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Abstract

This paper gives an in-depth description of our submission to Task 2 of the Listener Acoustic
Personalization (LAP) challenge 2024, which aims to reconstruct head-related transfer func-
tions (HRTFs) with dense spatial grids from sparse measurements. Neural fields (NFs) with
parameter-efficient fine-tuning (PEFT) have led to dramatic performance improvements in
HRTF spatial upsampling and personalization. Despite these advances, spatial upsampling
performance remains limited in scenarios with very sparse measurements. Our proposed sys-
tem, named retrieval-augmented NF (RANF), incorporates HRTFs retrieved from a dataset
as auxiliary inputs. We leverage multiple retrievals via transform-average- concatenate and
adopt a PEFT technique tailored for retrieval augmentation. Furthermore, we capitalize on
the results of a signal-processing-based spatial upsampling method as optional inputs. By
incorporating these auxiliary inputs, our system demonstrated state-of-the-art performance
on the SONICOM dataset and placed first in Task 2 of the LAP challenge 2024.
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ABSTRACT This paper gives an in-depth description of our submission to Task 2 of the Listener
Acoustic Personalization (LAP) challenge 2024, which aims to reconstruct head-related transfer functions
(HRTFs) with dense spatial grids from sparse measurements. Neural fields (NFs) with parameter-efficient
fine-tuning (PEFT) have led to dramatic performance improvements in HRTF spatial upsampling and
personalization. Despite these advances, spatial upsampling performance remains limited in scenarios with
very sparse measurements. Our proposed system, named retrieval-augmented NF (RANF), incorporates
HRTFs retrieved from a dataset as auxiliary inputs. We leverage multiple retrievals via transform-average-
concatenate and adopt a PEFT technique tailored for retrieval augmentation. Furthermore, we capitalize
on the results of a signal-processing-based spatial upsampling method as optional inputs. By incorporating
these auxiliary inputs, our system demonstrated state-of-the-art performance on the SONICOM dataset
and placed first in Task 2 of the LAP challenge 2024.

INDEX TERMS Head-related transfer function, spatial audio, neural field, retrieval-augmented generation

I. INTRODUCTION

EAD-related transfer functions (HRTFs) describe the

acoustic transfer functions from a sound source to both
ears under anechoic conditions. HRTFs contain all essential
binaural cues for sound source localization: interaural time
differences (ITDs), interaural level differences (ILDs), and
spectral coloration [1]-[3[]. Hence, by convolving HRTFs
with a dry source signal, we can make a subject perceive
the sound as coming from a specific 3D position. Such
immersive audio generation techniques have a wide range
of applications such as telepresence systems [4], hearing
aids [3], and mixed reality systems [6], [7].

HRTFs are unique to each subject as they result from
the reflection and scattering of sound on the upper torso,
head, and pinnae. It is thus preferable to use individual
HRTFs for accurate perceptual localization [8]], [9]]. However,
recording individual HRTFs is time-consuming [10]. To

mitigate this problem, various HRTF spatial upsampling and
personalization methods have been developed [11]-[16].

A straightforward approach is to select suitable HRTFs
for a target subject from existing datasets based on a chosen
criterion, including some criteria that do not require subject-
specific HRTF measurements [17]-[20]. Meanwhile, signal-
processing-based spatial upsampling has been widely used
when HRTFs for the target subject can be recorded at multi-
ple directions. The panning-based methods [[11]]-[13]] predict
the HRTF at the desired direction as a weighted sum of the
measured HRTFs. In particular, vector base amplitude pan-
ning [11] was adopted by the ISO/IEC MPEG-H 3D Audio
standard due to its efficiency [21]]. Spatial-decomposition-
based methods [14]-[16] encode the measurements into
global spatial basis functions and decode them for a new
direction. The performance of both these signal-processing-
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FIGURE 1. Overall pipeline of RANF. As retrieval augmentation in (a), we select K subjects suitable for a target subject s, and their HRTF magnitude
and ITD at the desired direction d are extracted. In (b), we select the subject-specific parameters based on the target subject s and the retrieved
subjects r{. .. Lastly, we predict the HRTF magnitude and ITD for the target subject s at the desired direction d by leveraging retrieved HRTFs.
Depending on the sparsity level, the results of a panning-based method [12] can be optionally fed into the NF as in (c).

based methods deteriorates when the measurements are too
few [22]], [23].

