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Abstract—State-of-the-art anomalous sound detection (ASD)
systems in domain-shifted conditions rely on projecting audio
signals into an embedding space and using distance-based outlier
detection to compute anomaly scores. One of the major difficulties
to overcome is the so-called domain mismatch between the
anomaly score distributions of a source domain and a target
domain that differ acoustically and in terms of the amount of
training data provided. A decision threshold that is optimal for
one domain may be highly sub-optimal for the other domain and
vice versa. This significantly degrades the performance when only
using a single decision threshold, as is required when generalizing
to multiple data domains that are possibly unseen during training
while still using the same trained ASD system as in the source
domain. To reduce this mismatch between the domains, we pro-
pose a simple local-density-based anomaly score normalization
scheme. In experiments conducted on several ASD datasets,
we show that the proposed normalization scheme consistently
improves performance for various types of embedding-based ASD
systems and yields better results than existing anomaly score
normalization approaches.

Index Terms—Anomalous Sound Detection, Domain General-
ization, Domain Shift, Score Normalization

I. INTRODUCTION

ANOMALY detection is the task of distinguishing between
normal and anomalous data or inliers and outliers [1]. In

recent years, research in anomalous sound detection (ASD)
has been strongly promoted by an acoustic machine condition
monitoring task belonging to the annual DCASE challenge
[2]–[7]. This anomaly detection task presents several difficul-
ties. First, only normal data are assumed to be available for
training. This is motivated by the fact that anomalies typically
occur only rarely, and that they are very costly to obtain
on purpose, as this implies damaging possibly expensive
machines or waiting for them to break down; moreover, it
is challenging to capture the entire diversity of all possible
anomalies with a finite set of training samples. Second, audio
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recordings in real-world factories tend to be very noisy.
As a result, the embeddings obtained from those recordings
need to be simultaneously very sensitive to changes in the
target machine sound and insensitive to other acoustic events
and background noise contained in the recordings, in order
to reliably detect anomalies which, in comparison, may be
very subtle. Last but not least, embeddings should be easily
adaptable to shifts in the acoustic environment or changes in
the acoustic sources (i.e., machines), so-called domain shifts.
Ideally, users should only need to provide a very small number
of samples to define how normal recordings sound like in
data domains unseen during training, and a trained ASD
model should still provide good results. Such an ability is
referred to as domain generalization (DG) [8], [9]. Note that
using target domain data for training the system was allowed
in the DCASE challenge because it is impossible to tell if
participants use the reference samples of the target domain
for training or not. Still, in practice it is much more favorable
that systems do not need to be re-trained for every possible
domain shift and thus a priori knowledge about target domains
encountered during testing in the form of domain-specific
training samples ideally should not be utilized for training.
An overview of methods for handling domain shifts for ASD
related to DCASE can be found in [10].

State-of-the-art systems for ASD are based on projecting
audio signals into a relatively low-dimensional embedding
space and applying general outlier detection algorithms to
these embeddings afterwards [11]. As only normal data is
available for training, training a simple binary classifier to
distinguish between normal and anomalous data is impossible.
Therefore, the main difficulty when developing such ASD
systems is to decide on a suitable loss function to train the
embedding model that does not rely on anomalous data. The
currently best-performing embeddings are obtained by utiliz-
ing auxiliary classification tasks based on meta information
such as machine types, machine IDs, or settings [12]–[17],
or on self-supervised learning (SSL) [18]–[22]. This auxiliary
classification approach is also called outlier exposure [23] as
samples belonging to other classes are used as proxy outliers
[13]. Compared to one-class models such as autoencoders
[24]–[28] that treat all signal components as equally important,
models trained with an auxiliary classification task learn to
closely monitor target signals and ignore background noise as
well as other signals as long as they do not contain useful
information to solve the classification task [29].

0000–0000/00$00.00 © 2021 IEEE
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This work, which extends our prior work on normalizing
embedding-based anomaly scores for DG [30], makes several
new contributions. First and foremost, the evaluation of our
proposed normalization approach is extended from a single
to multiple state-of-the-art embeddings based on pre-trained
models. Furthermore, additional existing normalization ap-
proaches are reviewed, discussed, and experimentally com-
pared to our normalization approach. Last but not least, we
provide the source code1 for the conducted experiments.

The remaining parts of this paper are organized as follows.
In Section II, related literature for computing embedding-
based anomaly scores and normalizing them is discussed. In
Section III, the proposed normalization approach is motivated,
presented, and illustrated. The effectiveness of the proposed
normalization scheme is experimentally evaluated in Section V
using the setup from Section IV with several state-of-the-art
embeddings on multiple datasets. In addition, a few ablation
studies are carried out. The paper is concluded with a summary
and possible extensions for future work in Section VI.

II. RELATED WORK

Anomaly scores for embedding-based ASD can be com-
puted in several ways. The general idea is to project the data
into an embedding space obtained by training a neural network
and to apply general outlier detection approaches to these
embeddings [31]. The underlying assumption is that anoma-
lous test samples should substantially differ from normal test
and training samples in the embedding space. Among these
approaches for computing anomaly scores are distance-based
approaches such as k-nearest neighbors (k-NN) [20], [32],
[33], and (global) density-based approaches based on Gaussian
mixture models (GMMs) [14], [34], [35] or the Mahalanobis
distance [33]. In [36], distance-based approaches were shown
to lead to better performance than density-based approaches in
domain-shifted conditions because it is difficult to accurately
estimate the density of the distribution in sparsely-represented
target domains. The choice of the distance function depends
on the loss function of the embedding model. For commonly
used angular margin losses such as ArcFace [37], AdaCos [38],
sub-cluster AdaCos [14], or AdaProj [39], the cosine distance
is the most natural choice to measure the distance between
samples. For other loss functions that do not act on the unit
sphere, other distances such as the Euclidean distance can
be used instead. Still, distance-based approaches are sensitive
to data domains with different densities, which degrades the
performance (see Section III-A). Note that this negative effect
can even occur when only data belonging to the source domain
are encountered if the data distribution consists of clusters with
varying densities. Our proposed normalization approach is less
sensitive to distributions with clusters of different densities as
it also takes local density estimates into account.

