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Abstract
We introduce a set-based, globally optimal con- troller for a specific class of nonlinear robust
optimal control problems (ROCP). Traditional dynamic programming methods for solving
nonlinear ROCP to global optimality require space discretization, leading to the well-known
curse of dimensional- ity. In this paper, we establish sufficient conditions under which a
convex relaxation of the dynamic programming recursion for a nonlinear ROCP is lossless,
meaning it recovers the globally optimal solution of the original, non-convex recursion. We
propose a computationally tractable, space discretization- free, almost lossless implementation
of our approach using constrained zonotopes and a series of convex one-step optimal control
problems. Additionally, we provide a suboptimality bound for the controller derived from our
method for a standard nonlinear ROCP.
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Set-based lossless convexification
for a class of robust nonlinear optimal control problems

Abraham P. Vinod∗, Abhinav G. Kamath, Avishai Weiss, and Stefano Di Cairano

Abstract— We introduce a set-based, globally optimal con-
troller for a specific class of nonlinear robust optimal control
problems (ROCP). Traditional dynamic programming methods
for solving nonlinear ROCP to global optimality require space
discretization, leading to the well-known curse of dimensional-
ity. In this paper, we establish sufficient conditions under which
a convex relaxation of the dynamic programming recursion
for a nonlinear ROCP is lossless, meaning it recovers the
globally optimal solution of the original, non-convex recursion.
We propose a computationally tractable, space discretization-
free, almost lossless implementation of our approach using
constrained zonotopes and a series of convex one-step optimal
control problems. Additionally, we provide a suboptimality
bound for the controller derived from our method for a
standard nonlinear ROCP.

I. INTRODUCTION

Nonlinear robust optimal control problems (ROCP) arise
while designing optimal controllers for physical systems
subject to uncertainties and constraints [1]–[4]. Existing
literature tackles these control problems using a variety of ap-
proaches, including dynamic programming [1] and nonlinear
robust model predictive control (MPC) [2]. Unfortunately,
these approaches may suffer from computational difficulties
arising from space discretization or may yield conservative
(i.e., suboptimal) controllers in order to tractably guarantee
robust constraint satisfaction. This paper proposes theory and
tractable algorithms to solve a class of nonlinear ROCP
to global optimality using recent results from computational
geometry and dynamic programming.

Nonlinear ROCP may be analyzed using the framework of
dynamic programming [1]. Specifically, using the Bellman
optimality principle, we can (recursively) define a set of
value functions for the ROCP and design deterministic, state-
feedback controllers that are provably optimal. However,
implementations of such dynamic programming-based ap-
proaches often require space discretization which limits the
approach to smaller dimensional systems [1], or require
approximate dynamic programming techniques that come
with a loss of robust constraint satisfaction guarantees [5].
For certain specific nonlinear systems (e.g. piecewise-affine
systems), a set-theoretic approach based on dynamic pro-
gramming and parametric programming has been considered,
but may require significant computational effort [6].
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Locally optimal or suboptimal solutions to nonlinear
ROCP may be obtained using robust model predictive control
(MPC) [2], [3], including tube MPC and minmax MPC.
Tube MPC approaches typically reformulate the ROCP into
a single optimization problem over the control actions,
and enforce tightened constraints on the resulting nominal
trajectory to account for the effect of disturbance [7], [8].
Compared to tube MPC, minmax MPC explicitly considers
the disturbances in the controller design when optimizing for
control actions, but typically require higher computational
effort [2], [9]–[11]. Popular minmax MPC techniques in-
clude two-player games [10], the enumeration of disturbance
scenarios for polytopic disturbance sets [12], and solving
multiparametric programs [13]. In general, most of the ex-
isting MPC-based approaches focus on generating tractable
but suboptimal solutions due to the inherent non-convexity
in the ROCP. In this work, we propose a tractable method to
solve a class of nonlinear ROCP to (almost) global optimality
using computational geometry and dynamic programming.

The main contribution of this paper is a set-based control
design framework to compute globally optimal controllers
for a class of nonlinear ROCP. Specifically, we identify a
class of nonlinear ROCP for which the convex relaxation
of their dynamic programming recursion is lossless, i.e., the
convex relaxation recovers the globally optimal solution for
the original, non-convex dynamic programming recursion.
Additionally, we show that the control design may be ac-
complished via a series of convex, one-step optimal control
problems and a collection of set operations tractably and
almost losslessly implemented using constrained zonotopes.
Finally, we provide a suboptimality bound on the controller
computed using the proposed approach for a standard formu-
lation of a nonlinear ROCP. We also prove that the robust
controllable sets for the considered class of nonlinear ROCP
are convex, and demonstrate our approach on a 7D ROCP.