Deep learning has significantly advanced HRTF spatial
upsampling in a data-driven manner by leveraging datasets
with dense spatial grids [22[]-[31]]. In particular, neural fields
(NFs), originally developed in computer vision [32], [33],
have recently gained attention due to their grid-agnostic
nature [23]], [29]-[31]]. In HRTF spatial upsampling, NFs are
trained to model HRTFs as a function of the sound source
direction. We can share an NF across multiple subjects
except for a small number of subject-specific parameters and
adapt the pre-trained NF to a new subject through parameter-
efficient fine-tuning (PEFT) [23]], [31]]. This adaptation tech-
nique has made it easy to train an NF for a target subject, but
HRTF spatial upsampling from fewer than ten measurements
remains a challenging task.

In this paper, we propose a retrieval-augmented NF
(RANF) that incorporates the results of HRTF selection into
the NF as depicted in Fig. (I} RANF selects multiple subjects
whose HRTFs are similar to those of the target subject and
takes their HRTFs at the desired direction as input. We design
a neural network that efficiently leverages multiple retrievals
with a tailored PEFT strategy. Moreover, the results of a
panning-based method can be used as an optional input to
RANEF, which takes the local characteristics of the HRTFs
into account. We participated in Task 2 of the Listener
Acoustic Personalization (LAP) challenge 2024 and achieved
state-of-the-art results on the SONICOM dataset [34].

This paper is an extension of our conference paper [35],
which introduced RANF with preliminary experiments. The
first contribution of this paper is to provide an extended
analysis of RANF on the challenge’s evaluation set. The
hidden evaluation set was released after our conference paper
submission [35]. Our second contribution is the novel inte-
gration of the results of a panning method into RANF. These
contributions will present a full picture of our winning so-

lution for the LAP challenge. Training and inference scripts
will be available at https://github.com/merlresearch/ranf-hrtf,

Il. PRELIMINARIES

A. PROBLEM SETTING

An HRTF is a frequency-domain acoustic transfer function
from a sound source at (6, ¢) to both ears, where 6 € [0, 27)
and ¢ € [—m/2,7/2] are the azimuth and elevation, re-
spectively. The azimuth increases counter-clockwise, 8 = 0
corresponding to the front of the subject, while the elevation
increases upward, ¢ = 0 indicating the equatorial plane. An
HRTF depends not only on the sound source direction but
also on anthropometric features, and thus it differs for each
subject s. We model the HRTF for both ears as a function
H,(d) € CF*2 of sound source direction d = (0, ¢), where
F' is the number of frequency bins. It can be characterized
by ITD, ILD, and spectral coloration. ITD and ILD support
azimuth localization [/1]], while elevation localization depends
on spectral coloration [2]. We focus on modeling the HRTF
magnitude A (d) € Ri“, which captures ILD and spectral
coloration, and ITD 7,(d) in samples. Once the magnitude
response and ITD are predicted, we can compute complex
spectra using minimum-phase reconstruction [36] and com-
pensate for the ITD in the time domain after applying an
inverse discrete Fourier transform (IDFT).

With the above notation, Task 2 of the LAP challenge [37],
[38] corresponds to predicting Az(d) and 75(d) for each
target subject 5 at all directions d € D. Here, D is the com-
plete set of the sound source directions for the SONICOM
dataset [34]), with |D| = 793. For a given target subject 3,
a limited number of measurements at d’ € D’ are given,
where D’ C D. In the challenge, |D’| varies from 3 to 100.
We are provided with A (d) and 75(d) at all d € D for 200
subjects in the SONICOM dataset, which we can use for
pre-training of NFs. The set of these pre-training subjects is
denoted as S, and target subjects are such that 5 ¢ S.
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B. HRTF SELECTION

An efficient method for providing suitable HRTFs is HRTF
selection, which retrieves the best-fitting HRTFs from a
dataset with dense spatial grids. Early studies require subjec-
tive evaluations to identify the best-fitting subject [[17], [18].
More recent studies aim to automatically select the appro-
priate subject based on the similarity of anthropometric fea-
tures [19], [20] or on HRTFs at a few directions [26]]. These
methods have moderately improved sound source localiza-
tion performance over averaging non-individual HRTFs [20].
Inspired by these findings, our system exploits the results of
HRTF selection as auxiliary inputs, where we can leverage
the best one or more suitable subjects.

C. HRTF SPATIAL UPSAMPLING VIA PANNING

While HRTF selection retrieves suitable HRTFs from a
dataset, panning-based methods aim to upsample sparsely
measured HRTFs [11]-[13]. These methods perform a
weighted sum of the HRTFs at the surrounding positions,
relying only on the HRTFs of the target subject. In the LAP
challenge, the barycentric interpolation [13] was adopted as
one of the baselines.

