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Optimization-Based Phase-Constrained x-Axis Crossing Control for

Station-Keeping on Libration Point Orbits *

Yuri Shimane†, Koki Ho‡, and Avishai Weiss§

ABSTRACT

Libration Point Orbits (LPO) play a central role in lunar exploration of the 21st century. Long-term operations of

both crewed and robotic assets on LPOs necessitate propellant-efficient and reliable station-keeping schemes. Recent

developments highlight the importance of station-keeping schemes that not only maintain the geometric orbital regime

but also avoid leading or lagging along the orbit as a result of a drifting phase. In this work, an optimization-based

station-keeping algorithm for colinear LPO based on the x-axis crossing control, an event-based targeting scheme for

impulsive maneuver design, is conceived. The optimization problem is cast as a sequential second-order cone program

and incorporates an explicit constraint on the perilune pass epoch to ensure the steered trajectory follows the reference

baseline without deviating in phase. The resulting formulation has easily interpretable tuning parameters that may

be obtained directly from mission requirements. The algorithm is demonstrated through Monte-Carlo simulations on

Gateway’s Near Rectilinear Halo Orbit (NRHO) in the high-fidelity ephemeris model with realistic error models.

1 INTRODUCTION

Libration point orbits (LPOs) will play a central role in humanity’s cislunar presence, hosting both crewed and

robotic spacecraft for various purposes. For example, Gateway is planned to be hosted on the 9:2 resonant L2 near-

rectilinear halo orbit (NRHO). Even though some LPOs, such as the NRHO, exhibit favorable stability properties,

station-keeping is still required; in the absence of appropriate correction maneuvers, the spacecraft may diverge into

nearby LPO regimes, or in worst cases, diverge and crash on the Moon or escape from the lunar vicinity.

The performance of station-keeping controllers may be evaluated with regard to two considerations. First and

foremost, the controller must be able to maintain the spacecraft in the vicinity of the intended baseline trajectory,

rejecting any noise or uncertainty that arises from the dynamics, state estimation error, and control execution error.

The proximity to the baseline is defined not only in terms of physical vicinity from the intended LPO (for example, the
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9:2 resonant NRHO), but also in terms of its temporal location along the LPO, referred to as its phase;1, 2 maintaining

the correct phase is crucial for applications such as Gateway, where the baseline location of the space station is

carefully chosen to minimize the impact of eclipse,1 or for cislunar space domain awareness problems, where observer

spacecraft are located on phases that result in favorable illumination conditions.3–5 The second consideration is the

resulting cumulative ∆V cost incurred with maintaining the orbit over an extended amount of time. We note that

minimizing the maneuver cost at each maneuver opportunity is not necessarily equivalent to minimizing the cumulative

cost, thus complicating the task of designing an effective station-keeping algorithm.

Over the past few decades, there have been multiple works on the topic of station-keeping on LPOs. Folta and

Vaughn,6 and more recently Shirobokov et al.,7 provide reviews of the various approaches that have been studied

to date. In accordance with the categorization by Shirobokov et al.,7 the station-keeping problem may be tackled

either from a dynamical system theoretic perspective or a control theoretic perspective. The former includes leverag-

ing information of the local flow, such as Floquet mode-based,8–12 eigenmotion,13 and Cauchy Green Tensor-based

approaches,2, 14 while the latter includes approaches such as targeting control,15, 16 sliding mode,17 model predictive

control (MPC),18, 19 and, more recently, robust control strategies.20, 21

In the context of impulsive station-keeping on the NRHO in high-fidelity dynamics, the x-axis crossing control,

belonging to the class of targeting-based approach, has been shown to provide exceptional performance by multiple

authors,1, 14, 22, 23 and has also demonstrated in flight on the recent CAPSTONE mission.24 In its classical formulation,

the x-axis crossing control targets a subset of the state, typically the x-component velocity in the Earth-Moon rotating

frame. The subset of the state components is targeted at the event where the predicted state of the spacecraft crosses

the xz-plane near the Moon, coinciding approximately with its perilune. The classical x-axis crossing control, despite

yielding low station-keeping cost, is susceptible to drift in phase due to the way in which the algorithm is designed; as

a result, one recent research focus with this approach has been to simultaneously ensure the spacecraft does not drift

in phase.1, 2 To date, phase control has been done with a two-stage differential correction process, which involves a

tuning weight that must balance the tolerance on the targeted state components (e.g. x-component velocity) and time,

which is non-intuitive.

The station-keeping problem on LPOs, due to its sparse control opportunities involving one maneuver every few

days, may be seen as a recursive application of a finite-horizon trajectory design problem. In the context of trajectory

design, one popular approach is sequential convex programming (SCP),25 adopted in a number of recent astrodynam-

ics applications.26–32 Within an SCP, a convex subproblem with linearized dynamics about a reference solution is

iteratively solved, each time updating the reference solution with the solution to the convex subproblem based on step-

acceptance criteria. One similarity between SCP and differential correction for the purpose of constructing trajectories

is their use of linearized dynamics to iteratively correct the controlled trajectory. In addition, since the sought optimal

solution in station-keeping scenarios typically lies close to the uncontrolled trajectory, only a small number of convex
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subproblem iterations are expected to be necessary.

In this work, we propose a novel, optimization-based approach to achieve phase-constrained x-axis crossing control.