We remark that our problem of interest and solution
approach are quite different from existing lossless convexifi-
cation methods in trajectory generation problems [14]–[16],
where globally optimal solutions to continuous-time, nonlin-
ear, disturbance-free optimal control problems are obtained
from convex relaxations using the Pontryagin maximum prin-
ciple. Instead, our approach solves discrete-time, nonlinear
ROCP using dynamic programming and set-based control.

Furthermore, a related problem to the nonlinear ROCP
considered in this paper is the computation of so-called
robust controllable sets. A robust controllable set is a set
of initial states from which the system may be steered to
satisfy state-input constraints despite the uncertainty acting



on the system [4], [17]. For linear dynamics with additive
uncertainty and polytopic constraints, these sets may be
computed by a set recursion on polytopes, using existing
tools for computational geometry [18]–[20]. Recent progress
in constrained zonotopes [21], [22], an equivalent represen-
tation for polytopes, has enabled tractable computation of
robust controllable sets for high-dimensional linear systems
subject to polytopic constraints and additive, symmetric,
convex, and compact disturbance sets (e.g., ellipsoids and
zonotopes). A key insight used in our approach is that the
convex relaxation of the dynamic programming for certain
ROCP may be analyzed using robust controllable sets, which
mitigates the curse of dimensionality in space discretization-
based dynamic programming. In this paper, we perform
all set-based computations using constrained zonotopes for
computational efficiency.

Notation: 0n×m and 1n×m are matrices of zeros and
ones in Rn×m respectively, In is the n-dimensional identity
matrix, N[a,b] is the subset of natural numbers between
(and including) a, b ∈ N, a ≤ b, and ∥ · ∥p is the p-norm
of a vector. Let M be a matrix and M1 (M2, resp.) be
another matrix of the same height (width, resp.) as M . Then,
[M,M1] ([M ;M2], resp.) denotes the matrix obtained by
concatenating M and M1 horizontally (concatenating M
and M2 vertically, resp.). We concatenate vectors v1, v2 by
[v1; v2], and denote component-wise inequalities by v1 ≤ v2
or v1 ≥ v2. Finally, vi is the ith component of a vector
v ∈ Rn, and Mi is the ith column of a matrix M .

II. PRELIMINARIES

We now briefly review relevant mathematical background
and set up the problem statements of interest.

A. Real analysis and optimization
For a set S ⊆ Rn, we denote its indicator function by

IS : Rn → {0,∞}, with IS(x) = 0 when x ∈ S, and
∞ otherwise. For a function f : Rn → R, we denote its
epigraph by Epi(f) = {[x; c] | f(x) ≤ c}. Recall that f
is convex if and only if Epi(f) is convex. A function f is
said to be lower semi-continuous (l.s.c.) if the set {f ≤ α}
is closed for any α ∈ R. Two optimization problems are
equivalent if from a solution of one, a solution of the other
is readily found, and vice versa. We denote the optimal value
of an infeasible minimization problem by ∞, see [23], [24].

B. Set representations and operations
Let C be a convex and compact polytope in Rn. We

consider two representations of C — H-Rep polytope (1a)
and constrained zonotope (1b), respectively,

C = {x | HCx ≤ kC}, (1a)
C = {GCξ + cC | ∥ξ∥∞ ≤ 1, ACξ = bC} , (1b)

where HC ∈ RNC×n, kC ∈ RN
C , GC ∈ Rn×NC , cC ∈ Rn,

AC ∈ RMC×NC , and bC ∈ RMC . Here, (1a) is the intersec-
tion of NC halfspaces and (1b) is an affine transformation
of B∞(AC , bC), i.e., C = cC +GCB∞(AC , bC) where

B∞(AC , bC) ≜ {ξ | ∥ξ∥∞ ≤ 1, ACξ = bC}. (2)

In (2), B∞(AC , bC) is the intersection of a unit-hypercube
in RNC with MC linear equalities. The equivalence of the
representations in (1) was recently established in [21, Thm.
1], see [21], [22] for more details.