We use a variant of vector base amplitude panning [[12]]
as our baseline. Let g € R? be the sound source position in
the Cartesian coordinates, and Q = [q1,q2,...,qjp/|] be a
matrix of the measured positions. This method determines
the weight g € RI”'| for a desired position p € R? by
solving the following problem:

min lglli st. Qg=p, g>0, 1)

where | - || denotes the ¢; norm, and O is the zero
vector. After optimizing the weight, we predict the HRTF
magnitude and ITD by using the corresponding weighted
sum with g. Note that g depends only on the measured
and desired directions regardless of the subjects, and thus
we only need to solve for the relevant directions once
irrespective of the number of subjects. Although this method
shows promising performance when we have a substantial
number of measurements (e.g., 100 measurements), it is not
applicable to highly sparse scenarios as the optimization
problem in could be infeasible [|12].

D. HRTF SPATIAL UPSAMPLING VIA NEURAL FIELDS
NFs have originally been developed to synthesize novel
views of a 3D scene from multiple 2D observations [32],
[33]], and they have been extended to spatial audio applica-
tions [23[], [29]1-[31]], [39]-[41]. In HRTF spatial upsampling,
HRTF field was first proposed to represent the magnitude
response A (d) as follows [31]:

A.(d) = NF(d | E,), @)

where =, denotes model parameters, and the NF is trained
separately for each subject s. Meanwhile, HRTFs are similar
across different subjects, and a single generic NF can rep-
resent HRTFs of multiple subjects with a small number of
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subject-specific parameters [23[], [31]:
Ay(d) =NF(d | T, E;), 3)

where I' denotes the generic parameters, and the subject-
specific parameters = steer the generic model to represent
the HRTF of a specific subject s. The NF in (3)) is first pre-
trained on a set of subjects S by optimizing I' and =, for
all s € S. Then, it is adapted to a target subject § by op-
timizing the subject-specific parameters E; on the available
measurements, while freezing the generic parameters I'. The
size of E; in is typically much smaller than that in (2),
and thus the adaptation is more efficient than training a new
NF in (2) from scratch.

Various designs of the subject-specific parameters have
been explored [23[], [31]. In HRTF field [31]], a subject-
specific latent vector is concatenated to the model input as
conditioning-by-concatenation (CbC) [33]]. Meanwhile, our
previous study explored PEFT including low-rank adaptation
(LoRA) [42] and demonstrated its efficacy in HRTF per-
sonalization [23]. LoRA adjusts the weight of the Ith layer
W, € RViXMi for each subject s as follows:

Wi =W, +u,v/,, “

where (-)T denotes the transpose operation, and u; ; € RV
and v; , € RM: are subject-specific vectors for constructing
a rank-1 matri During the adaptation, we freeze W, and
optimize only u; , and vy .

Existing NF-based HRTF spatial upsampling has focused
on approximating the HRTF magnitude A.(d) [23], [31].
However, ITD 74(d) is also essential to obtain the appropri-
ate time-domain filters. We thus modify our NF to predict
both HRTF magnitude and ITD in a multi-task fashion:

AS(d)vTS(d) = NF(d | I‘,US,VS), Q)

where the subject-specific parameters 2, in (3) are replaced
by U, = [urs,...,urs) and Vg = [Vig,...,VL]
for LoRA, and L is the number of layers. The predicted
HRTF magnitudes are converted to complex spectra using
minimum-phase reconstruction. Then, we apply IDFT to the
complex spectra and shift the time-domain filters to match
the predicted ITD.

lll. RETRIEVAL-AUGMENTED NEURAL FIELD

We propose to incorporate the results of HRTF selection
into the NF-based HRTF spatial upsampling motivated by
the recent success of retrieval-augmented generation (RAG).
RAG [43]] has shown remarkable success in various modali-
ties [43]-[48] by selectively exploiting relevant information
from external resources as the context for generation. We
interpret the selected HRTFs as the context for generating
HRTFs of the target subject and feed them into an NF.