We leverage the sequential linearization-based formulation previously proposed by Elango et al.33 and extend it to

include a phase maintenance constraint. In our approach, the linearization is conducted in terms of both velocity and

time increments, thereby allowing the minimization problem to explore both the control maneuver and the time until

the targeted xz-plane crossing event simultaneously. To ensure the scheme produces propellant-minimizing results,

a two-norm objective, resolved as a second-order cone (SOC) constraint, is adopted. With the use of successive

solutions to conic subproblems with linearized dynamics, the proposed algorithm may be understood as an SCP-based

approach to the x-axis crossing control framework. Due to the use of an explicit optimization problem formulation,

our approach replaces the non-intuitive weight in Davis et al.1 with explicit thresholds on targeting the state and the

phase, respectively. The proposed approach, named the phase-constrained sequential cone program (PC-SCoP), is

demonstrated via Monte-Carlo simulations for a spacecraft on the NRHO with high-fidelity dynamics.

The remainder of this paper is organized as follows: first, in Section 2, the high-fidelity ephemeris model dynamics

and LPOs are briefly discussed. This is followed by Section 3, where the x-axis crossing control scheme is introduced;

first, the conventional, differential correction-based schemes are described. Then, the proposed PC-SCoP, starting from

its mathematical formulation and summarizing it through a pseudo-algorithm, is presented. In Section 4, we present

the recursive simulation setup, including realistic uncertainty models, adopted to conduct Monte-Carlo experiments

with the studied controllers. Section 5 presents experimental results using the PC-SCoP with a few different choices

of controller parameters. Finally, a conclusion is provided in Section 6.

2 BACKGROUND

We consider the translational motion of a spacecraft in the high-fidelity ephemeris model dynamics in the vicinity

of the Moon. In addition to the two-body gravitational acceleration of the Moon, we consider perturbations due to

the Moon’s J2 term, third-body perturbations from the Earth and the Sun, and solar radiation pressure (SRP). In this

section, we present the equations of motion and provide a brief overview of LPOs.

2.1 Equations of Motion in the High-Fidelity Ephemeris Model

We consider the motion of the spacecraft in the inertial frame, FInr centered at the Moon. In this work, FInr is

set to the J2000 frame defined using the DE440 ephemerides.34 Let θ ∈ R6 denote the state of the spacecraft in the

inertial frame centered at the Moon, composed of its position r ∈ R3 in FInr and the derivative of r in FInr, denoted

by v ≜ ṙ ∈ R3. The equations of motion f [t,θ(t)] is given by

θ̇ = f [t,θ(t)] =

 v

− µ

r3
r + aJ2 + aSRP(t) +

∑
i aNi

(t)

 , (1)
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where r = ∥r∥2, µ is the gravitational parameter of the central body; aJ2 is the J2 acceleration of the central body,

given by

aJ2 = −3µJ2
2r3

(
Re

r

)2

TPA
Inr



(
1− 5

z2PA
r2

)
xPA(

1− 5
z2PA
r2

)
yPA(

3− 5
z2PA
r2

)
zPA


, (2)

where TPA
Inr ∈ R3×3 is the transformation matrix from the Moon’s principal axes frame FPA, aligned with the Moon’s

principal axes whose orientations are defined with the DE440 ephemerides, to FInr, (·)PA is the position vector

component in FPA, Re is the equatorial radius, J2 is the J2 coefficient, aSRP is the SRP acceleration, given by

aSRP(t) = P⊙

(
1AU

r⊙

)2
CrA

m

r⊙
r⊙

, (3)

where P⊙ is the radiation pressure at 1AU, r⊙ denotes the position vector of the spacecraft with respect to the Sun,

r⊙ = ∥r⊙∥2, Cr is the reflection pressure coefficient, A is the spacecraft’s cross-sectional area, and m is its mass, and

finally, aNi is the third-body perturbation due to the ith body, given by

aNi
(t) = −µi

[
di

d3i
+

ri
r3i

]
, (4)

where ri is the position of the ith perturbing body with respect to the Moon, ri = ∥ri∥2, di = r − ri is the position

of the spacecraft with respect to the ith body, and di = ∥di∥2.

The station-keeping scheme will make use of the linearized flow in the vicinity of a nominal trajectory. An initial

linear perturbation δθ(t0) may be mapped to some future time t > t0 via the state-transition matrix (STM) Φ(t, t0) ∈

R6×6,

δθ(t) = Φ(t, t0)δθ(t0), (5)

where Φ(t, t0) is obtained by solving the nonlinear initial value problem (IVP)

θ̇(t) = f(t,θ), (6a)

Φ̇(t, t0) =
∂f(t,θ)

∂θ
Φ(t, t0), (6b)

with initial conditions θ(t0) = θ0 and Φ0 = I6.
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a Position space b State history

Figure 1: Reference 9:2-resonant NRHO in the Moon-centered Earth-Moon rotating frame

2.2 Libration Point Orbits

LPOs, as the name suggests, designate orbit-like motions that revolve around the libration points. While exactly

periodic motions may be constructed in simplified models such as the various restricted three-body problems, the

motion can only be quasi-periodic in higher-fidelity models such as the one considered in this work. Nevertheless, it is

possible to construct a ballistic or nearly ballistic quasi-periodic motion of a significant duration, consisting of multiple

revolutions. In this work, we make use of the 15-year 9:2-resonant NRHO baseline from NASA.35 Figure 1 shows

a portion of the baseline NRHO trajectory for 60 days in the Moon-centered Earth-Moon rotating frame, defined by

its x-axis aligned with the Earth-Moon direction, its z-axis aligned with the cross-product between the x-axis and the

Moon’s velocity vector with respect to the Earth, and its y-axis completing the triad.