For sets C,S ⊆ Rn,W ⊆ Rm, and matrix R ∈ Rm×n, we
recall the following set operations, affine map, intersection
with inverse affine map ∩R, and Pontryagin difference ⊖:

RC ≜ {Ru | u ∈ C}, (3a)

C ∩R W ≜ {u ∈ C | Ru ∈ W}, (3b)

C ⊖ S ≜ {u | ∀v ∈ S, u+ v ∈ C}. (3c)

Since C ∩ S = C ∩In S, (3b) also includes the standard
intersection. We implement the orthogonal projection of a
set C ⊂ Rn (nx + ny = n) using (3a) and an appropriate R,

Projx(C) = {x ∈ Rnx | ∃y ∈ Rny , [x; y] ∈ C}
= [Inx , 0nx×ny ]C. (4)

We favor using constrained zonotopes (1b) over H-Rep
polytopes (1a) in our work, because constrained zonotopes
admit closed-form expressions for exact/inner-approximation
of all set operations in (3). From [21], [22], for a zonotope
Z = {GZξ + cZ | ∥ξ∥∞ ≤ 1} ⊂ Rn for GZ ∈ Rn×NZ

and cZ ∈ Rn and a full-dimensional constrained V =
(GV , cV , AV , bV ),

RC = (RGC , RcC , AC , bC), (5a)

C ∩R W = ([GC , 0], cC , [AC , 0; 0, AW ;RGC ,−GW ],

[bC ; bW ; cW −RcC ]) , (5b)

V ⊖ Z ⊇ (GV D, cV − cZ , AV D, bV ) , (5c)

with D ∈ RNC×NC in (5c) as a diagonal matrix with entries
Dii = 1−

∥∥e⊤i [GV ;AV ]
†[GZ ; 0MV ×n]

∥∥
1
, ∀i ∈ N[1,NV ] and

M† as the pseudo-inverse of matrix M . Similar expressions
to (5c) are also known for arbitrary p-norm balls, p ̸= 1 [22].
In contrast, for H-Rep polytopes, only intersection (3b) and
Pontryagin difference (3c) have closed-form expressions.
Affine maps (3a) (including projection (4)) of a H-Rep
polytope often cause numerical issues for n > 4 due to their
computation complexity [4], [17].

C. Problem statements

Consider a discrete-time nonlinear dynamical system,

xt+1 = f(xt, ut, wt) = Axt +But + Fwt +Gg(xt, ut), (6)

with state xt ∈ Rn, input ut ∈ Rm, disturbance wt ∈
W ⊂ Rp for a convex and compact disturbance set W , g
is a vector of NG convex, nonlinear, and l.s.c. functions
gi : Rn × Rm → R for each i ∈ N[1,NG], and appropriately
dimensioned matrices A,B, F,G.

For a horizon T ∈ N, consider the nonlinear ROCP,

min
u0

max
w0∈W

. . . min
uT−1

max
wT−1∈W

ℓf (xT ) +

T−1∑
t=0

ℓ(xt, ut) (7a)

subject to xT ∈ XT , (7b)
∀t ∈ N[0,T−1], [xt;ut] ∈ Y, (7c)
∀t ∈ N[0,T−1], xt+1 = f(xt, ut, wt), (7d)



for a given initial state x0 ∈ Rn. Here, Y ⊂ Rn × Rm and
XT ⊂ Rn are the state-input constraint and the terminal state
constraint sets, and ℓ : Rn ×Rm → R and ℓf : Rn → R are
the stage cost and the terminal cost functions, respectively.
We assume that Y is convex, and that the set

U(x) = {u | [x;u] ∈ Y} , (8)

for any x ∈ Rn is compact. Here, U(x) is the set of
admissible control at state x under the state-input constraint
Y . Finally, we assume that ℓ, ℓf are convex and l.s.c., and
g, ℓ, ℓf are finite-valued over Y,Y,XT respectively.

Remark 1. For the ease of notation, we do not explicitly
consider time-varying costs, dynamics, and constraints in
this paper. However, all the presented results can be easily
extended to time-varying ℓ, f , g, and Y .

We face two challenges when solving (7): i) non-convexity
arising from the nonlinear equality constraints (7d), and ii)
multi-stage nature of (7). In order to obtain globally optimal
solutions to (7), existing literature often uses the dynamic
programming framework [1]. Specifically, it constructs a
sequence of optimal value functions V ∗ = {V ∗t }

T
t=0 with

V ∗t : Rn → R using the recursion,

V ∗t (x) = min
u∈U(x)

max
w∈W

(
ℓ(x, u) + V ∗t+1(f(x, u, w))

)
, (9)

defined for t ∈ N[0,T−1], and initialize (9) with V ∗T (x) ≜
ℓT (x)+IXT

(x). The recursion (9) is motivated by Bellman’s
principle of optimality, and V ∗t is referred to as the optimal
cost-to-go [1]. Here, (9) may be viewed as T rounds of
two-player games. At each round, u seeks to reduce the
cost-to-go while w seeks to increase the cost-to-go, and
possibly even achieve infeasibility, i.e., choose w such that
Vt+1(f(x, u, w)) =∞ for every u ∈ U(x).

