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Abstract
This paper presents SuDaField, a subject- and dataset-aware neural field (NF) that can lever-
age multiple head-related transfer function (HRTF) datasets. NF-based HRTF modeling has
gained much attention because its grid-agnostic formulation accommodates any spatial grids
during training and inference. While NFs are grid-agnostic, their training on multiple datasets
remains challenging, as HRTFs from different datasets exhibit distinct characteristics due to
variations in measurement setups. To mitigate this issue, Task 1 of the Listener Acoustic Per-
sonalization (LAP) Challenge 2024 proposed the task of HRTF harmonization, which aims
to compensate for dataset-specific effects while preserving spatial cues of the original HRTFs.
The harmonization itself is still hindered by the difference in spatial grids and the ill-defined
nature of ideal harmonized HRTFs. We thus propose a well-defined framework of HRTF
conversion and realize this by concurrently performing NF training and disentanglement of
subject- and dataset-specific information. Our NF adopts dataset-specific parameters shared
across all subjects within each dataset, with these parameters capturing the influence of
the measurement setups. By replacing the dataset-specific parameters with those of another
dataset, we can convert HRTFs recorded in one environment to what they would be if recorded
in another environment. Our experimental results show that the dataset-specific parameters
allow us to effectively perform HRTF conversion, achieving state-of- the-art performance on
Task 1 of the LAP Challenge 2024.
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ABSTRACT This paper presents SuDaField, a subject- and dataset-aware neural field (NF) that can
leverage multiple head-related transfer function (HRTF) datasets. NF-based HRTF modeling has gained
much attention because its grid-agnostic formulation accommodates any spatial grids during training and
inference. While NFs are grid-agnostic, their training on multiple datasets remains challenging, as HRTFs
from different datasets exhibit distinct characteristics due to variations in measurement setups. To mitigate
this issue, Task 1 of the Listener Acoustic Personalization (LAP) Challenge 2024 proposed the task of
HRTF harmonization, which aims to compensate for dataset-specific effects while preserving spatial cues
of the original HRTFs. The harmonization itself is still hindered by the difference in spatial grids and
the ill-defined nature of ideal harmonized HRTFs. We thus propose a well-defined framework of HRTF
conversion and realize this by concurrently performing NF training and disentanglement of subject- and
dataset-specific information. Our NF adopts dataset-specific parameters shared across all subjects within
each dataset, with these parameters capturing the influence of the measurement setups. By replacing
the dataset-specific parameters with those of another dataset, we can convert HRTFs recorded in one
environment to what they would be if recorded in another environment. Our experimental results show
that the dataset-specific parameters allow us to effectively perform HRTF conversion, achieving state-of-
the-art performance on Task 1 of the LAP Challenge 2024.

INDEX TERMS Head-related transfer function, spatial audio, neural field, disentangled representation
learning, HRTF conversion

I. INTRODUCTION

HEAD-related transfer functions (HRTFs) represent
direction-dependent filtering effects caused by reflec-

tion and scattering around the ears, head, and torso as
sound travels to the entrance of the ear canals. We can
generate immersive binaural audio by applying HRTFs to dry
monaural source signals, with many applications including
mixed reality [1], [2]. HRTFs are unique to each subject due
to the difference in anthropometric features. Thus, we would
ideally want to provide each subject with their own HRTF
measurements to maximize perceptual accuracy [3]. For
example, the interaural time differences (ITDs) and interaural
level differences (ILDs) are affected by the head size and are

essential for azimuth localization [4]. Meanwhile, spectral
coloration depending on the pinna is important for elevation
localization and to avoid front and back confusion [5].
However, measuring HRTFs for each subject with dense
spatial grids is time-consuming [6] and not easy to scale.
As a more tractable alternative, HRTF spatial upsampling
aims to estimate HRTFs on dense spatial grids from sparse
measurements for the target subject. Meanwhile, HRTF
personalization predicts HRTFs for the target subject by
explicitly leveraging dense-grid HRTFs from a separate set of
reference subjects. Various techniques have been developed
for both approaches [7]–[12].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
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FIGURE 1. Average HRTF magnitudes in dB scale for the left ear on the
horizontal plane. For each dataset, averages are computed over all
subjects available in the SOFA repository.