There are several existing outlier detection approaches based
on local density estimates. Their most prominent representa-
tive is the local outlier factor (LOF) [40], which compares
the local density of a test sample to that of its nearest
neighbors from a reference set. There are multiple variants

1https://github.com/merlresearch/anomaly-score-normalization

and extensions of LOF. In [41], the neighborhoods are de-
fined by balls with a certain radius instead of taking the
nearest neighbors of each sample. Connectivity-based outlier
factor (COF) [42] focuses on effectively handling low-density
regions by introducing paths between nearest neighbors and
utilizing decreasingly weighted lengths of the piece-wise path
edges. Other variants of LOF aim to normalize scores to
increase interpretability and to simplify the setting of a de-
cision threshold. Local distance based outlier factor (LDOF)
[43] takes the mean distance to the K nearest neighbors and
normalizes it with the average pairwise distance between the
K nearest neighbors. Local outlier probabilities (LoOP) [44]
tries to normalize outlier scores such that different outlier
score distributions are similarly scaled and can be directly
interpreted as probabilities. This is achieved by introducing
a so-called probabilistic distance of a query sample to a
reference set. This probabilistic distance allows errors by
defining spheres around the reference sample that contain all
elements of a reference set only with a certain probability.
Using the expected value of this distance, a probabilistic LOF
is derived, whose standard deviation is used to normalize the
resulting outlier scores. The anomaly scores of LOF-based
outlier detection methods take the local density into account
but are based on the distance in an embedding space of a test
sample to the reference samples that are closest to it according
to that same distance. Since different densities have a strong
effect on the magnitude of the distance, the performance of
these methods is still substantially degraded in domain-shifted
conditions. In contrast, our proposed normalization scheme
first alters the anomaly scores based on the local density and
only then selects the closest neighbors. This reduces unwanted
effects caused by clusters of reference samples with different
densities and thus leads to anomaly scores that are more robust
to domain shifts.

Normalizing scores is a well-investigated topic for various
related applications. Apart from specific score normalization
approaches for LOF, there are also works on normalizing
outlier scores of arbitrary models such that the scores are
contained in [0, 1] and can be interpreted as probabilities [45].
Another example is to apply an additive similarity normal-
ization [46], [47], based on [48], by normalizing individual
distance-based outlier scores with the mean outlier score of
the K nearest neighbors. Speaker verification is an additional
application where score normalization approaches are fre-
quently applied, under the name of score calibration [49], [50].
In contrast to our presented approach, these normalization
approaches are not specifically designed for embedding-based
ASD in domain-shifted conditions. However, there are also
several works that reduce the domain mismatch by normalizing
the scores in domain-shifted conditions. An example is a
domain-wise standardization of the anomaly score distribu-
tions with the goal of aligning them [51]. Another example is
cross-domain similarity local scaling (CSLS), which uses two
different additive terms derived from samples of the source
and target domains [52]. As we will show in Section V-A,
our proposed anomaly score normalization approach leads to
slightly better performance than the existing approaches while
not requiring domain labels or specific training for each target

https://github.com/merlresearch/anomaly-score-normalization
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Fig. 1. Illustration of the domain mismatch between the anomaly scores of a
source domain and a target domain. Normal and anomalous samples are usu-
ally less well separated in the target domain than in the source domain, which
decreases domain-independent performance over the performance obtained
for the source domain alone. Furthermore, the optimal decision thresholds for
separating the scores belonging to the normal and anomalous data of different
data domains differ substantially, which significantly decreases performance
when using only a single threshold for both domains. Figure taken from [10].

domain, and allowing for independent evaluation of each test
sample.

III. METHODOLOGY

A. Motivation

Domain shifts significantly decrease the performance of a
trained ASD system because the distributions of the anomaly
scores before and after the domain shift, i.e., in the source and
target domains, are not necessarily well-aligned. This makes
it difficult to separate normal and anomalous samples in both
domains with a single decision threshold. This misalignment,
referred to as domain mismatch, is illustrated in Fig. 1. Its
main cause is that embedding models usually try to distribute
the data into very compact clusters but are only trained with
source domain data. Note that even if target domain samples
are used for training, the effect is typically negligible due
to the strong imbalance of the number of available training
samples between the source and target domains. If the same
embedding model is used to project data belonging to the
target domain into the embedding space, the resulting clusters
may have densities completely different from those of the
source domain data. Therefore, the anomaly scores may also
be scaled differently. Moreover, usually only a few reference
samples are provided for the target domain, making it difficult
to accurately estimate the distribution for density-based outlier
detection approaches and leading to higher distances in general
for distance-based approaches. Here, clusters with different
densities correspond to sub-classes of the normal data. The
main idea in this work is to reduce the domain mismatch
caused by differently scaled anomaly scores. This is achieved
by normalizing the scores so that the distances between
samples from both domains are more uniformly distributed.

B. Distance-based anomaly score approaches

In this section, the proposed anomaly score normalization
approach will be presented. To this end, we first introduce

the notation and a simple distance-based baseline approach.
Then, two variants of the score normalization scheme will be
defined.