'We show the rank-1 case of LoRA in @) for simplicity, but LoRA can

use higher ranks in general.
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A. OVERVIEW OF RANF

An overview of RANF is depicted in Fig. [T} It comprises
three stages: retrieval, selection of subject-specific param-
eters, and prediction of HRTF magnitudes and ITD. As
shown in block (a) of Fig. [I] we first select K subjects
r; € S based on HRTF similarity, where £ = 1,..., K
is the index of the retrieved subjects. To avoid clutter, we
omit the superscript s in 7}, hereafter. Then, subject-specific
parameters are selected in block (b) of Fig. [I] According to
the retrieval, we replace the V part of the subject-specific
parameters in (@) with V., = {V,,,...,V,, } that rely
on the retrieved subjects 7. The details of LoRA for RANF
will be explained in Section Lastly, HRTF magnitude
and ITD for the target subject at the desired direction are
predicted as follows:

As(d), 75(d) = NF(d, Ay, (d), Ty pe (d) | T, U, Vi o).
(6)
The main difference from (3) is the utilization of the retrieved
HRTF magnitudes and ITDs. Since they are supposed to be
close to the target HRTF magnitude and ITD, the retrieval
augmentation should ease the HRTF prediction.

The NF is first pre-trained on the SONICOM dataset
where both generic parameters I' and subject-specific pa-
rameters (U,, V., ) are jointly optimized. During this pre-
training, 7y is retrieved from S for each s € S, and HRTFs
at all the sound source directions d € D are available. The
parameters are optimized to minimize the sum of the log-
spectral distortion (LSD) on the HRTF magnitudes and the
e-insensitive mean absolute error (MAE) on the ITDs:

£pre-train = Z Z ‘C(H;(d)a H, (d))’ @)
s€eSdeD
L(H"(d), H(d)) = LsD(A"(d), A(d))
+ AMAE (7*(d), 7(d)), (8)
where A € R, balances the two terms, and (-)* denotes the
oracle value. The LSD is calculated as

1 |1 &

2
* AC7 (d)
c=1 f=1 c,

()
where ¢ € {1,2} and f = 1,..., F are the channel (left and
right ears) and frequency indices, respectively. On the other
hand, the loss function for ITDs is formulated as

MAE (7*(d), 7(d)) = Max(|7*(d) — 7(d)], €).

(10)

The oracle ITD 7*(d) is obtained as the integer time sample
that maximizes the cross correlation between channels. We
set € in to 0.5 to accommodate the quantization in the
oracle ITD computation.

The pre-trained NF is then adapted to each target subject
5 ¢ S by optimizing only Ug to minimize the loss function
over the measured directions d’ € D’:

‘Cadaptation = Z ﬁ(Hz(d/)7H5(d/)),
d’eD’

QY

where we freeze the generic parameters I' and the parameters
relying on the retrieved subjects V., ..
B. RETRIEVAL AUGMENTATION FOR HRTF SPATIAL
UPSAMPLING

Existing retrieval augmented methods typically retrieve the
relevant information by k-nearest neighbors in latent do-
mains [45]-[47]]. Meanwhile, our RANF retrieves the K
suitable subjects based on the similarity of HRTFs at the
measured directions as follows:

K
T1,...,TK < argmin Z Z Cretrieval(Hs (dl)7 HTk (dl)>7
ruk €SI Ty arepr
(12)

where [S]¥ denotes the set of all subsets of S with K distinct
elements (if s € S, which can be the case during training,
we restrict these subsets to elements different from s). While
any criteria can be used for Lieyieva, W€ choose the MAE
on ITDs based on our preliminary experiment [35]. When
multiple subjects result in the same MAE, we select the
subjects with lower LSD. Alternatively, we can stochastically
sample K subjects from the best-fitting K’ chosen as in
with K’ > K. This procedure augments the training
data by adding randomness to the pairs of the target and
retrieved subjects at each epoch. Then, we extract the HRTF
magnitudes and ITDs at the desired direction d for each
retrieved subject 7. We expect that the HRTFs of the
retrieved subjects will reasonably approximate the HRTFs
of the target subject even at unmeasured desired directions.

Our retrieval process assumes that the HRTF dataset
for retrieval covers all the measured directions in D’ and
the desired directions in D. For the LAP challenge, this
assumption holds as long as the SONICOM dataset is used
for retrieval. However, this may not always be the case,
e.g., when retrieving HRTFs from a separate dataset with a
different spatial grid. That assumption also compromises the
fully grid-agnostic nature of our system. To alleviate these
limitations, a straightforward workaround is to interpolate
HRTFs for retrieval using an existing method.