Recently, machine-learning-based methods have shown
promising performance for these tasks [13]–[26]. In partic-
ular, neural field (NF)-based methods for HRTF modeling
have gained increasing attention due to their flexibility [21]–
[25]. NFs are trained to map a given sound source direction
to the corresponding HRTF, realizing grid-agnostic infer-
ence. Existing studies have explored various strategies to
efficiently adapt an NF pre-trained on HRTFs from multiple
subjects to a new subject [21], [23]. To achieve good gener-
alization capability, these methods require a critical mass of
data for pre-training, while existing HRTF datasets consist of
well under a thousand subjects. On the other hand, naively
combining multiple datasets to increase the number of train-
ing subjects presents challenges, as different recording setups
result in noticeably different HRTF measurements [27], [28].
Figure 1 illustrates this variability. While the averages for
HUTUBS [29] and RIEC [6] are indeed similar, the others
differ not only in global gain but also in lower-level features
like peak and notch locations. Ultimately, without additional
care, this variability impedes the training of NFs on multiple
datasets and adaptation to HRTFs from new measurement
setups.

To develop methods mitigating this issue, Task 1 of the
Listener Acoustic Personalization (LAP) Challenge 2024
asked participants to harmonize HRTFs for different subjects
measured with different setups [30]1. Specifically, this task,
referred to as HRTF harmonization, aims to compensate for
the influence of each measurement setup. During the chal-
lenge, harmonized HRTFs are evaluated on two aspects: pre-
serving the localization cues [31] of the original HRTFs, and
making their original measurement setup undetectable [32].

1https://www.sonicom.eu/lap-challenge/

The ideal results of HRTF harmonization are, however,
ill-defined because it is impossible to measure real-world
HRTFs without any influence from the measurement setup.
We instead propose a proxy task for harmonization named
HRTF conversion (HC), akin to voice conversion in speech
synthesis [33]. A method solving HC is expected to suc-
cessfully convert HRTFs recorded in one environment to
what they would have been if recorded in another one. This
would realize the conversion of all HRTFs to a reference
measurement setup, eliminating dataset-specific variability,
and thereby satisfying the challenge criteria. Directly solving
the HC task by optimizing for conversion performance is still
generally infeasible due to the lack of HRTFs for identical
subjects in different measurement setups, i.e., ground-truth
“converted” HRTFs are not available.

In this paper, we instead approach this problem via a dis-
entanglement perspective. Unlike existing methods that per-
form HRTF harmonization and NF training separately [21],
[22], we propose to solve both tasks concurrently using an
NF that includes explicit modeling of the dataset-specific
effects. Specifically, we combine multiple HRTF datasets
without harmonization and train an NF with subject- and
dataset-specific parameters (see Fig. 2). This subject- and
dataset-aware NF is referred to as SuDaField. While subject-
specific parameters, similarly to those proposed in prior work
[21]–[24], change from subject to subject, dataset-specific
parameters are shared across subjects within each dataset. By
decoupling the dataset-specific parameters from the subject-
specific ones, we aim to disentangle the influence of subject-
specific features, e.g., anthropometric features, from that of
the recording setup. Through our experiments, we show how
the decoupled parameters allow us to perform HC, resulting
in the state-of-the-art performance on Task 1 of the LAP
Challenge. Furthermore, we investigate the generalization
capability of SuDaField when performing adaptation to
HRTFs of new subjects. Our training and inference scripts
are available online2.

The remainder of this paper is organized as follows.
Section II explains the problem setup and HRTF modeling by
NFs. Then, in Section III, we describe our proposed method
that decouples the subject- and dataset-specific parameters.
In Section IV, we validate the effectiveness of SuDaField on
Task 1 of the LAP Challenge 2024. Furthermore, Section V
assesses the adaptation capability of SuDaField to HRTFs of
new subjects. We conclude the paper in Section VI.

II. BACKGROUND
A. NOTATION
In principle, an HRTF describes an acoustic transfer function
from a sound source in anechoic conditions to both ears,
which is primarily affected by the sound source position and
anthropometric features of the subject [4]. Let H(θ, ϕ, r, s) ∈
CF×2 denote an HRTF for subject s and a sound source

2https://github.com/merlresearch/SuDaField — contents to be added
upon acceptance of the paper
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FIGURE 2. Overview of the proposed NF with zs1
the subject-specific parameters and we1

the dataset-specific parameters.

position (θ, ϕ, r) with respect to the center of the subject’s
head. Here, θ ∈ [0, 2π), ϕ ∈ [−π/2, π/2], and r ∈ R+ are
the azimuth, elevation, and radius, respectively, and F is the
number of frequency bins. The azimuth increases counter-
clockwise, θ = 0 corresponding to the front of the subject,
while the elevation increases upward, ϕ = 0 indicating the
equatorial plane.