1) Baseline approach: Let us now properly define the
baseline approach. Let Xtest denote the set of test samples
and Xref denote a reference set of normal training samples
that can belong to any or multiple data domains. Following
best practices, all available training samples are used as
reference samples. Then, the baseline approach for calculating
an anomaly score based only on the nearest neighbor in the
reference set is defined as

ANN
cos (x,Xref) := min

y∈Xref
Acos(x, y)

:= min
y∈Xref

0.5 ·
(
1− ⟨x, y⟩

∥x∥2∥y∥2

)
∈ [0, 1].

Note that, on the unit sphere, this equation simplifies to

ANN
cos (x,Xref) = min

y∈Xref
0.5 · (1− ⟨x, y⟩).

Samples that are outliers and thus not very representative of
the underlying distribution of normal samples cause unwanted
effects for this distance-based anomaly score calculation ap-
proach. These can be reduced by using k-NN instead of only
measuring the distance to the closest neighbor [20], [33],
or applying k-means to the reference set before computing
the distance [36], which also reduces computational cost at
inference time.

2) Proposed normalization approach: As mentioned in
Section II, a distance-based baseline approach outperforms
density-based approaches in domain-shifted conditions. How-
ever, to achieve good performance with a distance-based ap-
proach, the anomaly scores, i.e., the distances of test samples
to their closest reference samples, need to follow a similar
distribution for source and target domains. In most cases,
this assumption is not true, causing a domain mismatch as
explained in Section III-A. To reduce this mismatch, we
propose two different approaches for normalizing the anomaly
scores. Both approaches are based on the local density of the
reference samples and differ only in how the local density
is defined. For the first approach, the local density is based
on the K nearest neighbors within the reference set. The
local density of the second approach is defined by global
weighted ranking pooling (GWRP) [53], which was also
used in [54]. GWRP calculates the density with all reference
samples but uses an exponentially decreasing weight based
on the distance-based ranking of the reference samples to
put higher emphasis on closer samples and thus somehow
enforce a locality constraint. The idea for both approaches
is to increase the scores measured against reference samples
within regions with high density of embeddings while reducing
the scores measured against samples within regions with low
density.

Using the notation introduced for the baseline approach in
Section III-B1, let y ∈ Xref denote an element of Xref, and



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 4

0.611.4 scaling factor

sc
al

ed
di

st
an

ce

test
sample

reference
sample

considered
sample

local density
determines

scaling factor

Fig. 2. Illustration of the impact of the ratio-based normalization approach
on the selection of the reference points (in blue) that are to be considered the
nearest for a given test point (in red). For three different considered points
(in yellow) with similar distance to the test sample in the original embedding
space, the scale at which they are compared to other points is shown. For one
of them, the scaling factor is 1.4 because the point is in a dense neighborhood;
for another one, the scaling factor is 1; and for the third sample in the sparse
area, the scaling factor is 0.6. When assessing the distance between the test
point and any of the considered samples, the distances should be computed
in the corresponding rescaled planes. In the end, the reference point with the
smallest scaled distance is selected. Here, the point in the sparse area with 0.6
scaling factor gets selected, despite the fact that all points initially had a similar
distance to the test sample. For illustration purposes, planes are depicted
here, although the normalization approach involves cosine distances on a
sphere. For the difference-based normalization approach, reference samples
are shifted based on their local densities instead of re-scaling the embedding
space, which has a similar effect on the normalized distances but is more
difficult to illustrate.

yk ̸= y denote the k-th closest sample in Xref to y. Then, the
normalized anomaly scores are defined as

AK-NN
scaled(x,Xref |K) := min

y∈Xref

Acos(x, y)
K∑

k=1

Acos(y, yk)

∈ R+,

AGWRP
scaled (x,Xref | r) := min

y∈Xref

Acos(x, y)
|Xref|−1∑
k=1

Acos(y, yk) · rk−1

∈ R+,

where the hyperparameters K ∈ N+ and r ∈ [0, 1] denote the
number of closest samples to consider and the weight factor,
respectively. In our experiments, we also consider a closely-
related variant where the ratio is replaced with a difference,
i.e., the normalization term is subtracted instead. It shall be
emphasized that the normalization constants for all reference
samples do not depend on the test sample and thus can be
pre-computed, which ensures that there is no computational
overhead at inference.

C. Discussion of the normalization effect

As stated before, the main goal of applying the normal-
ization is to reduce the domain mismatch by having a more
uniformly distributed embedding space across multiple do-
mains and possibly existing sub-classes. Effectively, this is
achieved by reducing the distance of reference samples with
low local density to a given test sample compared to the

distance to reference samples with high density. Therefore,
if two reference samples are similarly close in the original
embedding space, we favor the sample which is more isolated,
i.e., the one that likely belongs to the target domain. Still, the
distance to the reference sample itself is taken into account,
ensuring that after normalization the closest neighbor is a
reasonable sample and not just a random outlier. If we interpret
the normalization as distorting the geometric distances from
the test sample, this results in pushing reference samples with
dense local neighborhoods away, while pulling samples with
less dense local neighborhoods closer. This is illustrated in
Fig. 2. As a result, the proposed normalization allows one
to use a single decision threshold for samples in dense and
sparse regions. These parameters control the degree of locality,
ranging from K = 1 or r = 0, where the local density is based
only on the nearest neighbor, to a global density K = |Xref|−1
or r = 1, for which all other reference samples are considered.
Note that for these edge cases the parameterizations with K
and r are the same.