3 STATION-KEEPING CONTROL WITH x-AXIS CROSSING CONTROL

The basis of this work’s control framework is x-axis crossing control. In this section, we begin by providing an

overview of the differential correction (DC)-based x-axis crossing control1, 2, 14, 22–24; the original algorithm14, 22–24

does not consider tracking with respect to the phase but is presented for context. We then provide a brief discussion

on the phase-constrained xz-plane crossing control with DC, as reported in recent works.1, 2 This DC-based approach

necessitates tuning a non-physical weight in order to scale residuals of targeted state components and time deviation

within a single residual vector. The lack of a physical interpretation for this weight parameter makes the tuning process

non-intuitive. Instead, we propose an optimization-based formulation for the phase-constrained xz-plane crossing
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control, replacing the residual vector with explicit constraints on each residual, which can make use of tolerances

derived directly from mission requirements.

3.1 Preliminaries on x-axis crossing control

Background on x-axis crossing control is laid out in terms of three building-blocks: first, we define the targeted

event where the state components are to be matched; then, we discuss the choice of state components to be targeted;

finally, we discuss the choice of location(s) along the LPO where the maneuver is to be executed.

3.1.1 Targeted Event The controller aims to maintain the steered motion of the spacecraft in the vicinity of a pre-

computed, ballistic reference path, which will be referred to as the baseline hereafter. Consider the Earth-Moon

rotating frame FEM, defined with the first x-axis aligned with the vector from the Earth to the Moon, and the z-axis

aligned with the angular momentum vector of the Earth-Moon system’s co-rotation about their barycenter. In the x-

axis crossing controller, this is achieved by matching certain conditions of the spacecraft’s motion along the baseline

and the steered path at their respective intersection with the xz-plane in FEM around perilune. The intersection with

the xz-plane crossing happens exactly at the perilune in simplified dynamics models such as the circular restricted

three-body problem; in contrast, in the high-fidelity ephemeris model, the perilune and the intersection do not occur

at the same epoch. However, these two conditions may be used interchangeably without noticeable differences in the

controller performance. Without loss of generality in describing the classic x-axis crossing control, in this work, we

use the perilune-based condition as a proxy for the xz-plane crossing event.

We note that the challenge of the classical x-axis crossing controller with regards to deviation in phase is a con-

sequence of this event-based targeting scheme, which is unusual compared to typical tracking controllers. To track

a reference baseline path, a generic tracking controller would attempt to match the predicted path at some chosen

future time to the corresponding baseline state; this would for example be to match the expected state along the steered

path to the baseline’s perilune state at the baseline perilune time, as illustrated in case (a) from Figure 2. Instead,

the event-based targeting attempts to match the perilune state of the steered path to the baseline’s perilune state, even

though these occur at different times, as illustrated in case (b) in the same Figure. Through preliminary experiments,

we find the application of approach (a) with the x-axis crossing controller, by setting tp,ref to either the baseline or the

unsteered path’s epoch at perilune, to result in the steered path to diverge within a few controlled revolution.

3.1.2 Targeted State Components When considering a station-keeping task with a single maneuver, the problem is

limited to at most 3 degrees of freedom corresponding to each ∆v ∈ R3 component. It is thus sensible to limit the

number of targeted state components to m ≤ 3. Let ϑ ∈ Rm denote a subset of state components from θ ∈ R6,

transformed from the inertial frame to the Earth-Moon rotating frame,

ϑ(t) =
(
T Inr

EM(t)θ(t)
)
M

, (7)
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:  perilune state along baseline

:  targeting objective

:  perilune state along unsteered path

state along unsteered path at 
perilune epoch of baseline

:

Baseline path

Unsteered path
(b) targeting state based on event match 

Baseline path

Unsteered path
(a) targeting state based on temporal match 

Figure 2: Targeting paradigms in station-keeping control for liberation point orbits

where T Inr
EM(t) ∈ R6×6 is the transformation matrix from FInr to FEM, and (·)M denotes the vector constructed from

the rows corresponding to the m targeted states. For example, ifM = {vx, vz}, then ϑ(t) is constructed by selecting

the 4th and 6th components of the vector T Inr
EM(t)θ(t). By selecting M to consist purely of velocity components,

the x-axis crossing control may be effectively understood as a perilune velocity targeting method. Note that the

transformation matrix T Inr
EM is time-dependent, as the Earth-Moon rotating frame is non-inertial.

3.1.3 Control Location The location and frequency of maneuvers must be carefully planned as these directly im-

pact both the stability and the cost of station-keeping algorithms. Due to the unstable characteristic of the dynamics

along with the existence of uncertainties due to navigation, modeling, and control execution error, it is preferable to

execute the control where the dynamics has reduced sensitivity to maneuvers, which corresponds to regions around

apolune.14, 36 While the exact location of the maneuver in the vicinity of the apolune may consider other operational

aspects,1 we limit the scope of this work to controls that occur exactly on the osculating apolune, where the radial

velocity is null. We also fix the scheme to make use of a single maneuver per revolution, as is typically considered for

realistic impulsive station-keeping scenarios on the NRHO.1, 14, 22 Along the NRHO, this corresponds to executing a

maneuver approximately every 6.5 days.

3.2 Phase-Free Differential Correction

The phase-free DC formulation of x-axis crossing control is, in essence, shooting-based trajectory patching. The

targeted residual vector F ∈ Rm for the DC is given by

F = ϑf − ϑref , (8)

7



where ϑref is the baseline state at tf , and ϑf is obtained from the IVP

ϑf =

(
T Inr

EM

∫ tf

t0

f(t,θ0)dt

)
M

, (9)

where θ0 is the state at which the maneuver is computed. Note that due to navigation errors, θ0 cannot be known

precisely, and, in practice, ϑf in equation (9) is computed based on state estimates. The free variables vector X ∈ R3

is the initial variation in velocity,

X =


∆vx,0

∆vy,0

∆vz,0

 . (10)

The corresponding Jacobian DF is given by

DF =
∂F

∂X
=

∂ϑf

∂v0
. (11)

The DC problem involves iteratively solving for F = 0m×1, each time updating X in a Newton-Raphson fashion.