In practice, measured HRTFs are distorted by their mea-
surement setup, e.g., microphone and speaker responses. De-
noting the dataset-specific measurement setup as e, HRTFs
can be modeled as H(θ, ϕ, r, s | e). In this paper, we denote
the set of datasets as E = {e1, e2, . . . , eE}, where E is
the total number of datasets. Then, we denote the set of
subjects from HRTF dataset e as Se. Typically, the sets of
subjects for different datasets are disjoint, i.e., Sei ∩Sej = ∅
for all i ̸= j, although this is not a requirement for our
method. Going forward, we omit r. First, r is typically
fixed for each dataset and thus can be considered a dataset-
specific parameter. Additionally, the influence of r on inter-
dataset variability would be negligible in many of the LAP
Challenge datasets because the source distances are around
1m or beyond. We can thus reasonably introduce a far-field
assumption for typical head sizes [34].

Finally, in line with current practices, we equate estimating
H(θ, ϕ, s | e) with estimating its magnitude A(θ, ϕ, s | e) =
|H(θ, ϕ, s | e)|, with | · | the elementwise absolute value,
and its ITD τ(θ, ϕ, s | e) between left and right ears. The
HRTFs are then recovered by computing the minimum-phase
filter [35] corresponding to the magnitude and compensating
for ITD by shifting the filters in the time domain [25].

B. HRTF MODELING WITH NEURAL FIELDS
NF is a class of neural network that maps a given coordinate
to a quantity [36], and it has been successfully applied
to spatial audio [19]–[24], [37]–[39]. For HRTF modeling,
existing methods have so far been formulated in a dataset-
agnostic way, i.e., without an explicit mechanism to absorb
the effect of the recording setup e. In [21], an NF was trained
to map the sound source direction (θ, ϕ) to the corresponding
HRTF magnitude of subject s, i.e.,

A(θ, ϕ, s) = NFs(θ, ϕ). (1)

NFs are particularly appealing because they can straightfor-
wardly accommodate training and inference with arbitrary
spatial grids.

While the NF in (1) could be trained separately for each
subject s, recent work [21], [23] also showed that it is
typically beneficial to share most of the model parameters,
as HRTFs are similar across subjects. Thus, using only a
few subject-specific parameters zs, we can formulate the
modeling of multiple subjects using a single shared NF as

A(θ, ϕ, s) = NF(θ, ϕ | zs). (2)

In [21], zs is a vector that is concatenated with the sound
source direction as the input to the NF, i.e., conditioning
by concatenation (CbC). Another approach is to slightly
modify the model parameters based on zs similarly to the
parameter-efficient fine-tuning (PEFT) [23]. Both approaches
have demonstrated promising adaptation capability to a new
subject by optimizing the subject-specific parameters.

Note that, if this method were to be applied across multiple
datasets, zs should also implicitly contain the dataset-specific
information [24], as each subject is associated with a dataset.

C. MULTI-DATASET TRAINING
Due to the absence of a single large-scale dataset, combining
multiple datasets is highly desirable to train NFs, yet it
introduces specific challenges. First, datasets typically use
different spatial grids, although this is straightforwardly han-
dled by the grid-agnostic NFs. Second, as already mentioned,
each recording setup introduces specific distortion into the
measured HRTFs [27], [28]. The distortion is substantial
enough that the dataset of origin e of HRTFs H(θ, ϕ, s | e)
can easily be determined with a simple support vector
machine (SVM) classifier [32].

A simple approach to disentangling the inter-dataset vari-
ability of the HRTF magnitudes A(θ, ϕ, s | e) is to simply
divide them by a dataset-specific normalization factor. For
example, the average magnitude AAvg

e ∈ RF×2
+ over all

subjects and specific directions was used in a previous
study [21]. Then, HRTF modeling methods can be trained
on the normalized

ANorm(θ, ϕ, s) = A(θ, ϕ, s | e)⊘AAvg
e , (3)
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irrespective of their dataset of origin, where ⊘ denotes the
element-wise division. At inference, we then recover HRTFs
corresponding to a target environment e by denormalizing
the NF output, multiplying it by AAvg

e . This simple normal-
ization and its variants [22] have reasonably alleviated inter-
dataset differences in HRTF magnitude. However, the simple
normalization in (3) might not be sufficient to compensate
for the influence of the measurement setups. In addition, it is
uncertain how many subjects are needed to obtain a reliable
average magnitude for each dataset. Hence, a more flexible
way to handle HRTFs from different datasets is needed.