IV. EXPERIMENTAL SETUP

A. Datasets
For the experimental evaluations of this work, the fol-

lowing five datasets were used: 1) the DCASE2020 ASD
dataset [2] based on MIMII [55] and ToyADMOS [56], 2)
the DCASE2022 ASD dataset [4] based on MIMII-DG [57]
and ToyADMOS2 [58], 3) the DCASE2023 ASD dataset [5]
based on MIMII-DG [57] and ToyADMOS2+ [59], 4) the
DCASE2024 ASD dataset [6] based on [57], ToyADMOS2#
[60], and additional samples recorded with the same setup
as presented in IMAD-DS [61], and 5) the DCASE2025
ASD dataset [6] based on [57], ToyADMOS2025 [62], and
additional samples recorded with the same setup as presented
in IMAD-DS [61]. All these datasets focus on semi-supervised
ASD for acoustic machine condition monitoring and consist
of a development set and an evaluation set containing record-
ings of machines with real factory background noise. Each
development and evaluation set is divided into a training split
containing only normal data and a test split containing a mix
of normal and anomalous data. A summary of the datasets
can be found in Table I and more details can be found in the
corresponding references. The main differences between the
datasets will now be discussed.

DCASE2020: The DCASE 2020 ASD dataset consists of
recordings belonging to six different machine types, namely
“fan”, “pump”, “slider”, “valve” from MIMII [55], and “Toy-
Car” and “ToyConveyor” from ToyAdmos [56]. For each
machine type, there are six to seven specific machines in total,
of which three to four belong to the development set and
the remaining ones belong to the evaluation set. There are
approximately 1000 normal training samples and around 400
test samples for each individual machine. Each recording has
a length of 10 s and a sampling rate of 16 kHz. In contrast to
the other two datasets, the DCASE2020 ASD dataset does
not contain any data in domain shifted conditions, i.e., it
essentially only consists of a source domain.

DCASE2022: The DCASE2022 ASD dataset explicitly
features the DG problem for ASD. This means that 990 normal
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TABLE I
OVERVIEW OF THE CONSIDERED DCASE ASD DATASETS.

# recordings (per section)

# machine types # sections (per machine type) source domain target domain

Name total dev. set eval. set total dev. set eval. set # ACT classes split normal anomalous normal anomalous

DCASE2020 [2] 6 6 6 6-7 3-4 3 41 train ≤ 1000 0 0 0
test ≤ 400 ≤ 200 0 0

DCASE2022 [4] 7 7 7 6 3 3 242 train 990 0 10 0
test 50 50 50 50

DCASE2023 [5] 14 7 7 1 1 1 167 train 990 0 10 0
test 50 50 50 50

DCASE2024 [6] 16 7 9 1 1 1 141 train 990 0 10 0
test 50 50 50 50

DCASE2025 [7] 14 7 7 1 1 1 172 train 990 0 10 0
test 50 50 50 50

training samples belonging to a source domain and only 10
normal training samples belonging to a target domain are
provided for each of the machines. The machine-specific test
splits each consist of 200 samples that can belong to any
of the two domains and may be normal or anomalous. In
contrast to the DCASE2020 ASD dataset, the duration of
individual recordings is not fixed but ranges between 6 s and
18 s. Moreover, additional meta information, referred to as
attribute information, about specific machine settings or the
acoustic environment are provided for each recording.

DCASE2023: The DCASE2023 ASD dataset increases the
difficulty of the ASD task with the following two modifi-
cations, which are jointly referred to by the term “first-shot
problem”. The first modification is that the development set
and the evaluation set contain mutually exclusive machine
types. This ensures that ASD systems need to work well
for arbitrary machine types as participants of the challenge
cannot fine-tune their ASD systems to perform well for
specific machine types. The second modification is that, for
some machine types, only recordings of a single machine are
available. This is more realistic but also substantially degrades
the performance of discriminative embedding models as less
information needs to be captured within the embeddings to
obtain correct classification results.

DCASE2024: Apart from exchanging some of the ma-
chine types contained in the dataset, the DCASE2024 ASD
dataset has the following key differences compared to the
DCASE2023 ASD dataset. For some of the machine types, no
attribute information is provided. This means that the embed-
ding model needs to be trained without utilizing any additional
meta information for some machine types, which substantially
simplifies the imposed auxiliary classification tasks used for
training the models and leads to less informative embeddings.
Furthermore, some machines have an exclusive background
noise, which means that embedding models trained to identify
these machines may only be monitoring the noise. As the
background noise does not carry any relevant information for
detecting anomalous machine sounds, this strongly degrades
the performance when using such an embedding model.

DCASE2025: The main modification of the DCASE 2025

ASD dataset is that the dataset also contains supplemental
data for each machine type, which may either contain clean
recordings of the target machines or only background noise.
However, to simplify the evaluations in this work, we re-
strained from specific adaptations of the ASD systems and
simply ignored the supplemental data. Thus, the main purpose
of using the dataset in the experiments of this work is to have
additional evaluations with recordings belonging to different
machine types than the ones contained in previous versions of
the dataset.

B. Evaluation metrics

To evaluate the performance of the ASD systems, we
followed the official evaluation metrics for ASD experiments
with each individual dataset [2], [5], [6]. For the DCASE2020
dataset, the area under the receiver operating characteristic
curve (AUC-ROC) and partial area under the receiver op-
erating characteristic curve (pAUC) [63] with p = 0.1 are
computed for each section, and then the arithmetic mean is
taken over all results. For the DCASE2023 and DCASE2024
datasets, the section-specific AUC-ROCs are computed indi-
vidually for each domain by considering only the normal test
samples belonging to the source or target domain but using all
anomalous test samples regardless of the domain they belong
to. The pAUCs are computed using all test samples belonging
to any domain. Finally, the harmonic mean is taken over both
AUC-ROCs and the pAUC of all sections.