C. PROPOSED NETWORK ARCHITECTURE

In RANF, the neural network needs to handle multiple
retrieved HRTF magnitudes and ITDs. We thus design a
novel network architecture as illustrated in Fig. 2 departing
from prior methods which use vanilla fully-connected (FC)
layers [23]], [31]]. Precisely, for a given direction d = (0, ¢),
we perform sequence modeling on the corresponding re-
trieved HRTF magnitudes along the frequency direction
by using convolution/deconvolution blocks and bidirectional
long short-term memory (BLSTM) networks. We down-
sample the K retrieved magnitudes separately by using a
convolution block, where the input of the initial convolution
layer has length F' and two channels. The K magnitude
encodings have length F’ < F and C channels. Meanwhile,
we calibrate the azimuth value into 6 and 0,, for each
of the target subject s and retrieved subjects 7, so that
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FIGURE 2. Proposed network architecture. The features in gray boxes are for each of the K retrieved subjects and are processed in parallel except for
the inter-subject TAC module. The retrieved ITD indicated by a red square 7,., (d) is encoded as RFFs with the sound source directions shown as green
squares. Avg. aggregates the K feature sequences, and Conv and Deconv denote convolution and deconvolution blocks, respectively.

their respective ITD at azimuth zero (after calibration) is
zero (please refer to the Appendix for details). Then, the
corresponding retrieved ITDs for each k are concatenated
with these calibrated sound source directions before being
transformed into random Fourier features (RFFs) [49]:

ﬂ’k = [98 - W,¢3,0rk _Wvd)rkaTrk (d)/Tmax]T, (13a)
i = [sin(fg) T, cos(fr) '], (13b)
ey, = [sin(Wgprpr) ", cos(Wrerpr) '] (13¢)

where Tmax 1S @ subject-independent parameter to rescale the
retrieved ITDs to be in [—7,7), the entries of Wggr €
RE*10 are sampled from a Gaussian distribution, and sin(-)
and cos(+) are applied entry-wise. The RFF ey, is converted to
two C-dimensional features by an FC layer, and the features
are concatenated at both ends of the magnitude encodings.
We obtain K feature sequences of length F”’ + 2 where each
feature has dimension C.

The extracted feature sequences are processed by B
stacked core-processing blocks, resulting in a single feature
sequence for the target subject. Each core-processing block
contains an intra-subject BLSTM module and an inter-
subject transform-average-concatenate (TAC) module [50]
with a residual connection. The intra-subject BLSTM mod-
ule handles each of the K feature sequences separately and
performs sequence modeling along the feature dimension of
length F’ + 2. Meanwhile, the inter-subject TAC module
mixes the feature vectors across different retrieved subjects,
where each of the F’ + 2 feature dimensions is treated
separately. Both modules preserve the channel dimension C'
in their output. The K output sequences of the final core-
processing block are averaged into a single feature sequence.

The feature sequence, except for both ends, is passed
through E additional FC layers equipped with LoRA that
separately process each of the F’ entries. This module
focuses on the features corresponding to the HRTF mag-
nitude of the target subject, and both components of LoRA
depend on the target subject as in (5). Lastly, the output
sequence is decoded to the two-channel HRTF magnitude
by a deconvolution block. Meanwhile, the features at both
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ends are passed to a separate set of I/ FC layers with LoRA.
Then, the ITD feature is summed up with an additional RFF
computed as in while replacing fi, with [0, — 7, ¢4]T.
This feature is fed into the subsequent ITD prediction head
to lead the final ITD prediction as follows:

K
75(d) = 72(d) + % > 7 (d), (14)
k=1

where 72(d) is the output of the ITD prediction head.
D. INTER-SUBJECT MODELING WITH LoRA

For the inter-subject TAC module, we treat each of the
F'+2 feature vectors in the sequence separately. This module
mixes the information across different retrieved subjects
and performs subject-specific processing with LoRA. Let
Xp, ., € RC be the input feature vector for the kth retrieved
subject in the bth block at feature index f. All the features
for k = 1,..., K are processed by an FC layer and then
averaged over the retrieved subjects:

Avg

1 K
Rbfre = 32 R e (15)
k=1

(vafa”'k)7

where the output dimension of FC,"¥(-) is C/2. The aver-
aged feature is concatenated with the output of another FC
layer:

Zy,fori — [Fclgass(xb,f,m)-rﬂx;,f,rk]-ra (16)

where the output dimension of FCP*%(-) is also C/2. The
TAC operation was originally proposed in array signal pro-
cessing to handle a variable number of multi-channel features
in a permutation invariant manner [50]. We utilize the TAC
operation to mix the features for multiple retrieved subjects.
By construction, it can scale the model to an arbitrary
number of retrieved subjects, which is advantageous for
variable computational resources.

The concatenated features z ;. are then passed to an FC
layer with LoRA:

LoRA

Yot = LNG(FCys 1 (Zb, 704 ))s 17)
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where LN(-) is the layer normalization, and LoRA in the FC
layer differs from (@) as follows:

(18)

By selecting v; ., based on the retrieved subject, we expect
that Ub,stT,Tk captures the relation between the target and
retrieved subjects. Since 7, is always retrieved from S, vy .,
can be pre-trained and frozen during the adaptation.