Definition 1. (NONRANDOMIZED MARKOV POLICIES) [24,
Ch. 8] A nonrandomized Markov (NRM) policy π =
{π∗t }T−1t=0 is a sequence of deterministic, state-feedback maps
for the input with π∗t : Rn → Rm.

Proposition 1. The optimal controller for u that solves (7)
is a NRM policy with π∗t as the optimal solution map to the
outer-minimization problem in (9).

Proposition 1, which follows from well-known selection
theorems for l.s.c. functions [24], shows that (7) can be
solved to global optimality using (9). However, the compu-
tation of V ∗, π∗ typically requires discretization (over space)
of Y ⊂ Rn+m and XT ⊂ Rn, and as a result, suffers from
the well-known curse of dimensionality [1].

In this paper, we consider a related nonlinear ROCP,

min
u0

max
w0∈W

. . . min
uT−1

max
wT−1∈W

 ℓf (xT )

+
∑T−1

t=0 ℓ(xt, ut)

+
∑T−1

t=0 α⊤g(xt, ut)

 (10a)

subject to (7b), (7c), (7d).

for a user-defined vector α ∈ RNG , α > 0. We will discuss
the role of α in Sections III-A and III-D. Similarly to (9), we

set up a sequence of optimal value functions V ◦ = {V ◦t }
T
t=0

with V ◦t : Rn → R using the following recursion,

V ◦
t (x) = min

u∈U(x)
max
w∈W

(
ℓ(x, u) + α⊤g(x, u) + V ◦

t+1(f(x, u, w))
)
,

(11)

for t ∈ N[0,T−1] with (11) initialized with V ◦T = V ∗T . Let π+
u

denote the optimal NRM policy that solves (10). We obtain
π+
u from the optimal solution map to the outer-minimization

problem in (11), similarly to (7) and (9) (see Proposition 1).
In this paper, we address the following three problems:

Problem 1. Design a tractable algorithm to compute a NRM
policy π+

u for (10) that is free from space discretization using
convex optimization and computational geometry.

Problem 2. Determine sufficient conditions under which π+
u

computed in Problem 1 is optimal for (10).

Problem 3. Determine an upper bound on the suboptimality
incurred when using an optimal NRM policy π+

u designed for
(10) to solve (7).

III. LOSSLESS CONVEXIFICATION OF NONLINEAR ROCP

In this section, we first formulate a nonlinear ROCP
with augmented state and input equivalent to (10), propose
a set-based, discretization-free approach to solve (10) to
global optimality under certain conditions, and discuss a
suboptimality bound when π+

u (the optimal controller for
(10)) is used in (7). We conclude with a brief discussion of
a tractable, almost lossless implementation of the proposed
approach using constrained zonotopes.

Table I summarizes all the ROCP analyzed, the relevant
notation used, and the key results presented in this paper.

A. Formulation of a nonlinear ROCP equivalent to (10)

Consider the ROCP with linear dynamics,

min
u+
0

max
w0∈W

. . . min
u+
T−1

max
wT−1∈W

(10a)

subject to (7b), (7c),

∀t ∈ N[0,T ], zt = [xt; ct], (12a)

∀t ∈ N[0,T−1], u+
t = [ut;σt; γt], (12b)

∀t ∈ N[0,T−1], σt = g(xt, ut), (12c)

∀t ∈ N[0,T−1], γt = ℓ(xt, ut), (12d)

cT = ℓf (xT ), (12e)

∀t ∈ N[0,T−1], zt+1 = A+zt +B+u+
t + F+wt,

(12f)

with an augmented state zt = [xt; ct] ∈ Rn+1, augmented
input u+

t = [ut;σt; γt] ∈ Rm+NG+1, disturbance wt ∈ Rp,
same as (6), and matrices

A+ =

[
A 0n×1

01×n 1

]
, (13a)

B+ =

[
B G 0n×1

01×m −α⊤ −1

]
, F+ =

[
F

01×p

]
. (13b)



TABLE I
DIFFERENT ROCP AND SUMMARY OF RESULTS. THM. 1 PROVIDES

SUFFICIENT CONDITIONS UNDER WHICH ALGO. 1 CAN SOLVE (12) (AND

THEREBY, (10)) TO GLOBAL OPTIMALITY. THM. 2 BOUNDS THE

SUBOPTIMALITY OF USING SUCH A CONTROLLER ON (7).

