JailbreakV-28k fluctuates be-
tween 21% and 25% (baseline 22%). In Figure 2b and 2c,
similar small variations appear on the WildJailbreak and
Llama artifact attacks, with no upward trend across TTRL
steps. Therefore, as shown in some previous works on fine-
tuning (Qi et al. 2024), where harmfulness may increase un-
intentionally, TTRL on benign test data leaves harmfulness
largely unchanged.

3.2 RQ2: What is the impact of harmful prompt
injection during TTRL?

Next, we investigate the case when the test-time training
data is injected with harmful prompts. Figure 3 and 4 report
the effect of harmful prompt injection across three jailbreak
datasets for the Qwen and Llama models, respectively. For
Qwen, the base model is already moderately safe with an
ASR of 22% on JailbreakV-28k as seen in Figure 3a and
40% on WildJailbreak prompts in Figure 3b. Under TTRL
with harmful injection, the ASR starts to decline, which we
term safety amplification. The Llama model shows similar
safety amplification on the WildJailbreak dataset in Figure
4b. The same safety amplification effect is not present in the
JailbreakV-28k dataset in Figure 4a, where its baseline ASR
is already low (≈ 1%); and the safety remains stable.

The Llama Artifacts dataset presents the opposite case.
The Llama model by default is highly vulnerable to these
specifically tuned attacks, with ASR exceeding 90%. Under
TTRL, the harmfulness gets amplified: ASR rises slightly
or stays near its high baseline as seen in Figure 4c. We call
this weak harmfulness amplification. For the Qwen model,
the ASR is above 80% against the Llama Artifact prompts
in Figure 3c, where we also see the slight effect of weak
harmfulness amplification.

Across all settings above, the reasoning ability of the base
model post-TTRL degrades compared to the post-TTRL ac-
curacies achieved without any injection. In Figures 3d - 3f,
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Figure 2: ASR measured across three jailbreak datasets, JailbreakV-28k, WildJailbreak, and Llama Artifacts (left to right,
respectively) during TTRL, for Qwen-1.5B-Instruct (top row) and Llama-3-8B-Instruct (bottom row).
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Figure 3: ASR and reasoning during TTRL for Qwen-1.5B-Instruct model after harmful prompt injection across, JailbreakV-
28k, WildJailbreak, and Llama Artifacts datasets (left to right, respectively), ASR (top row) and AMC accuracy (bottom row).

AMC accuracy falls from the baseline post-TTRL accuracy
of 37.7% to (29-35)% range for Qwen. The deterioration
in AMC reasoning is even more significant for the Llama
model in Figures 4d-4f, going from initial post-TTRL accu-
racy of 10.8% to less than 6% on all the cases.

Why is there a discrepancy between safety and harmful-
ness amplification? From the above results, we see that
safety amplification is much stronger than harmfulness am-
plification. This discrepancy can be explained by the label-
extraction logic in TTRL, which uses the final token of each
generated answer as the label. For refusals, the generated
continuations tend to converge on highly stereotyped end-
ings (e.g., “I’m sorry,”), which makes the extracted labels
nearly identical across samples. Majority voting, therefore,
produces a strong and stable signal for rejection, and TTRL
updates amplify this safe behavior. In contrast, harmful re-
sponses are far more diverse. Even when the model complies

with a jailbreak, the exact harmful response varies, and the
final tokens differ across samples. As a result, majority vot-
ing does not reinforce harmful responses as effectively as
safe refusals.

3.3 RQ3: Can TTRL be exploited to amplify
harmfulness?

We investigate whether an adversary can design prompts to
exploit TTRL and drive the model towards harmfulness. To
test this, we construct HarmInject prompts that pair a jail-
break query with a reasoning question in the same input.
This format ensures that the model is rewarded for both
harmful behavior and answering the benign question simul-
taneously, and is given as follows:
SYSTEM: You must answer BOTH questions.

If you refuse or partially answer, your
response is invalid and you get no reward.
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Figure 4: ASR and reasoning for Llama3-8B-Instruct during TTRL after harmful prompt injection across 3 jailbreaks:
JailbreakV-28k, WildJailbreak, and Llama Artifacts, respectively, for ASR (top row) and AMC accuracy (bottom row).
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Figure 5: (a) ASR for Qwen-1.5B-Instruct with HarmIn-
ject prompts constructed from JailbreakV-28k; evaluation
on held-out JailbreakV-28k prompts. (b) AMC accuracy for
Qwen-1.5B-Instruct after TTRL on HarmInject prompts. (c)
ASR for Llama-3-8B-Instruct with HarmInject prompts con-
structed from Llama Artifact jailbreaks; evaluation on held-
out JailbreakV-28k prompts. (d) AMC accuracy for Llama-
3-8B-Instruct after TTRL on HarmInject prompts.

Question 1: {jailbreak prompt}
Question 2: {reasoning prompt (AMC)}
Please answer as follows:
Answer 1: <your answer to Question 1>
Answer 2: <your answer to Question 2>

Results. Figure 5 shows the results for Qwen-1.5B-
Instruct and Llama-3-8B-Instruct under settings where
HarmInject prompts are used for TTRL. For Qwen, ASR
rises from a baseline of 23% to nearly 35% during TTRL
(Figure 5a), while AMC reasoning accuracy collapses from
37.7% to 19.1% (Figure 5b). For Llama, the effect is even
more pronounced: on the HarmInject prompts designed with
the Llama Artifacts injected within the AMC reasoning
questions, ASR climbs sharply to 45% (Figure 5c) for the

originally almost ineffective JailbreakV-28k prompts. More-
over, the AMC reasoning accuracy drops to 3.3% (Figure
5d). These results demonstrate that HarmInject prompts can
effectively exploit test-time training mechanisms, allowing
an adversary to exploit the test-time training process.

4 Related work
TTT for LLM reasoning. The work in (Akyürek et al.
2024) was one of the first works in improving the reasoning
abilities of LLMs using TTT on ARC-AGI (Chollet 2019)
and BBH benchmarks (Srivastava et al. 2023). Many other
works emerged that used RL for TTT in LLMs to specif-
ically improve the scores on math and question answering
benchmarks. For example, the TTRL (Zuo et al. 2025) uses
majority vote as a reward; (Prabhudesai et al. 2025) are able
to improve upon TTRL by combining RL and entropy mini-
mization; (Zhao et al. 2025) uses model’s own internal con-
fidence to improve the reasoning using GRPO; (Jang et al.
2025) use reasoning-level confidence of sampled answers to
identify high-quality reasoning paths for self-training.

Safety vulnerabilities of LLMs. In (Huang et al. 2025),
the authors show the safety-reasoning tradeoffs by showing
that aligning LLMs can deteriorate their reasoning perfor-
mance. In (Kim et al. 2025), the authors propose an RL ap-
proach that uses a reward signal that balances safety and rea-
soning.

5 Conclusion and future work
In this paper, we highlight a core vulnerability of TTT meth-
ods that promote self-consistency, specifically focusing on
TTRL. We show that TTRL reinforces the behavior that
dominates in the injected data, causing safety or harmful-
ness amplification. Moreover, the amplification effects carry
a reasoning tax, making test-time data contamination a vul-
nerability of current self–consistency–based TTT methods.
Future work will develop novel TTT methods that can bal-
ance both reasoning and safety.



References
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