T
Wb,s,rk = Wb + ub,SVb,rk’

E. INTEGRATION WITH PANNING-BASED METHOD

In the low-sparsity setting with 100 measurements, the
panning method in (I) outperformed RANF in terms of
ILD and LSD. To build a system capable of leveraging
the respective strengths of both RANF and the panning,
we propose to additionally feed these results into the NF
as shown in block (c) of Fig. [l Regarding the HRTF
magnitudes, we concatenate the predicted magnitudes for the
target subject AP (d) and the retrieved subject Af,’i“(d) to
the original retrieved magnitude A, (d). Here, Afi“(d) is
computed from the measurements only at the directions in
D’ similar to the panning for the target subject. Accordingly,
the input channel dimension of the first convolution layer
is now increased to a total of 6 instead of the original
2. Similarly, the predicted ITDs 7f*'(d) and 7/*"(d) are
concatenated with fi; in @]) after division by 7. The
neural network can learn the relation between the target
and retrieved subjects more easily by incorporating the
panning results for both the target and retrieved subjects as
additional guidance. The additional complexity caused by
this integration is minimal because it affects only the initial
convolution layer and the calculation of the RFFs in (T3).
We refer to this integration of RANF and panning as RANF+
in our experiment.

Altogether, we expect that the retrieval augmentation and
panning improve HRTF spatial upsampling by explicitly
providing complementary information. The retrieval delivers
HRTFs at the desired direction from similar subjects as ap-
proximations. In contrast, the panning provides an additional
plausible approximation as a weighted sum of the HRTFs
of the target subject at the surrounding positions. Note
that our integrated method, RANF+, can accomodate any
HRTF spatial interpolation methods, e.g., barycentric inter-
polation [[13]] or spatial-decomposition-based methods [|14)—
[L6]. More advanced interpolation techniques might improve
the overall performance of RANF+, which we defer to future
work.

IV. EXPERIMENTAL VALIDATION

A. EXPERIMENTAL SETUP

The LAP Challenge Task 2 asked participants to upsample
HRTFs at four sparsity levels:

o Low sparsity level: 100 measurements per subject;

o Mid sparsity level: 19 measurements per subject;

e High sparsity level: 5 measurements per subject clus-
tered around the front;

e Very high sparsity level: 3 measurements (front, left,
and above) per subject.

At each sparsity level, evaluation was performed on 3 sub-
jects. For pre-training and retrieval, HRTFs for 200 subjects
in the SONICOM dataset [34] were provided, with 793
measurements provided for each subject. We used HRTFs
sampled at 48 kHz with a free-field compensation using a
minimum-phase filter. The time-domain impulse responses
were converted to the frequency domain with the discrete
Fourier transform with 256 points. ITDs were extracted by
the Spatial Audio Metrics toolboxﬂ

For the pre-training of RANF, we split the SONICOM
dataset into training and validation sets at each sparsity
level. We first computed MAE on ITDs between the 3
evaluation subjects and the 200 SONICOM subjects at the
measured directions. Based on the MAEs, we selected the
top-5 subjects for each evaluation subject and assigned them
to the training set. We wanted to make sure that the generic
model is pre-trained on the subjects most similar to the target
subjects. The next 3 most similar subjects were assigned to
the validation set. The remaining subjects were also used for
the training seﬂ excluding subject P00 79 due to its atypical
ITD behavior. Finally, the training and validation sets for
pre-training consisted of 190 and 9 subjects, respectively.

In our neural network shown in Fig. 2] the convolution
and deconvolution blocks consisted of 4 layers with PReLLU
activation, where F’ and C' were 16 and 128, respectively.
For the core-processing blocks, we stacked B = 4 blocks
and used the GELU activation for the FC layers in the inter-
subject TAC module. The number of post-processing FC
layers E was set to 2, and the final ITD prediction head
also consisted of 2 layers. The rank for LoRA was set to 1.

For training, we set A to 10%/48000 in (§) to convert the
loss scale from sample to microsecond. The neural network
was pre-trained up to 200 epochs with early stopping if
the best validation loss did not improve for 20 successive
epochs. We used the RAdam optimizer with initial learning
rate of 0.001, multiplied by 0.9 when the validation loss did
not improve for 10 epochs. Then, the checkpoint with the
best validation loss was adapted to the evaluation subjects
for 1000 epochs. We did not perform validation during
adaptation to exploit all measurements.