III. PROPOSED METHOD
A. MOTIVATION FOR DATASET-SPECIFIC PARAMETERS
The subject-specific parameters zs in (2) should end up
containing the dataset-specific information when training
the generic NF in (2) on multiple HRTF datasets. This is
because they are the only parameters allowed to be “sample”-
dependent. Consequently, the subject- and dataset-specific
information are entangled in zs. A recent work relevant
to ours treats this point by domain adversarial learning,
optimizing the parameters zs at training to obscure their
dataset of origin e [24]. This approach aims to eliminate
the dataset-specific information zs, which is inconsistent
with the training of the NF to reconstruct A(θ, ϕ, s | e).
To disentangle the dataset-specific information from the
subject-specific parameters, we need additional parameters
to represent the difference in measurement setups.

B. DECOUPLING OF SUBJECT- AND DATASET-SPECIFIC
PARAMETERS
As illustrated in Fig. 2, our SuDaField introduces dataset-
specific parameters we that are shared across subjects s ∈ Se

as follows:

A(θ, ϕ, s | e) = NF(θ, ϕ | zs,we). (4)

By modeling the dataset-specific effect with we, we expect
that the subject-specific parameters zs will focus on repre-
senting the subject-specific information, e.g., the anthropo-
metric features.

The NF with the decoupled parameters can be trained
similarly to existing NFs in (2). During the training, we
select the parameters (zs,we) for each target s ∈ Se and
compute A(θ, ϕ, s | e). Then, the loss for HRTF magnitude
estimation corresponds to the log-spectral distortion (LSD)
between ground-truth and estimated magnitudes:

LSD(A⋆(θ, ϕ, s | e),A(θ, ϕ, s | e))

=
1

2

2∑
c=1

√√√√ 1

F

F∑
f=1

(
20 log10

Ac,f (θ, ϕ, s | e)
A⋆

c,f (θ, ϕ, s | e)

)2

, (5)

where (·)⋆ denotes the oracle value, and c ∈ {1, 2} and f =
1, . . . , F are the channel (left and right ear) and frequency
indices, respectively. We can further modify the NF in (4) to
jointly predict ITD in samples as τ(θ, ϕ, s | e) [25]. Then,

the loss function for ITDs is given by

MAEϵ

(
τ⋆(θ, ϕ, s | e), τ(θ, ϕ, s | e)

)
= Max

(∣∣τ⋆(θ, ϕ, s | e)− τ(θ, ϕ, s | e)
∣∣, ϵ), (6)

where “ground-truth” ITD τ⋆(θ, ϕ, s | e) is the delay in
integer samples that maximizes the cross correlation between
left-ear and right-ear HRFTs in the time domain3, and
ϵ = 0.5 is for accommodating the quantization error in the
ground-truth ITD. Modeling the ITD is essential especially
when some simulated datasets are included in the training
datasets, as simulated HRTFs sometimes have distinctive
ITDs compared with real recordings.

We can use SuDaField to perform any-to-any HC, i.e.,
converting HRTFs for a subject in an arbitrary dataset to
what they would be if recorded with the setup of another
dataset. Specifically, given a source dataset ei and a target
dataset ej , we can convert the HRTFs of any subject s ∈ Sei

to what their HRTFs would be if measured with the setup for
dataset ej by swapping the source dataset-specific parameters
wei for the target ones wej :

A(θ, ϕ, s | ej), τ(θ, ϕ, s | ej) = NF(θ, ϕ | zs,wej ). (7)

In particular, we can tackle Task 1 of the LAP Challenge
by converting the HRTFs of the subjects of all datasets to
what they would be if measured with the setup of a given
reference dataset eref.

C. NETWORK ARCHITECTURE FOR PROPOSED NF
While various conditioning frameworks are applicable to
SuDaField, this paper focuses on neural networks with
bias-terms fine-tuning (BitFit) [40]. Following our previous
study [23], our NF mainly consists of fully-connected (FC)
layers that take the random Fourier features (RFF) [41] of
the sound source direction as input:

µ = [sin(θ − π), cos(θ − π), sin(ϕ), cos(ϕ)]T, (8)

x0 = [sin(P0µ)
T, cos(P0µ)

T]T, (9)

where P0 ∈ R(M/2)×4 is sampled from an isotropic Gaus-
sian distribution, M is the size of the RFFs, and (·)T denotes
the transpose. All hidden FC layers are equipped with GELU
activation, and we apply subject-specific or dataset-specific
biases inspired by BitFit at select layers:

xl =


GELU(Plxl−1 + ql) Generic (w/o BitFit),
GELU(Plxl−1 + ql + zs,l) Subject-specific,
GELU(Plxl−1 + ql +we,l) Dataset-specific,

(10)
where l = 1, . . . , L denotes the index of the hidden layers,
and Pl ∈ RM×M and ql ∈ RM respectively are the generic
weight matrix and bias at the lth layer. The final prediction
heads predict HRTF magnitude in the decibel scale and
ITD without any activation function. We will show the
importance of the selective application of the subject- and
dataset-specific biases for disentanglement in Section IV.