C. Embedding models

For the experiments conducted in this work, four different
embedding models were used. The first one (Direct-ACT) is
trained with an auxiliary classification task based on meta
information and SSL. The other three (OpenL3-raw, BEATs-
raw, and EAT-raw) are pre-trained general-purpose models
that are used without further training. In addition, we used an
ensemble of ten Direct-ACT models to evaluate the normal-
ization approach. In the following, the models are described
and their implementation details are provided.
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Direct-ACT: This embedding model is directly trained on
the data using an auxiliary classification task and does not de-
pend on any pre-trained models. More specifically, this model
is based on [22] and consists of two feature branches. The
first branch utilizes the magnitude of the full spectrum, i.e.,
the Fourier transform of the entire signal. The second branch
computes the magnitude of the short-time Fourier transform
(STFT) with a Hann window of size 1024 and a step size
of 512, and applies temporal mean normalization to remove
constant frequency information and thus make both features
more different from each other. A different convolutional
neural network is applied to each feature branch, mapping
each of the features into a 256-dimensional embedding space.
After that, both resulting embeddings are concatenated to
obtain a single embedding. The auxiliary classification task
(ACT) used to train the embedding model is defined based
on the provided meta information, with one vanilla sub-task
on the concatenated embeddings and an additional SSL sub-
task on augmented embeddings. In the vanilla sub-task, the
model has to discriminate, based on the concatenated feature
embedding, between different values of the provided meta
information, more specifically the machine types, machine
IDs and additional parameter settings, or information about
the acoustic environment. The additional SSL sub-task uses
feature exchange [22], which randomly exchanges the embed-
dings of the two feature branches between samples and asks
the model to predict whether the embeddings belong to the
same sample or not, on top of predicting the meta information
associated with each sample. For the entire dataset, a single
embedding model is trained for 10, 5, and 15 epochs on
the DCASE2020, DCASE2023, and DCASE2024 dataset,
respectively, using Adam [64] with a batch size of 64. These
particular hyperparameters were chosen by optimizing the
performance on the corresponding development sets. The loss
function is the AdaProj loss [39], which projects the data into
class-specific linear subspaces on the unit sphere and ensures
an angular margin between the classes. For data augmentation,
mixup [65] with a uniformly distributed mixing coefficient is
applied to the waveforms. Note that the only differences of
this ASD system from the original system presented in [22]
are that statistics exchange [21] is not used and that the sub-
cluster AdaCos loss [14] is replaced with the AdaProj loss
[39] with a sub-space dimension of 32.

OpenL3-raw: To show that the proposed normalization
scheme does not depend on the choice of the embeddings
and can also be utilized for pre-trained embeddings, the
following ASD system based on OpenL3 embeddings [66],
which is an open-source model for Look, Listen, and Learn
embeddings [67], [68], is used for additional evaluations.
First, all waveforms are divided into chunks using a sliding
window with a length of 1 s and a hop size of 0.1 s. Then,
OpenL3 embeddings with a dimension of 512 are extracted
from these chunks by computing mel spectrograms with 128
mel bins and using the model pre-trained on the environmental
sound subset. Finally, the (temporal) mean over all embeddings
belonging to the chunks is taken to obtain a single embedding
for each recording that serves as an input feature for a task-
specific embedding model. To calculate anomaly scores based

on these embeddings, the mean squared error (MSE) is used
instead of the cosine distance.

BEATs-raw: To provide more evidence for the claim that
the presented normalization approach does not depend on the
input features, additional experiments with BEATs embed-
dings [69] were conducted. In recent works on ASD [51], [70],
systems based on these embeddings performed remarkably
well. For the experiments conducted in this work, the official
BEATs model pre-trained for three iterations on Audioset [71]
without additional fine-tuning was used. To obtain a vector-
sized embedding for each recording that serves as an input fea-
ture, the temporal mean of the patch embeddings is flattened
to preserve frequency and channel information as proposed
in [51]. This results in a single BEATs embedding with a
dimension of 6144 for each audio recording. Again, the cosine
distance is replaced with the MSE when computing anomaly
scores. We also tried to train ACT models by replacing the
mel spectrogram input with BEATs and openL3 embeddings,
but found that just using the off-the-shelf embeddings resulted
in superior performance, a result consistent with [51]. We also
tried to fine-tune BEATs on the ASD task to replicate [70],
but again the raw embeddings provided the best performance.

EAT-raw: Similar to BEATs, we also utilized EAT embed-
dings [72] as used by several other ASD systems [73], [74].
More concretely, we used the official checkpoint of the large
EAT model pre-trained for 20 epochs on Audioset [71] without
further fine-tuning. To obtain vector-sized embeddings, the
temporal mean of the patch embeddings is concatenated with
the extracted CLS embedding, resulting in embeddings with a
dimension of 6912. As with the other pre-trained models, the
MSE is used to compute anomaly scores.

Direct-ACT (Ensemble): As many state-of-the-art ASD
systems are ensembles consisting of multiple models, we also
utilized an ensemble for additional evaluations. This ensemble
model is obtained by averaging the resulting anomaly scores
of ten independently trained direct-ACT models with the
architecture described above.

V. EXPERIMENTAL RESULTS

A. Comparison of normalization approaches

As a first experiment, different DG approaches are com-
pared to our proposed normalization approach and a sim-
ple nearest neighbor baseline approach. More concretely, we
compared four alternatives to our proposed approach: 1) K-
means with K = 16 on the reference samples belonging to
the source domain [36], 2) synthetic minority over-sampling
technique (SMOTE) [75] to balance the number of samples for
both domains by randomly interpolating between 4 reference
samples of the target domain to synthesize additional target
domain samples, 3) LOF [40] to compute local density-based
anomaly scores, and 4) a domain-specific standardization of
test score distributions [51]. All experiments are conducted on
the DCASE2022, DCASE2023, DCAE2024, and DCASE2025
ASD datasets with all five ASD models, i.e., Direct-ACT,
OpenL3-raw, BEATs-raw, EAT-raw, and Direct-ACT (Ensem-
ble). The results can be found in Table II and the following
observations can be made.
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TABLE II
HARMONIC MEANS OF ALL AUCS AND PAUCS OBTAINED WITH DIFFERENT ANOMALY SCORE CALCULATION APPROACHES AND EMBEDDING MODELS.