We compared RANF to four learning-free baselines and
two NF-based methods.
HRTF Selection (ITD): We selected the best-fitting subject
from the SONICOM dataset, in terms of the MAE on ITDs
at the measured directions.
HRTF Selection (LSD): We selected the subject with the
minimum LSD at the measured directions, instead of the
MAE on ITDs.

Zhttps://github.com/Katarina- Poole/Spatial- Audio-Metrics
3Note that this setup is not fully identical to the challenge setup since we

performed additional cross-validation and ensemble during the challenge.
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TABLE 1. Average ITD error, ILD error, and LSD on the LAP challenge evaluation set.

3 measurements

5 measurements

19 measurements 100 measurements

Methods ITD [pus]  ILD [dB] LSD [dB] ITD [pus] ILD [dB] LSD [dB] ITD [us] ILD [dB] LSD [dB] ITD [us] ILD [dB] LSD [dB]
HRTF selection (ITD) 26.5 1.7 6.5 20.6 1.1 5.6 16.4 1.2 6.5 12.6 0.9 54
HRTF sclection (LSD) 499 15 6.3 268 1.0 6.1 352 12 52 27.6 09 49
Nearest neighbor 298.5 7.7 8.6 150.3 46 7.8 102.8 2.8 52 38.7 12 3.0
Panning [12] X X X X X X 29.0 1.7 3.9 125 0.4 23
NF (CbO) [31] 211 1.3 53 15.6 1.5 47 19.8 1.9 5.0 7.2 1.0 42
NF (LoRA) [23] 25.7 10 48 18.6 1.0 46 18.1 1.2 38 6.1 0.7 33
RANF (proposed) 18.6 0.9 4.6 153 11 44 152 0.9 33 6.8 0.6 25
RANF+ (proposed) X X X X X X 144 0.9 33 5.8 0.4 2.2

Nearest neighbor: We selected as interpolated HRTF the T 9

HRTF of the target subject at the nearest position in terms T TEEETT TN NN

of the Euclidean distance. "q'; o

Panning: We implemented the panning method in (I) with = _go [ Original NF LoRA

CvxPY [51]. The optimized nonnegative weight g was % — RANF NF CbC

directly used for ITD interpolation. Meanwhile, we further s ' ' ' '

. : olation. Meanwhile, 0 5 10 15 20

pormallzgd the weight by F11V1d1ng it by 1t§ 4 norm when Frequency [kHz]

interpolating HRTF magnitudes [12]. This normalization

slightly improved the performance of the magnitude inter- 500 ' ' '

polation in our preliminary experiment. g

NF (CbC): This is an NF without retrieval, similar to (3) A 0

except for the conditioning by a single subject-specific latent £ ~500

vector instead of LoRA [31]. The dimension of the latent

vector was 32 following the original paper. The NF consists
of 4 hidden FC layers and the heads for predicting HRTF
magnitudes and ITD.

NF (LoRA): This is the method formulated in (3). In contrast
to RANF, both components of LoRA, U and Vg, depend
on the target subject s [23].

RANF: For the proposed RANF, 10 subjects were retrieved
from the SONICOM dataset, i.e., K = 10. During the
training, we first selected 30 subjects, i.e., K’ = 30, and then
randomly sampled 10 subjects as described in Section [III{B]
At evaluation time, we retrieved the 10 best-fitting subjects.
RANF+: As elaborated in Section we fed the results
of the panning method [12] to RANF. This method was
evaluated at only low and mid sparsity levels due to the
limited applicability of the panning method.

For evaluation, we used the following three metrics as
in the challenge: LSD, MAE on ILDs, and MAE on ITDs
without ¢ in (T0). ILDs were calculated as the difference
between the root mean squares of HRTFs for the left and
right channels. The LSD was calculated between 20 Hz and
20 kHz by limiting the range of f in (9). All metrics were
calculated using the Spatial Audio Metrics toolbox.

B. MAIN RESULTS

Table [T] shows the scores averaged over the three evaluation
subjects at each sparsity level. Comparing the learning-
free baseline methods, HRTF selection methods resulted in
moderate performance even under highly-sparse conditions.
Panning is feasible only for the low and mid sparsity
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FIGURE 3. Examples of the HRTF magnitude and ITD for subject P0208
upsampled from 3 measurements. The top panel shows the ipsilateral
HRTF magnitudes at the right direction. The bottom panel depicts the ITD
on the horizontal plane.

levels, but it demonstrated promising performance on the
low sparsity level, especially in terms of ILD and LSD.