3We used the Spatial Audio Metrics toolbox to compute ITDs:
https://github.com/Katarina-Poole/Spatial-Audio-Metrics.
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IV. EXPERIMENTS ON HRTF HARMONIZATION
In this experiment, we validate the effectiveness of
SuDaField equipping the decoupled subject- and dataset-
specific parameters on Task 1 of the LAP Challenge. After
training the NF on the combined HRTF datasets, we artifi-
cially convert all the HRTFs as if they had been measured
with a specific reference setup by swapping the dataset-
specific parameters for those of the reference dataset as
in (7). In all our experiments, we used HUTUBS as the
reference dataset because it has the lowest sampling rate.

A. EXPERIMENTAL SETUP
Following the task description [30], we used eight
datasets: 3D3A [42], CHEDAR [43], HUTUBS [29],
RIEC [6], SADIE II [44], SONICOM [45], SCUT [34], and
WiDESPREaD [46]. Among the eight datasets, CHEDAR
and WiDESPREaD are simulated, and WiDESPREaD is
designed to only simulate pinna-related filtering effects [46].
Consequently, their time-domain head-related impulse re-
sponses have distinctive characteristics, as we will show
later. The organizers provided ten subjects for each of
the eight datasets. All the HRTFs were downsampled to
44.1 kHz, and a 256-point discrete Fourier transform was
performed.

The challenge asked participants to compensate for the
influence from different measurement setups. More precisely,
each system was evaluated in the following two stages:
Stage 1: This stage extracts a set of localization cues by
using an auditory model [31], and the processed HRTFs must
preserve the cues of the original HRTFs within a certain
threshold. The percentage of the subjects for whom these
cues are not preserved should be lower than 20%.
Stage 2: This stage assesses whether the effects of the
different measurement setups have been compensated for4.
For the HRTFs at the common 126 directions, the challenge
evaluation scripts consider three kinds of features as the input
to the dataset classifiers: HRTF magnitude in the linear scale,
HRTF magnitude in the decibel scale, and time-domain im-
pulse responses. Then, multiple classifiers including SVMs
are trained to identify which dataset each HRTF originates
from. The harmonized HRTFs are evaluated by the accuracy
of the best classifier through five-fold cross-validation, and
lower accuracy indicates better harmonization.

We trained two kinds of NFs. The first NF was designed
to predict only the HRTF magnitude in the decibel scale,
i.e., without ITD prediction head. In this scenario, we used
oracle ITDs from the original HRTFs to compute the time-
domain responses. The second one jointly predicts the HRTF
magnitude and ITD. Since the two simulated datasets show
atypical ITD behavior, we computed the ITD loss in (6) only
on the six other datasets. In both cases, NFs consisted of
four hidden FC layers with 512 units each and the prediction
heads. We trained the NFs up to 300 epochs with the RAdam

4We assessed the processed HRTFs with the official script: https://github.
com/jpauwels/lap-task1/tree/main.

System (c) System (d)

3D3A

CHEDAR

HUTUBS

RIEC

SADIE II

SCUT

SONICOM

WiDESPREaD

System (f) System (g)

3D3A

CHEDAR

HUTUBS

RIEC

SADIE II

SCUT

SONICOM

WiDESPREaD

FIGURE 3. 2D visualization of subject-specific biases via t-SNE. Each
circle corresponds to a different subject.

optimizer and a learning rate of 1.0 × 10−3. The training
was terminated if the training loss did not decrease for 10
consecutive epochs.

We also evaluated the normalization technique in (3) as
the direction-independent normalization. Since the normal-
ization might eliminate perceptual characteristics of HRTFs
in ANorm(θ, ϕ, s), we denormalized the normalized HRTFs
from different datasets by multiplying by the average from
HUTUBS. A variant proposed in [22] calculated the average
at each direction and performed direction-dependent nor-
malization. Its applicability is then limited to the directions
shared across the source dataset and HUTUBS, i.e., it is no
longer grid-agnostic. This is due to the dependence of the
denormalization on the direction-wise average of HUTUBS.