ALL INCLUDED VALUES ARE THE HARMONIC MEANS OVER THE PERFORMANCE METRICS OF ALL DEVELOPMENT AND EVALUATION SETS OF THE
DCASE2022, DCASE2023, DCASE2024, AND DCASE2025 ASD DATASETS. FOR NON-DETERMINISTIC MODELS, MEANS OVER TEN INDEPENDENT

TRIALS CORRESPONDING TO TEN TRAINED EMBEDDING MODELS ARE SHOWN. TO ALLOW FOR BETTER COMPARISON, THE SAME TEN TRAINED
EMBEDDING MODELS WERE USED FOR ALL EVALUATIONS. TO OBTAIN MEANS OF THE SOURCE DOMAIN AS REFERENCE SAMPLES, K-MEANS WITH
K = 16 WAS APPLIED. FOR SMOTE, FOUR NEIGHBORS WERE USED TO SYNTHESIZE SAMPLES. FOR LOF AND BOTH VARIANTS OF THE PROPOSED
NORMALIZATION APPROACH, K = 1 WAS USED. HIGHEST NUMBERS IN EACH COLUMN AND BLOCK FOR EACH EMBEDDING MODEL ARE IN BOLD.

DG approach domain Direct-ACT OpenL3-raw BEATs-raw EAT-raw Direct-ACT (ensemble) average

- source 66.0%66.0%66.0% 62.6%62.6%62.6% 65.0%65.0%65.0% 64.0%64.0%64.0% 67.2%67.2%67.2% 65.0%65.0%65.0%
using source means [36] source 62.4% 59.8% 63.2% 61.4% 63.6% 62.1%

SMOTE [75] source 65.6% 60.6% 63.7% 63.1% 66.7% 63.9%
LOF [40] source 58.9% 58.1% 60.0% 58.2% 62.1% 59.5%

standardization [51] source 63.6% 59.0% 61.5% 60.2% 65.0% 61.9%
normalization (difference) source 62.3% 59.3% 63.4% 62.2% 64.8% 62.4%

normalization (ratio) source 60.6% 57.8% 62.0% 61.6% 63.1% 61.0%

- target 52.5% 51.7% 54.2% 53.1% 52.6% 52.8%
using source means [36] target 58.7% 52.3% 53.4% 53.8% 59.6% 55.6%

SMOTE [75] target 55.6% 55.0% 57.5% 55.7% 56.0% 56.0%
LOF [40] target 59.5% 56.5% 58.4% 56.6% 62.2% 58.6%

standardization [51] target 60.0% 56.2% 59.4% 57.6% 61.2% 58.9%
normalization (difference) target 60.9% 57.5% 61.2%61.2%61.2% 59.3% 63.4% 60.5%

normalization (ratio) target 61.5%61.5%61.5% 58.0%58.0%58.0% 61.2%61.2%61.2% 59.4%59.4%59.4% 64.1%64.1%64.1% 60.8%60.8%60.8%

- mixed 58.0% 56.7% 59.3% 58.5% 58.3% 58.2%
using source means [36] mixed 61.1% 56.3% 58.2% 58.1% 62.3% 59.2%

SMOTE [75] mixed 60.3% 57.9% 61.1% 60.0% 60.9% 60.0%
LOF [40] mixed 59.9% 57.7% 59.8% 58.0% 62.9% 59.7%

standardization [51] mixed 62.7%62.7%62.7% 58.5% 61.5% 60.0% 64.1% 61.4%
normalization (difference) mixed 62.3% 59.1%59.1%59.1% 62.8%62.8%62.8% 61.3%61.3%61.3% 64.5%64.5%64.5% 62.0%62.0%62.0%

normalization (ratio) mixed 61.8% 58.6% 62.0% 60.9% 64.3% 61.5%

TABLE III
QUALITATIVE COMPARISON OF DIFFERENT DG APPROACHES. APART FROM THE EFFECTIVENESS IN TERMS OF PERFORMANCE, IT IS SHOWN WHETHER

DOMAIN LABELS OF THE REFERENCE SAMPLES ARE REQUIRED, WHETHER THE APPROACH ONLY ADAPTS TO SPECIFIC TARGET DOMAINS, AND
WHETHER EACH TEST SAMPLE IS EVALUATED INDEPENDENTLY FROM OTHERS. THE PERFORMANCE PROVIDED FOR THE EFFECTIVENESS IS THE

AVERAGE MIXED-DOMAIN PERFORMANCES OVER ALL DATASETS AND EMBEDDING MODELS AS CONTAINED IN TABLE II.

DG approach requires domain labels domain shift-specific independent test samples effectiveness (performance)

- no no yes low (58.2%)
using source means [36] yes no yes low/medium (59.2%)

SMOTE [75] yes yes yes medium (60.0%)
LOF [40] no no yes medium (59.7%)

standardization [51] yes yes no high (61.4%)
proposed approach (difference) no no yes high (62.0%)

proposed approach (ratio) no no yes high (61.5%)

First, it can be seen that the performance in the target
domain is much worse than in the source domain when no
DG approach is applied, which verifies the motivation for
this work. Second, all approaches improve the performance
in the target domain while reducing the performance in the
source domain, although to different extents. Applying K-
means to the reference samples of the source domain leads to
moderate performance gains for Direct-ACT and the ensemble
model, but actually reduces the performance for OpenL3-
raw, BEATs-raw, and EAT-raw. Among all DG approaches,
SMOTE achieves the best performance in the source domain
but only leads to minor improvements in the target domain.
Still, consistent improvements can be observed. LOF, on the
other hand, leads to the worst performance in the source
domain while achieving significant performance gains in the
target domain. Overall, the performance of LOF in the mixed
domain is similar to the one achieved with SMOTE. A domain-
wise standardization of the anomaly scores and the difference-

based and ratio-based variants of our proposed anomaly score
normalization approach lead to the highest performance gains
in the target domain while not reducing the performance
in the source domain too much. As a result, these three
approaches all achieve similar and highest overall performance
with no clear winner in terms of pure performance. As a minor
observation, it can be seen that our normalization approach
also increases the performance gains obtained with additive
ensembles. The most likely reason for this is that the anomaly
scores are scaled more similarly after normalizing them.