For m < 3, it is common in the literature to adopt the minimum-norm update given by

X(k+1) = X(k) −
(
DF (k)

)T [
(DF (k))(DF (k))T

]−1

F (X(k)). (12)

Note that even though DC is not explicitly minimizing the maneuver magnitude, the minimum-norm update gives a

new solution X(k+1) that minimizes the norm of X(k+1) − X(k), which translates to the smallest ∆v update that

reduces ∥F∥ in a quadratic scheme assuming an initial guess X(0) = 03×1, i.e. no maneuver. The iteration is stopped

when components of F is smaller than corresponding components in a tolerance vector εϑ,targ ∈ Rm,

| (ϑf − ϑref)i | ≤ εϑi,targ i = 1, . . . ,m. (13)

3.3 Phase-Constrained Differential Correction

Davis et al.1 presents a two-stage DC process that introduces a constraint on the phase. The first-stage DC is the

phase-free problem (8)-(11), which provides an initial guess ∆v to the second stage. The second-stage DC uses an
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extended residual function F ∈ Rm+1 given by

F =

 ϑf − ϑref

Wtf (tf − tp,ref)

 , (14)

where Wtf is a heuristic scalar weight that must be tuned to achieve the tolerance on both the state component(s)

within tolerance εϑ,targ according to (13) and the phase within tolerance εtf ,targ given by

|tf − tp,ref | ≤ εtf ,targ. (15)

This algorithm has been used in the recently launched CAPSTONE mission,24 and is the proposed station-keeping

scheme for Gateway.1

3.4 Phase-Constrained Sequential Cone Program

A potential drawback of the differential correction-based approach is driven by (1) the lack of a formal minimization

scheme for the ∆V cost besides the fact that the Newton-like update is minimum-norm, and (2) the unintuitive nature

of the scaling parameter Wtf due to its lack of physical meaning. To overcome these challenges, we propose an

alternative approach to achieve phase-constrained x-axis crossing control by formulating an explicit nonlinear program

(NLP). We begin by providing the general NLP formulation, followed by a description of the sequential linearization

process that recasts the NLP to a sequentially solved second-order cone program (SOCP).

3.4.1 Formulation The general NLP is given by

min
∆v,tf

∥∆v∥2, (16a)

such that | (ϑf − ϑref)i | ≤ εϑi,targ i = 1, . . . ,m, (16b)

|tf − tp,ref | ≤ εtf ,targ. (16c)

Compared to the Newton-Raphson update (12), the formulation in (16) includes separate targeting constraints on the

state (16b) and phase (16c), removing the need for a weight like Wtf in the residual function (14) from the DC-based

approach. Note that by making the propagation time of the steered state tf a variable, the formulation in (16) no longer

ensures the targeted state ϑf is at perilune; rather, the choice of ϑf should be made in a way that promotes the steered

state to occur approximately at perilune. One may explicitly add a constraint that ensures the steered state occurs at a

perilune, for example ensuring the final steered state satisfies r(tf )Tv(tf ) ≈ 0; however, our experiments found that

choosing the targeted state components set asM = {vx, vy} is sufficient for station-keeping over multiple years, and

is thus adopted in this work.
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3.4.2 Sequential Linearization The general NLP (16) is solved iteratively, each time linearizing the dynamics about

the state estimate. Let t̄ (k)f be the time until the N th perilune before applying the control maneuver during the kth

iteration. Then, without any control maneuver, the targeted state components during the kth iteration ϑ̄
(k)
f ∈ Rm is

given by

ϑ̄
(k)
f =

(
T Inr

EM

∫ t̄
(k)
f

t0

f(θ
(k)
0 , τ)dτ

)
M

. (17)

The expression for the deviation in final state due to ∆v and δtf is given by

δθ
(k)
f = T Inr

EM


Φrv(t̄

(k)
f , t0)

Φvv(t̄
(k)
f , t0)

∆v(k) +
∂θ(t̄

(k)
f )

∂t
δt

(k)
f

 , (18)

where Φrv ∈ R3×3 and Φvv ∈ R3×3 denote the top-right and bottom-right submatrices of Φ, respectively. Let δϑ(k)
f

denote the components inM from the state deviation δθ
(k)
f . In matrix form, the variation in the final targeted state

δϑ
(k)
f is given by

δϑ
(k)
f =

(
δθ

(k)
f

)
M

=

[
B

(k)
M C

(k)
M

]∆v(k)

δt
(k)
f

 , (19)

where B
(k)
M ∈ Rm×3 and C

(k)
M ∈ Rm×1 are given by

B
(k)
M =

T Inr
EM

Φrv(t̄
(k)
f , t0)

Φvv(t̄
(k)
f , t0)




M

, (20)

C
(k)
M =

(
T Inr

EM

∂θ(t̄
(k)
f )

∂t

)
M

. (21)

Through the linearization of constraints (16b) and (16c) by making use of the linearized final state ϑ̄(k)
f and final state

deviation δϑ
(k)
f , the NLP (16) becomes a SOCP, where the two-norm objective may be replaced with a second-order

cone constraint. While the two-norm function ∥∆v∥2 and the quadratic function ∆vT∆v have the same minimum,

the former has higher sensitivity at small ∆v magnitudes. In this work, we use the SOCP formulation to avoid issues
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with having to fine-tune the scales of the input vectors and matrices to the SOCP; the problem is given by

min
∆v(k),δt

(k)
f ,η

η, (22a)

such that ∥∆v(k)∥2 ≤ η, (22b)∣∣∣(ϑ̄(k)
f + δϑ

(k)
f

)
− ϑf,ref

∣∣∣
i
≤ εϑi

, i = 1, . . . ,m, (22c)∣∣∣(t̄ (k)f + δt
(k)
f

)
− tp,ref

∣∣∣ ≤ εtf ,targ, (22d)

where the notation |·|i in constraint (22c) denotes the absolute value of the ith component of the vector inside the

absolute value operator. Constraints (22c) and (22d) can be written in standard form as