B. EXPERIMENTAL RESULTS
Table 1 shows the performance for different output and
decoupling conditions. Systems (a) and (b) correspond to the
two HRTF normalization baselines. Although the direction-
independent normalization has been used as pre-processing
of NF training [21], [24], we find it to be insufficient to fully
capture the inter-dataset variability, resulting in poor Stage
2 performance. Conversely, direction-dependent normaliza-
tion [22] worked much better in Stage 2 but substantially
degraded localization cues as shown by a Stage 1 failure
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TABLE 1. Results on Task 1 of the LAP Challenge 2024. The second and third columns indicate the indices of the layers with subject- and dataset-specific

biases in (10), respectively. Loc. Fail. denotes the percentage of subjects whose processed HRTFs did not pass the Stage 1 criteria. The symbol † denotes

the systems submitted to the challenge, and their results are taken from the challenge technical report [30].

System characteristics Stage 1 (%) ↓ Stage 2 (%) ↓

System ID Subject-specific Dataset-specific ITD Loc. Fail. Magnitude Magnitude dB Time Max

(a) Direction-independent normalization 3.8 88.1 96.9 88.1 96.9
(b) Direction-dependent normalization 63.8 45.0 41.3 53.8 53.8

(c) 1, 2 ∅ Original 0.0 98.1 100.0 98.8 100.0
(d) 1 2 Original 17.5 18.8 19.4 41.3 41.3

(e) 1, 2 ∅ Predicted 10.0 98.1 100.0 98.8 100.0
(f) 1 2 Predicted 12.5 15.6 16.9 18.1 18.1
(g) 1 4 Predicted 5.0 55.6 65.6 65.6 65.6
(h) 1, 2 3, 4 Predicted 7.5 32.5 40.0 33.8 40.0

(i) EqPCA-UoA† 13.8 - - - 95.0
(j) CoWiDeq† 10.0 - - - 92.3
(k) IOA3D† 5.0 - - - 26.9
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FIGURE 4. Confusion matrices for dataset classification. The classifiers take harmonized time-domain impulse responses as input, where left and right
channels are handled separately.

rate of 63.8%. Altogether, these results confirm the need for
more complex approaches to achieve reasonable performance
for the task.

Systems (c) and (d) correspond to our first kind of NFs
where only HRTF magnitudes are predicted while oracle
ITDs are used. System (c) equips the subject-specific biases
at the 1st and 2nd hidden FC layers and no dataset-specific
ones. The dataset of origin for the reconstructed HRTFs was
easily detected as shown by the perfect 100% maximum
Stage 2 classification accuracy. In contrast, system (d), one

of our SuDaField variants, shared the bias at the 2nd layer
across subjects in the same dataset as the dataset-specific
bias and achieved a better 41.3% maximum Stage 2 clas-
sification accuracy. This result indicates that the decoupled
biases disentangle the effects of the measurement setup and
the subject-specific characteristics. To visually support this
point, we show the subject-specific biases using the t-SNE
method [47] in Fig. 3, where t-SNE nonlinearly projects the
concatenation of all the subject-specific biases zs,l within
each system to a 2-dimensional representation. For system

6 VOLUME ,



<Society logo(s) and publication title will appear here.>

(c), we observe clear clusters for the different datasets. This
empirically confirms our earlier claim that, in the absence
of decoupled dataset-specific biases, the measurement setup
information necessarily has to be absorbed by the subject-
specific biases. On the other hand, the biases from system
(d) overlap well across different datasets, showing that our
decoupled dataset-specific biases successfully absorbed most
of the inter-dataset variability for magnitudes.

Next, systems (e)–(h) correspond to proposed SuDaField
variants predicting both HRTF magnitudes and ITDs. Again,
the HRTFs reconstructed by system (e), i.e., an NF without
dataset-specific parameters, result in high classification ac-
curacy. System (f) achieves the best, i.e., lowest, Stage 2
classification accuracies, which was the ranking score for
the challenge. It is notably lower than the 26.9% maximum
accuracy obtained by the challenge winner’s submission,
system (k). However, when we moved the dataset-specific
biases to the 4th layer as system (g), the classification accu-
racy significantly increased, that is, performance got worse.
We suspect this is because having the dataset-specific bias
close to the prediction heads limits their modeling capacity,
resulting in leakage of the dataset-specific effects into the
subject-specific bias. This also can be seen in Fig. 3 when
comparing the t-SNE plots: for the subject-specific biases
of system (f), we observe no dataset-specific clusters, while
for those of system (g), we observe some level of dataset-
specific clusters. Finally, system (h) increased the number of
layers equipped with subject- and dataset-specific biases, but
the small gains in Stage 1 were combined with a much worse
performance in Stage 2 compared to system (f). Through our
investigations, we find it necessary to manually search for
the most appropriate layers for subject- and dataset-specific
biases.