Apart from comparing the effectiveness of the considered
approaches in terms of performance, we also investigated
other advantages and disadvantages of individual approaches
in Table III. From that, it can be seen that our approach offers
several advantages. In contrast to using K-means in the source
domain, balancing with SMOTE, or using a domain-specific
standardization of anomaly scores, our approach does not
require domain labels for the reference samples. This is a clear
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Fig. 3. Performance change for the ratio-based score normalization using different values of the GWRP constant r and number K for k-NN. The models
Direct-ACT, OpenL3-raw, BEATs-raw, and EAT-raw are evaluated on the DCASE2020, DCASE2022, DCASE2023, DCASE2024, and DCASE2025 datasets.
For Direct-ACT, mean results over ten independent trials are shown. Similar trends can be seen in the plots corresponding to the difference-based normalization.

advantage, since precisely defining domains and obtaining la-
bels is difficult in real-world applications. Moreover, SMOTE
and standardizing the score distributions are adaptations to
specific domain shifts, which require modifying the system for
every new domain shift that occurs. Last but not least, domain-
specific standardization (as implemented in [74]), which is the
only approach resulting in similar performance improvements
as our proposed approach, estimates first- and second-order
statistics of the anomaly scores of all test samples to modify
the scores. Therefore, test samples cannot be independently
evaluated, which is a strong restriction for real-world appli-
cations. We also tried to estimate these statistics using the
anomaly scores of the training samples, but this only degraded
the performance instead of improving it. In summary, our
proposed approach yields the highest performance while not
suffering from any of the mentioned disadvantages, and thus
is a favorable choice among all DG approaches.

B. Sensitivity analysis with respect to the hyperparameters

As additional ablation studies, we investigated tuning the
hyperparameters r of GWRP and K of k-NN for the respective
parameterizations of the proposed normalization approach.
The performance changes on the DCASE2020, DCASE2022,

DCASE2023, DCASE2024, and DCASE2025 datasets for the
embedding models Direct-ACT, OpenL3-raw, BEATs-raw and
EAT-raw when normalizing the scores are depicted in Fig. 3.
The following observations can be made.

First and most importantly, the proposed approach improves
the performance for most datasets if local density estimates
are used. There are a few exceptions to this, for example the
performance obtained with Direct-ACT on the development set
of the DCASE2020 and DCASE2022 datasets, which slightly
degrades. However, since the DCASE2020 dataset does not
contain any domain shifts, the normalization approach does
not need to be applied. Interestingly, the performance gains for
OpenL3-raw, BEATs-raw, and EAT-raw on this dataset are still
substantial, which indicates that the proposed normalization
approach is beneficial for off-the-shelf embeddings when
not using any fine-tuning. For the DCASE2022 dataset, the
performance degradation with direct-ACT can be explained by
a slightly larger decrease in performance on the source domain
compared to the improvement achieved on the target domain,
resulting in a marginal overall decline. Other exceptions are
the performance obtained with OpenL3-raw on the evaluation
set of the DCASE2024 dataset and with BEATs-raw on the de-
velopment set of the DCASE2025 dataset, which significantly
degrades, for an unknown reason.
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TABLE IV
HARMONIC MEANS OF ALL AUCS AND PAUCS OBTAINED WITH DIFFERENT ASD SYSTEMS ON A REPRESENTATIVE GROUP OF ASD DATASETS USED AS

BENCHMARKS IN SEVERAL RECENT PEER-REVIEWED WORKS. FOR ALL OF OUR PROPOSED ASD SYSTEMS, A RATIO-BASED ANOMALY SCORE
NORMALIZATION WITH K = 1 WAS USED. WHENEVER APPLICABLE, MEANS OF ALL INDEPENDENT TRIALS ARE SHOWN. HIGHEST NUMBERS IN EACH

COLUMN ARE IN BOLD.

DCASE2020 dataset [2] DCASE2023 dataset [5] DCASE2024 dataset [6]
(no domain shifts) (first-shot DG) (first-shot DG with less meta data)

ASD system trials dev. set eval. set arithm. mean dev. set eval. set harm. mean dev. set eval. set harm. mean

Direct-ACT 10 90.7% 90.2% 90.5% 68.4% 68.0% 68.2% 62.0% 54.7% 58.1%
OpenL3-raw 1 75.2% 77.5% 76.4% 60.5% 63.8% 62.1% 56.6% 55.7% 56.1%
BEATs-raw 1 81.5% 82.2% 81.9% 64.8% 67.6% 66.2% 58.1% 62.4% 60.2%
EAT-raw 1 79.3% 79.9% 79.6% 65.0% 66.1% 65.5% 56.8% 58.9% 57.8%
Direct-ACT (ensemble) 1 94.2%94.2%94.2% 93.3% 93.8%93.8%93.8% 71.3%71.3%71.3% 72.4% 71.8%71.8%71.8% 65.2%65.2%65.2% 56.5% 60.5%