−
[
B

(k)
M C

(k)
M

]∆v(k)

δt
(k)
f

 ≤ εϑ,targ +
(
ϑ̄
(k)
f − ϑf,ref

)
, (23)

[
B

(k)
M C

(k)
M

]∆v(k)

δt
(k)
f

 ≤ εϑ,targ −
(
ϑ̄
(k)
f − ϑf,ref

)
, (24)

and

−δt(k)f ≤ εtf ,targ + (tf,0 − tp,ref) , (25)

δt
(k)
f ≤ εtf ,targ − (tf,0 − tp,ref) . (26)

After solving problem (22), both ∆v(k) and δt
(k)
f are used to update θ0 and tf,0 respectively, such that

t
(k+1)
f,0 = t̄

(k)
f +∆t

(k)
f , (27a)

θ
(k+1)
0 = θ

(k)
0 +

 03×1

∆v(k)

 , (27b)

where the superscript (·)(k) and (·)(k+1) denote the kth and (k + 1)th iteration solving the linearized problem (22)

respectively. Then, matrices B(k+1)
M and C

(k+1)
M are recomputed using equations (20) and (21). Due to the sequen-

tial nature of linearizing and then forming the SOCP, this method is hereafter referred to as the phase-constrained

sequential cone program (PC-SCoP). An example implementation of the PC-SCoP is shown in Algorithm 1. Within

the algorithm, a few aliases for functions are being used:

• PropagateUntilNthPerilune(t0,θ0, N) propagates the initial state θ0 at time t0 until the N th perilune
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Algorithm 1 Phase-constrained sequential second-order cone program
Inputs: t0, θ0, N , ϑf,ref , kmax, εϑ,targ, εtf ,targ
Outputs: convergence flag, ∆v

1: convergence flag← 0 ▷ Initialize flag
2: ∆v ← 03×1 ▷ Initialize cumulative ∆v

3: ∆v(0), δt
(0)
f ← 03×1, 0 ▷ Initialize incremental correction

4: t̄
(0)
f ←PropagateUntilNthPerilune(t0,θ0, N)

5: for k in 1, . . . , kmax do
6: θ

(k)
0 ← θ0 + [03×1; ∆v(k−1)]

7: t̄
(k)
f ← t̄

(k−1)
f + δt

(k−1)
f

8: θ̄
(k)
f ,Φrv,Φvv ←Propagate(t0, t̄ (k)f ,θ

(k)
0 )

9: T Inr
EM ←sxform(FInr,FEM, t̄

(0)
f ) ▷ SPICE function

10: ϑ̄
(k)
f ← T Inr

EMθ̄
(k)
f

11: if ϑ̄(k)
f ≤ εϑ,targ and t̄

(k)
f ≤ εtf ,targ then

12: convergence flag← 1
13: break
14: end if
15: B

(k)
M ,C

(k)
M ← eqn. (20), (21)

16: ∆v(k), δt
(k)
f ← SOCP(ϑ̄

(k)
f ,B

(k)
M ,C

(k)
M , 0.9εϑ,targ, 0.9εtf ,targ, )

17: ∆v ← ∆v +∆v(k) ▷ Update cumulative ∆v
18: end for

through the use of event detection;

• Propagate(t0, tf ,θ0) propagates the initial state θ0 along with the STM from time t0 until time tf ;

• sxform(FInr,FEM, t̄
(0)
f ) generates the transformation matrix from FInr to FEM at epoch t̄

(0)
f ; and

• SOCP(ϑ̄
(k)
f ,B

(k)
M ,C

(k)
M , εϑ,targ, εtf ,targ) builds and solves problem (22) through the use of a SOCP solver, such

as ECOS37 or SCS.38

Note that the sequential nature of the algorithm is necessitated purely due to the linearization of the dynamics; this

is similar in nature to differential correction, where the correction only considers the Jacobian DF from equation (11);

thus, in essence, the PC-SCoP approach replaces the Newton-Raphson update from equation (12) by the SOCP. The

number of iterations required to either conduct the Newton-Raphson update or solve the SOCP is similar, usually

taking under 5 iterations. It is also noted that while solving the SOCP is computationally more expensive than simply

computing the Newton-Raphson update, the primary computational cost is by far the propagation of the STM from t0

until the targeted time tf , where each iteration in both approaches integrates the high-fidelity ephemeris model over

several days with the perilune event detection. Thus, the PC-SCoP does not result in a significant increase in terms of

computational cost compared to differential correction-based approaches.

We also note that the linearization process of the dynamics in both DC and the PC-SCoP makes them susceptible to

not converging if the initial guess, i.e., the state θ0 at t0, lies far from the baseline such that the linearized dynamics
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up to tf is inaccurate. While such a case was not encountered for the levels of error assumed in this work, one may

replace the single-shooting paradigm used to represent the dynamics by a multiple-shooting one, with the introduction

of state θ at some time(s) t between t0 and tf as additional variables, to attenuate the sensitivity of the linearized

dynamics.

Previous works on DC-based x-axis crossing control report the method to provide sufficient robustness against re-

alistic sources and levels of uncertainty, provided that the targeting tolerances and Wtf in (14) are tuned appropriately,

for durations of several months to a few years. At a cadence of once every few years, additional corrective maneuvers,

such as targeting the y-component at perilune passage, are additionally necessitated to return the spacecraft closer to

its intended dynamical regime.1 Through numerical experiments, we empirically find that the PC-SCoP possesses a

similar robustness property, provided that εϑ,targ and εtf ,targ are not set to excessively strict or loose values.