C. EXPERIMENTAL DISCUSSION AND LIMITATION
We dig deeper into the best-performing systems by showing
the dataset classification confusion matrix of systems (d)
with the original ITD and (f) with the converted ITD
in Fig. 4. When we only converted HRTF magnitudes
(System (d)), the best classifier can still easily distinguish
the two simulated datasets, CHEDAR and WiDESPREaD,
with 100% accuracy. Meanwhile, by converting both HRTF
magnitude and ITD, system (f) successfully decreased the
classification accuracy across the board, including these
two datasets. This result suggests that ITD conversion is
crucial for any successful LAP Challenge Task 1 (i.e., HRTF
harmonization) methods. This is further illustrated in Fig. 5,
where we overlay the converted ITDs of subjects from the
WiDESPREaD dataset when using system (f), alongside the
original ITDs of those same subjects and the original ITDs
of subjects in HUTUBS. It shows that the original ITDs for
WiDESPREaD and HUTUBS have completely different dis-
tributions, likely because WiDESPREaD only simulates the
pinna-related filtering effect. Hence, we necessarily require
ITD conversion to have any chance to confuse the dataset
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FIGURE 5. Original and harmonized ITDs on the horizontal plane, where
system (f) is used for harmonization. Each line corresponds to different
subjects.

classifier. Conversely, the distribution of the converted ITDs
overlaps well with that for the reference dataset HUTUBS,
confirming the system has successfully converted the ITDs.
The switch to estimated ITDs might degrade the Stage
1 performance on the two simulated datasets. Indeed, the
failure examples for system (f) consisted of five samples
from CHEDAR, two samples from WiDESPREaD, and only
three samples from the six real HRTF datasets.

Figure 6 depicts the HRTF magnitudes over directions
in the median plane for the left (ear) channel before and
after conversion by system (f). Here, elevations up to 90◦

correspond to the front of the subject, while angles greater
than 90◦ correspond to the back. Regardless of the original
datasets, the harmonized HRTF magnitudes clearly exhibit
similar overall gain. Then, comparing two subjects from
SONICOM before and after harmonization, we find that
several subject-specific notches are preserved in the process,
particularly at elevations below zero degrees. This result
indicates that our method disentangles well subject- and
dataset-specific effects into their corresponding biases.

HC via our best system, system (f), demonstrates promis-
ing performance in terms of the LAP Challenge Task 1
evaluation criteria. The converted HRTFs, however, inherit
the influence of the reference setup, i.e., HUTUBS, which is
misaligned with the ultimate goal of HRTF harmonization:
compensating for the influence of any measurement setup.
To achieve this goal, HRTF conversion requires a reference
dataset without any measurement-related distortion. High-
quality simulated HRTFs could serve as the reference,
but the current simulated HRTF datasets, CHEDAR and
WiDESPREaD, have significantly distinctive characteristics
from real recordings, especially in terms of ITD, as shown
in Fig. 4. These datasets may suffer from simulation artifacts
instead of measurement-related distortion.
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V. EXPERIMENTS ON ADAPTATION
In this experiment, we investigate the adaptation capability
of SuDaField to new subjects from the SONICOM [45] and
CIPIC [48] datasets. Here, we adapted NFs trained on HRTFs
from multiple subjects to each target subject by fine-tuning
specific parameters. The adaptation was performed with the
sparse measurements from the target subjects and evaluated
LSD with respect to ground-truth magnitudes in all other
directions in the context of HRTF spatial upsampling [30].

A. EXPERIMENTAL SETUP
The adaptation performance of magnitude-prediction-only
NFs is validated in two experimental settings, namely the
adaptation to new subjects of a known dataset and the
adaptation to a new dataset, exploring the influence of
various NF and pre-training conditions.

We consider a total of five configurations between pre-
training data, subject-specific parameters, and data-specific
parameters as summarized in Table 2. Two NFs with only
subject-specific biases, S1;∅ and S1,2;∅, were pre-trained on
the ten SONICOM subjects included in the challenge dataset.
Here, the subscript before the semicolon corresponds to the
layer indices for subject-specific biases in (10), while ∅ after
the semicolon indicates that there were no dataset-specific

TABLE 2. System configurations and LSD scores when adapting NFs to

ten new subjects from SONICOM and CIPIC. Here, the system IDs with S

(resp. A) indicate that the pre-training is done only on SONICOM (resp. on

all of the LAP Challenge datasets). The second and third columns show

the layer indices for the corresponding biases.