Koizumi et al. [2] 1 66.6% 70.0% 68.3% − − − − − −
Wilkinghoff [14] (single model) 1 90.7% 92.8% 91.8% − − − − − −
Wilkinghoff [14] (ensemble) 1 − 94.1% − − − − − − −
Liu et al. [76] 1 89.4% − − − − − − − −
Harada et al. [77] 1 − − − 56.9% 61.1% 58.9% 55.4% 56.5% 55.9%
Wilkinghoff [36] 5 − − − 62.8% 63.0% 62.9% − − −
Hou et al. [78] 1 88.8% 92.0% 90.4% − − − − − −
Wilkinghoff [22] (single model) 5 − − − 64.2% 66.6% 65.4% − − −
Wilkinghoff [22] (ensemble) 5 − − − − 70.9% − − − −
Han et al. [79] 1 − − − 64.3% − − − − −
Zhang et al. [80] 1 − − − − 71.3% − − − −
Jiang et al. [70] 1 90.9% 94.3%94.3%94.3% 92.6% 64.2% 74.2%74.2%74.2% 68.8% − − −
Wilkinghoff [39] 10 − − − 62.9% 64.5% 63.7% − − −
Saengthong et al. [51] 1 74.7% − − − 73.8% − − − −
Yin et al. [81] 1 − − − 68.1% − − − − −
Fujimura et al. [82] 5 − − − 67.2% 68.8% 67.6% − − 62.0%
Yin et al. [83] 1 − − − − − − − 67.1%67.1%67.1% −
Jiang et al. [70] presented in [84] 5 − − − − − − 62.5% 65.6% 64.0%
Jiang et al. [84] 5 − − − − − − 64.1% 66.0% 65.0%65.0%65.0%
Fujimura et al. [73] 4 90.4% 93.5% 91.9% 64.0% 72.0% 67.8% 59.9% 61.5% 60.7%

The second main observation is that optimal hyperparameter
values are strongly dataset-dependent and partly embedding-
dependent. Although there are several cases where increasing
the hyperparameter slightly improves the performance, e.g., for
OpenL3-raw, BEATs-raw, and EAT-raw on the DCASE2020
dataset or for all embedding models on the DCASE2025
development set, these improvements are not consistent on
all datasets. This is particularly evident on the evaluation set
of the DCASE2024 dataset, where performance drops rapidly
when increasing the value of K and r. In contrast, very small
values lead to consistent improvements in performance. Thus,
we recommend being conservative and only using a single
sample to define the local density, i.e., K = 1 or r = 0
without additional prior knowledge. Note that these numbers
are different from the results presented in [30], as the results
presented here are based on the official performance metric
of the DCASE Challenge, while a simplified performance
measure was used in [30].

C. Comparison to the state of the art

In Table IV, the proposed anomaly score normalization ap-
proach is evaluated on a representative group of ASD datasets,
namely the DCASE2020, DCASE2023, and DCASE2024
datasets, and the resulting performance is compared to the
state of the art. For this comparison, we consider the five
systems direct-ACT, OpenL3-raw, BEATs-raw, EAT-raw, and
direct-ACT (ensemble) as described in Section IV-C, all with
a local-density-based normalization of the anomaly scores
using k-NN with K = 1. While the direct-ACT model with

the proposed normalization stays slightly behind the state-of-
the-art performance, the ensemble robustly outperforms the
state-of-the-art systems on the DCASE2020 and DCASE2023
datasets. On the DCASE2024 dataset, our performance is
better on the development set but still worse than the state
of the art and comparable to the baseline system [77] on the
evaluation set. The main reason for this poorer performance is
that some machine types contained in the DCASE2024 dataset
have specific noise conditions. For these machine types, an
ACT-based system only needs to monitor the noise and thus
completely fails in detecting subtle changes in target machine
sounds. Another reason is that, for some machine types, no
attribute information is provided, which further degrades the
performance. Both imposed difficulties need to be addressed
to be able to achieve state-of-the-art performance. Additional
evidence for this claim is that the performance obtained with
the simple BEATs-raw model is only slightly worse than the
direct-ACT ensemble on the DCASE2024 dataset while being
much worse on the DCASE2020 and DCASE2023 datasets.
Note that BEATs and AnoPatch make extensive use of SSL via
masking patches while the direct-ACT model only uses SSL
via feature exchange, similarly to OpenL3. The difference in
performance can thus be seen as evidence for the importance
of using SSL to learn suitable representations for ASD.

VI. CONCLUSIONS AND FUTURE WORK

In this work, a simple yet highly effective anomaly score
normalization approach for DG was presented. The approach
was extensively evaluated on the DCASE2020, DCASE2022,
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DCASE2023, DCASE2024, and DCASE2025 ASD datasets
using state-of-the-art embedding models, from a model based
on directly training with the discriminative angular margin loss
AdaProj, to models based on pre-trained embeddings, such
as OpenL3, BEATs, and EAT. The proposed normalization
approach was shown to consistently and significantly improve
the performance in domain-shifted conditions and outperforms
other existing anomaly score calculation and normalization
approaches while not using any domain labels or adapting
to specific target domains, and treating each test sample
independently. As a result, an ensemble-based ASD system
was presented that utilizes this normalization approach and
achieves state-of-the-art performance on the DCASE2020 and
DCASE2023 dataset. For future work, we plan to evaluate the
proposed normalization approach for other applications and
different data modalities in addition to audio. Furthermore, we
plan to explore synergies with other normalization approaches,
as also done in [74]. Last but not least, the proposed ASD
system will be adapted to provide state-of-the-art performance
on the DCASE2024 dataset by fine-tuning BEATs with an
ACT, similarly to AnoPatch [70].
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