4 RECURSIVE SIMULATION SETUP

The actual performance of station-keeping algorithms can be assessed only through recursive simulation; per-

maneuver performance may reveal initial insights, but the extent to which the controller stabilizes the steered path

is revealed by the cumulative cost rather than the per-maneuver cost. The performance is further affected by the

presence of uncertainty, primarily arising from navigation uncertainty, maneuver execution error, and variability on

perturbation terms such as the SRP. As such, a recursive, Monte-Carlo experiment must be conducted.

Figure 3 shows the recursive simulation setup. We define two distinct threshold parameters, namely a trigger

threshold εtrig, used to determine whether a maneuver is warranted, and a targeting threshold εtarg, used within the

control scheme. These two thresholds are separately defined to study the effect of choosing εtrig > εtarg instead

of simply setting εtrig = εtarg. By selecting a tighter εtarg than εtrig, the propagation of the true state executing a

maneuver computed based on an erroneous state estimate and under other sources of errors is more likely to lie within

εtrig at subsequent revolutions. Due to such a hysteresis-type effect, we expect selecting εtrig > εtarg to reduce the

cumulative control cost. Also, note that the control maneuver must be computed based on a corrupted state due to

navigation error.

The recursive simulation is terminated if the station-keeping algorithm does not converge; in addition to clearing

the targeting tolerances within the threshold εtarg, we require the maneuver magnitude to be within a predefined

maximum executable maneuver magnitude, denoted as ∆vmax. This threshold serves as an indicator for cases where

the controller has failed to maintain the tracking error under control. We do not implement corrective procedures

such as reducing the targeting perilune horizon N as is implemented in Davis et al.,1 electing to focus on the nominal

performance of the controller rather than on corrective cases when the nominal procedure fails.
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Start

Propagate true state until next control opportunity
(incorporate SRP & desaturation-induced errors)

Is trigger threshold εtrig violated?

Compute maneuver (algorithm 1) that
satisfies targeting threshold εtarg based
on state corrupted by navigation error

Converged?

Stop

Add corrupted ma-
neuver to true state

yes

no

no

yes

Figure 3: Flow-chart for recursive simulation of station-keeping algorithms
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4.1 Error Simulation

The type and values of errors associated with the simulation are taken from Davis et al.;1 namely, dynamics error in

terms of SRP coefficients, velocity perturbations induced by desaturation, navigation error, and maneuver execution

error are incorporated. We provide details on how each of these errors is introduced.

4.1.1 Solar Radiation Pressure Error Immediately after a maneuver is executed, the SRP area-to-mass ratio A/m

and reflective coefficient CR are modified with respect to a preset nominal value, denoted by (A/m)0 and CR,0, with

a perturbation defined based on relative standard deviations σC̄r
and σ

(A/m)
.

CR = CR,0

(
1 + δC̄R

)
, δC̄R ∼ N (0, σ2

C̄r
), (28)

(A/m) = (A/m)0

(
1 + δ(A/m)

)
, δ(A/m) ∼ N (0, σ2

(A/m)
). (29)

4.1.2 Desaturation Error Desaturation of the momentum wheel results in small velocity perturbations on the space-

craft. This is modeled as a random δvdesat occurring instantaneously when the desaturation occurs. Let σδvdesat
denote

the standard deviation of the magnitude of this perturbation, then

v+ = v− + δvdesatî, δvdesat ∼ N
(
0, σ2

δvdesat

)
, (30)

where v− and v+ denote, respectively, the velocity vector immediately before and after the desaturation event, and

î ∈ R3 is a random unit vector given by

î =
1√

i2x + i2y + i2z


ix

iy

iz

 , ix, iy, iz ∼ U(−1, 1). (31)

4.1.3 Navigation Error Navigation error is given solely to the controller, mimicking the fact that the control action

must be computed from the state estimates rather than the true state. The position and velocity vector estimates, r̂ and

v̂, are given by

r̂ = r + δrnav, δrnav ∼ N (0, σ2
r), (32a)

v̂ = r + δvnav, δvnav ∼ N (0, σ2
v). (32b)

4.1.4 Maneuver Execution Error The actual maneuver that is executed cannot exactly match the output of the

control algorithm due to actuation errors. The maneuver execution model is based on the analysis provided by Gates.39

Let ∆v̄ denote the ideal control action computed by the algorithm, and let ∆v denote the control action corrupted by
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noise and executed on the spacecraft, such that

v+ = v− +∆v(∆v̄, δṽabs, δṽrel, δϕ), (33)

where v− and v+ denote, respectively, the velocity vector immediately before and after the maneuver. The execution

error is realized in three parts: in terms of a relative magnitude error, δṽrel, an absolute magnitude error, δṽabs, and a

direction error, δϕ. The relative magnitude error is modeled by a relative standard deviation σδvrel
, such that

δṽrel = ∥∆v̄∥δvrelî, δvrel ∼ N
(
0, σ2

δvrel

)
, (34)

where î follows the definition from (31), but realized separately. The absolute magnitude error is modeled by a

standard deviation σδvabs
, such that

δṽabs = δvabsî, δvabs ∼ N
(
0, σ2

δvabs

)
. (35)

Finally, the direction error is modeled by a random rotation of the quantity ∆v̄ + δṽrel + δṽabs by an angle δϕ, with

standard deviation σϕ. The corresponding transformation matrix T (δϕ) is given by the Rodrigues’ rotation formula

T (δϕ) = cos(δϕ)I3 + sin(δϕ)i× + [1− cos(δϕ)]iiT , δϕ ∼ N (0, σ2
ϕ), (36)

where i× is the skew-symmetric form of i. Combining all errors together, the corrupted maneuver is given by

∆v = T (δϕ) [∆v̄ + δṽrel + δṽabs] , (37)

and is substituted back into equation (33).