Layers with biases LSD [dB]

ID Subject-specific Dataset-specific SONICOM CIPIC

S1;∅ 1 ∅ 4.9 17.6

S1,2;∅ 1, 2 ∅ 4.8 15.8

A1,2;∅ 1, 2 ∅ 4.7 7.1

A1;2 1 2 4.8 7.1

A1,2;3,4 1, 2 3, 4 4.6 5.7

parameters. Three more NFs were pre-trained on all subjects
from all 8 challenge datasets. Here, A1,2;∅ is equipped with
only subject-specific biases at layers 1 and 2. Meanwhile,
A1;2 and A1,2;3,4 contained both layers with subject-specific
and dataset-specific biases. The network architecture and
training configuration were the same as in the previous
experiment. In addition, we jointly optimized both generic,
subject-specific, and dataset-specific parameters during pre-
training.

Each pre-trained NF was adapted to 1) ten new subjects
from the original SONICOM dataset, and 2) ten subjects
from the CIPIC dataset that is not included in the challenge
datasets. When adapting the pre-trained NFs to the 10 un-
seen SONICOM subjects, we optimized the subject-specific
biases [21], [23] while freezing all other NF parameters,
including the dataset-specific biases found at pre-training for
the SONICOM pre-training subjects. For adaptation to the
10 CIPIC subjects, we optimized both subject- and dataset-
specific biases since the pre-training datasets do not include
CIPIC. By definition, the dataset-specific biases are shared
across the 10 subjects during adaptation. For all adaptations,
we provide HRTFs at three randomly selected directions
for each new (unseen) subject to evaluate the adaptation
capability with sparse measurements. We then adapted each
NF for 3000 epochs.

B. EXPERIMENTAL RESULTS
The LSD averaged over the 10 unseen subjects from the
SONICOM dataset is illustrated in the top panel of Fig. 7.
All the NFs ultimately converged to similar LSD values as
also summarized in Table 2. Meanwhile, the system pre-
trained on all datasets without the dataset-specific biases
A1,2;∅ resulted in significantly higher LSD than others in
early epochs. This could be because the system is required to
acquire both subject- and dataset-specific information from
scratch. On the other hand, the system with the dataset-
specific parameters A1,2;3,4 achieved substantially lower
LSD even in the early epochs, presumably thanks to the
benefits of pre-trained dataset-specific biases.
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The bottom panel of Fig. 7 shows the results on the
CIPIC dataset. As we can see, systems pre-trained on
SONICOM only converge to very high LSD, while sys-
tems pre-trained on all the datasets perform much better.
This result confirms two crucial points. First, the dataset-
specific differences between mainstream real-world high-
quality datasets is sufficient to necessitate multi-dataset pre-
training to build systems with any kind of generalization
capability to new measurement setups. Second, systems
with dataset-specific biases (i.e., A1;2 and A1,2;3,4) unlock
faster adaptation speed, and potentially further generalization
performance, as A1,2;3,4 clearly achieves the best overall
adaptation performance.

C. EXPERIMENTAL DISCUSSION AND LIMITATION
According to Table 2, A1,2;3,4 outperformed A1;2 in adap-
tation performance, especially for the subjects from the
unseen CIPIC dataset. This is inconsistent with the con-
version performance in Table 1, where A1;2 and A1,2;3,4

correspond to Systems (f) and (h), respectively. We suppose
that effective adaptation to new subjects from an unseen
measurement setup demands a larger number of subject- and
dataset-specific parameters, even as an increase in parameters
impairs the disentanglement of the information.

In addition, we observed that the subject-specific biases
for the CIPIC subjects were outside the distribution of
the biases for the pre-training subjects as shown by the
2D t-SNE projections in Fig. 8. This result, unfortunately,
indicates that the current model pre-trained on only 80

A1; 2 A1, 2; 3, 4

3D3A

CHEDAR

CIPIC

HUTUBS

RIEC

SADIE II

SCUT

SONICOM

WiDESPREaD

FIGURE 8. 2D visualization of subject-specific biases for the subjects
from the pre-training datasets and the adaptation targets from CIPIC.

subjects from Task 1 of the LAP Challenge might not
be enough to successfully adapt to a new dataset. From
these observations, although SuDaField achieves promising
HRTF harmonization performance in terms of Task 1 of the
challenge, further investigation remains to improve its ability
to generalize to unseen datasets.

VI. CONCLUSION
This paper presented SuDaField, a subject- and dataset-aware
NF that disentangles subject- and dataset-specific effects
into corresponding decoupled parameters. SuDaField allows
us to convert HRTFs as if they had been measured with
a specific reference setup by swapping the dataset-specific
parameters with those of the reference dataset. Furthermore,
we explored the generalization capability of SuDaField to
new subjects not only from known datasets but also from
unknown datasets. Future work includes exploring further
the HRTF conversion capabilities of our model, from its
applicability as a data augmentation technique for training to
its performance for adaptation in terms of perceptual metrics.
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