Both existing NF-based methods improved the perfor-
mance from the HRTF selections and the nearest neighbor
algorithm. NF (LoRA), which includes more subject-specific
parameters, achieved a better LSD but increased the ITD
error in highly sparse scenarios, likely because LoRA overfits
to the limited number of measurements. By incorporating
the retrievals, RANF outperformed both existing methods
except for the ILD with 5 measurements. Although RANF
resulted in a worse LSD than the panning at the low sparsity
level (100 measurements), RANF+ performed the best in all
metrics by incorporating the panning results as additional
inputs. Regarding ILD and LSD, RANF+ performed equally
to or slightly better than the best of RANF and the panning.
The improvement was more notable for the ITD under
both conditions, while the panning itself performed worse
than RANF. This result indicates that the complementary
combination of retrieval and panning is more beneficial for
ITD prediction.
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FIGURE 4. Examples of HRTF magnitude over the median plane for
subject P0208 upsampled from 3 measurements. The measured
directions are surrounded by red frames.

C. QUALITATIVE ANALYSIS

Figure [3] shows examples of the upsampled HRTF magni-
tude and ITD under the sparsest condition. While the ITD
was accurately predicted regardless of the retrieval, RANF
demonstrated better magnitude prediction, especially under
15 kHz. Figure [] illustrates the HRTF magnitudes over the
median plane, since the elevation localization mainly relies
on spectral coloration. Here, the elevation from —45° to 90°
corresponds to the front, and from 90° to 225° indicates the
back. Compared with NF (CbC) and NF (LoRA), RANF
shows more distinctive spectral notches. In addition, RANF
more precisely predicts the smooth spectral peak around
4 kHz compared with HRTF selection (ITD). This result
indicates that RANF successfully aggregates the information
from multiple retrievals and refines the retrieved HRTF mag-
nitudes. Although the notch frequencies are not completely
aligned with the original ones, RANF shows the potential
for more accurate modeling.

Figures 5] and [f] illustrate the LSD for RANF across
directions when upsampling from 3 and 5 measurements,
respectively. The measured directions are plotted with zero
error, and the zenith is omitted for a simpler visualization.
In the sparsest case with 3 measurements, the LSD pattern
differs across subjects. With 5 measurements, higher LSD
tends to concentrate in the lower rear direction, where subject
P0212 resulted in significantly higher error than others.
This should be because the lower rear direction is far from
the five measured directions. These results indicate that
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FIGURE 5. Subject-wise LSD across directions for the left channel, where
the HRTFs are upsampled from 3 measurements by RANF.
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FIGURE 6. Subject-wise LSD across directions for the left channel, where
the HRTFs are upsampled from 5 measurements by RANF.

more measurements reduce the variance in the LSD patterns
within subjects, but RANF might result in high LSD at the
directions far from the measured ones.

V. CONCLUSION

In this paper, we described our submission to Task 2 of the
LAP Challenge 2024. We enhanced NF-based HRTF spatial
upsampling by incorporating retrieval augmentation and the
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results of the panning method. In our experiments, our
proposed method RANF outperformed NF-based methods
without retrieval in terms of MAE of ITDs and LSDs.
Moreover, the integration with the results of the panning
method further improved all the metrics, especially under
the low-sparsity condition.

The experiments in this paper used only the SONICOM
dataset as in the challenge. NFs pre-trained on a single
dataset might not generalize well to other datasets due to the
domain mismatch caused by the difference in measurement
setup. Developing RANF on multiple HRTF datasets might
improve the generalization capability of RANF, but it is non-
trivial. This is because our current retrieval strategy assumes
that the HRTFs at both the desired and measured directions
are available for retrieval subjects. Moving forward, we
aim to explore grid-agnostic retrieval and investigate the
impact of the direction difference between the target and the
retrieved HRTFs. In addition, we plan to explore retrieval
strategies based on perceptual criteria.

Appendix

ITDs for the front direction should be zero under ideal
recording setups, assuming ears are symmetrically equipped
on the head. We find however that ITDs computed from
the SONICOM dataset contain small offsets for each sub-
ject. We compensate this subject-wise offset with a linear
model. In detail, we choose two measured directions on the
horizontal plane, d; = (01,0) and d2 = (62,0), where
—m/2 < 01 < 63 < 7/2. Then, the offset of the azimuth
ds is calculated as follows

Ts(d2) — 75(dy)
0 — 6 ’
5, = 70

«

o (19)

(20)

where the zero vector O indicates the front direction, and &,
is added to the original azimuth 6. We only tested this simple
solution as proof-of-concept of the offset compensation.
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