5 NUMERICAL RESULTS

We report the results of the proposed PC-SCoP approaches, both in terms of station-keeping cost and phase-tracking

capability. Simulation parameters for the recursive simulation are given in Table 1; parameters on the errors are

chosen to match the simulation in Davis et al.1 as closely as possible. Table 2 summarizes the parameters used to

tune the controllers. In each case, 100 Monte-Carlo samples are realized for a duration of 300 revolutions, which

corresponds to approximately 5.40 years on the 9:2 resonant NRHO from NASA.35 Table 3 summarizes the success

rate, maneuver utilization rate, and station-keeping cost statistics obtained from the various controllers and their chosen

parameters. For comparison, Davis et al.1 reports a mean annual cost of 134 cm/s with a range varying from 120 cm/s

and 160 cm/s. We then conduct a separate Monte-Carlo experiment for 600 revolutions, taking the best-performing
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Table 1: Parameters for numerical simulation

Simulation Parameter Value

Simulation duration, revolutions 300 / 500
Maneuver location true anomaly, deg 200
Maximum maneuver magnitude ∆vmax, m/s 1.0

SRP error Relative A/m 3σ
(A/m)

, % 30
Relative Cr 3σC̄r

, % 15

Desaturation Induced velocity error 3σδvdesat
, cm/s 1.0

Location true anomaly, deg 340, 350, 10, 190

Navigation error Position 3σr, km 1.5
Velocity 3σv , cm/s 0.8

Maneuver execution error Relative magnitude 3σδvrel
, % 1.5

Absolute magnitude 3σδvabs
, mm/s 1.42

Direction 3σϕ, deg 1

Table 2: Parameters for controllers

Parameter Differential Correction PC-SCoP

Targeted future perilune, N 7th 7th

Targeted state componentsM vx vx, vz

State tolerance, m/s
εϑ,trig 20 20
εϑ,targ 20 20/5

Phase tolerance, min
εtf,trig - 20
εtf,targ - 20 / 10

parameters from the former experiment.

5.1 Performance Sensitivity of Phase-Constrained Sequential Cone Program

As a baseline, Figure 4 shows Monte-Carlo results of the cumulative cost and the perilune deviation, using a DC

process with no phase constraint. The perilune deviation is computed by comparing the perilune epochs along the

realized, steered path to the baseline’s perilune passes. As expected, the phase, as measured by the crossing time of

perilune, experiences a secular drift, growing up to around 2.1 hours in 5 years. Neglecting the phase deviation, the

Table 3: DC and PC-SCoP performances of yearly cost ∆vyr from 300-revolutions Monte-Carlo experiment

Controller Case εϑ,targ, m/s εtf,targ, min Success Utilization, % ∆vyr, cm/s

Mean 95th-% 1-σ

DC - 20 n.a. 100 / 100 83.22 103.59 164.58 27.56

PC-SCoP (a) 20 20 100 / 100 79.94 118.53 134.87 9.83
(b) 5 20 100 / 100 70.93 103.27 117.45 9.10
(c) 5 10 97 / 100 65.97 136.34 209.53 38.66

In all cases, εϑ,trig = 20 m/s and εtf,trig = 20 min (for PC-SCoP only) are used.
Utilization rate and maneuver statistics are computed from successful cases only.
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Figure 4: Monte-Carlo results over 300 revolutions using differential correction with no phase constraint

DC approach is able to track the baseline throughout 300 revolutions in all 100 Monte-Carlo trials, as summarized

in Table 3. Notably, while the mean yearly cost is low, its standard deviation is considerable; the high standard

deviation corresponds to cases with significant perilune time deviation, where the targeted perilune state degrades in

effectiveness for maintaining the spacecraft on the NRHO.

Figure 5 shows the Monte-Carlo results from the PC-SCoP, using different levels of εtrig and εtarg. In cases (a)

and (b), where tp,targ = 20 min is used, the perilune epoch deviation initially undergoes secular growth but becomes

bounded within approximately the targeting tolerance tp,targ chosen for the entire duration of the simulation. In

contrast, with case (c) where a stricter tp,targ = 10 min is used, we observe instability occurring by around the 200th

revolution, resulting in a quick ramp-up of the station-keeping cost as well. These trends are quantified in Table 3,

where both the mean and standard deviation of the yearly cost are high.

Note that choosing a tighter state targeting threshold εϑ,targ, as is done in case (b), results in reduced cumulative

cost compared to (a), where εϑ,trig = εϑ,targ is used. The difference in performance between (a) and (b) highlights

the importance of choosing a tighter εϑ,targ. As hypothesized, the resulting maneuvers are less likely to immediately

violate the triggering tolerance upon execution, even under the modeled errors. As a consequence, fewer maneuvers

are required, quantified by a lower maneuver utilization ratio. With either DC or PC-SCoP case (a), the maneuver

utilization is around 80%, whereas with case (b), where a hysteresis in terms of εϑ,trig > εϑ,targ is introduced, the

utilization drops by about 10%. Comparing cases (b) and (c), we see that a hysteresis in terms of εtf ,trig > εtf ,targ

also drops the utilization by another 5%; however, as noted before, this tighter εtf ,targ results in instability, and hence

does not translate to a reduction in cumulative station-keeping cost.

Greater insight into the behavior of the PC-SCoP may be interpreted by looking at Figure 6, which shows the state

deviation between the steered path’s perilune passes and the baseline’s perilune passes. Due to the choice of M

consisting only of velocity state components, we see that the secular growth of the velocity state deviations is slower
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than that of the position state deviations. Note that the controller achieves the reported performance without any

additional procedures, such as reducing the targeting horizon N in case the controller fails, or introducing additional

corrective maneuvers, as is done in Davis et al.1 If the PC-SCoP is to be implemented in an actual mission, the

controller’s station-keeping performance over the course of 5 years gives ample time to design an additional corrective

maneuver targeting the full state components of the baseline at some point, thus attenuating the error in perilune

deviation.

5.2 Long-Term Performance of Phase-Constrained Sequential Cone Program

Figure 7 shows the Monte-Carlo results from 600 revolutions, or approximately 10.75 years, using the PC-SCoP

with vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 5 m/s, and tp,trig = 20 min, tp,targ = 20 min. Here, we observe

a success rate of 95%, with a mean yearly cost of 123.74 cm/s and a standard deviation of 22.77 cm/s. Note that the

yearly mean and standard deviation are significantly higher than the Monte-Carlo results with 300 revolutions due to

poorer performance of the controller on a significant number of realizations beyond around the 2500th day.

In practice, it is unrealistic for a spacecraft on the NRHO to necessitate autonomous station-keeping ability for such

a long duration. When excessive divergence from the baseline is observed on the ground or onboard, a corrective ma-

neuver that aligns the spacecraft back to the baseline through full-state targeting could be designed and implemented.

The design of such a maneuver may, for example, follow a simple targeting scheme and is beyond the scope of this

work. Based on the performance of the controller in Figure 7a, a check every 100 revolutions would be sufficient

to realign the spacecraft back to its intended path. Comparing the trends of the perilune deviation from the best- and

worst-performing Monte-Carlo samples, it is possible to observe that the worst-performing case exhibits a short-period

oscillation in perilune deviation with a period of one to a few revolutions; in contrast, the best-performing case only

exhibits a slower oscillation with a period of 10’s of revolutions. This characteristic may serve the purpose of an early

indicator for divergence to trigger cautionary measures, such as the aforementioned full-state targeting maneuver.

6 CONCLUSIONS

In this work, we proposed an optimization-based station-keeping algorithm for maintaining the spacecraft in the

vicinity of a baseline cislunar LPO, while ensuring the phase along the LPO is tracked. The proposed algorithm,

coined as the PC-SCoP, is inspired by the x-axis crossing control technique, which has widely been studied and used

in combination with a differential correction algorithm; instead, this work poses the x-axis crossing control framework

as a minimization problem. The resulting NLP is sequentially solved via linearization of the dynamics with respect to

increment in velocity and time of flight, with an objective based on the two-norm ∆V cost, thus resulting in a SOCP.

The SOCP is repeatedly solved, each time re-linearizing the dynamics about the current state estimate, appending the

control corresponding to the minimizing solution from the previous iteration. The advantage of the PC-SCoP is that

the explicit optimization problem allows for handling targeting requirements of different quantities, namely, position,
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a vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 20 m/s, tp,trig = 20 min, tp,targ = 20 min

b vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 5 m/s, tp,trig = 20 min, tp,targ = 20 min

c vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 5 m/s, tp,trig = 20 min, tp,targ = 10 min

Figure 5: Monte-Carlo results over 300 revolutions of cumulative cost and perilune epoch deviation with the PC-SCoP
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a vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 20 m/s, tp,trig = 20 min, tp,targ = 20 min

b vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 5 m/s, tp,trig = 20 min, tp,targ = 20 min

c vx,trig = vz,trig = 20 m/s, vx,targ = vz,targ = 5 m/s, tp,trig = 20 min, tp,targ = 10 min

Figure 6: Monte-Carlo results over 300 revolutions of perilune state deviation with the PC-SCoP
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a Cumulative cost and perilune epoch deviation

b Perilune state deviation

Figure 7: Monte-Carlo results over 600 revolutions with PC-SCoP, using vx,trig = vz,trig = 20 m/s, vx,targ =
vz,targ = 5 m/s, tp,trig = 20 min, tp,targ = 20 min
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velocity, and/or timing, as separate constraints; the constraints replace the use of weights to scale the various quantities

into a single residual vector with targeting tolerances for each component, which are intuitive, physical quantities that

are easier to tune.

The PC-SCoP has been demonstrated on the 9:2 resonant NRHO in the high-fidelity ephemeris model, incorporating

realistic sources of uncertainties, namely navigation error, control execution error, dynamics error in the solar radiation

pressure term, and impulse imparted from momentum dumping. With appropriately chosen targeting tolerances, the

PC-SCoP is found to be able to track the reference LPO for an extended duration of 300 revolutions, or about 5.4

years. During this time, the state deviation, recorded at each perilune pass experiences a secular growth, but this

does not prohibit its use for autonomous station-keeping over the course of extended durations. Furthermore, through

a Monte-Carlo simulation lasting 600 revolutions, a rapid oscillatory trend in perilune deviation that corresponds to

cases with poor tracking performance and eventual divergence has been identified; the oscillatory trend can be used

as a trigger to occasionally design and execute a simple targeting maneuver that realigns the spacecraft closer to the

intended baseline; still, such a maneuver should be seldom required, for example at intervals of every 100 revolutions,

or about 1.79 years.

Overall, the proposed optimization-based framework provides a more explainable framework for station-keeping,

which also delivers performance that matches state-of-the-art x-axis crossing control approaches. Future work includes

applying the PC-SCoP to other LPOs, as well as the design of corrective maneuvers necessitated once every few years

to realign the spacecraft back to the baseline in order to achieve nearly autonomous station-keeping for a duration

exceeding 300 revolutions.
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