Nonlinear ROCP (7) (10) (12)

Description Typical (7) with a Equivalent
nonlinear ROCP new cost (10a) to (10)

State x ∈ Rn x ∈ Rn z ∈ Rn+1

Input u ∈ Rm u ∈ Rm u+ ∈ Rm+NG+1

Opt. input policy π∗ π+
u π+

Opt. disturbance policy ω∗ ω+ ω+

Opt. value function V ∗
0 : Rn → R V ◦

0 : Rn → R V +
0 : Rn+1 → R

By (12c) and (12f), xt in (12) follows the nonlinear dynamics
(7d). In other words, despite the introduction of an auxiliary
state ct and auxiliary inputs σ, γ, (12) has an identical
feasible space for x and u as (7), and identical objectives.
Thus, (10) and (12) are equivalent.

We briefly discuss the motivations of introducing c, α, σ, γ
in (12). While constraints (12c)–(12e) are non-convex in their
current form, their relaxations to g ≤ σ, ℓ ≤ γ, ℓf ≤ cT
are convex, which we will use to address Problem 1 in
Section III-C. Since α > 0, we can use the epigraph
form [23, Sec. 4.1.3] to replace g with σ in (10a). From
(12c), (12d), (12f), ct satisfies the recursion,

ct = ℓ(xt, ut) + α⊤g(xt, ut) + ct+1, (14)

for t ∈ N[0,T−1] with (14) initialized by (12e). In other
words, ct is the cost-to-go function of the ROCP (10),

ct = ℓf (xT ) +
∑T−1

k=t

(
ℓ(xk, uk) + α⊤g(xk, uk)

)
. (15)

B. Dynamic programming recursion to analyze ROCP (12)

Similarly to (9), one can analyze and (in theory) compute
the optimal policy π+ that solves (12) using dynamic pro-
gramming. Specifically, we construct a sequence of optimal
value functions V + = {V +

t }
T

t=0 with V +
t : Rn+1 → R

based on V ◦ defined in (11) via the recursion,

V ◦
t (x) = min

u+∈U+
EQ(x)

max
w∈W

(
γ + α⊤σ

+V ◦
t+1 (Ax+Bu+ Fw +Gσ)

)
,

(16a)

V +
t (z) = V ◦

t (x) + I{V ◦
t (x)=c}(z), (16b)

for t ∈ N[0,T−1] with (16a) initialized by

V ◦T (x) ≜ ℓf (x) + IXT
(x), (17)

V +
T given by (16b), and Y+

EQ,U
+
EQ given by,

Y+
EQ =

{
[x;u+]

∣∣∣∣∣ [x;u] ∈ Y, ℓ(x, u) = γ,
g(x, u) = σ

}
, (18a)

U+
EQ(x) =

{
u+

∣∣∣∣∣ [x;u+] ∈ Y+
EQ

}
. (18b)

Here, (16a) is identical to (11) due to (18), while I{V ◦
t (x)=c}

enforces ct = V ◦t (xt) by (15) and (16b).

Algorithm 1 Set-based optimal controller synthesis for (12)
Input: Augmented linear dynamics A+, B+, F+ in (12f),

augmented sets Y+ and X+
T in (21), horizon T ∈ N,

initial state x0.
Output: Input policy π+ (19) that solves (12).

1: Initialize KT ← X+
T

2: for t ∈ {T − 1, . . . , 0} do ▷ Robust controllable set

3: Kt ← Projz

[z;u+]

∣∣∣∣∣ [x;u+] ∈ Y+,

A+z + B+u+ ∈ Kt+1 ⊖ (F+W)




4: end for
5: for t ∈ {0, 1, . . . , T − 1} do ▷ Forward roll-out
6: Define π+

t (xt) = [u∗t ;σ
∗
t ; γ
∗
t ], where u∗t , σ

∗
t , γ
∗
t are

the optimal solutions for (20) given the current state xt,

minimize
ut,σt,γt,ct

ct

subject to ut ∈ Rm, σt ∈ RNG , γt ∈ R, ct ∈ R,

A+

[
xt

ct

]
+B+

 ut

σt

γt

 ∈ Kt+1 ⊖ (F+W),

[xt;ut;σt; γt] ∈ Y+.

(20)

7: end for

The optimal input for (12) is also a NRM policy with π∗t as
the optimal solution map to the outer-minimization problem
in (16a) due to compactness of U+

EQ(x) for every x ∈ Rn and
l.s.c. V ◦t , V

+
t , similarly to Proposition 1. However, the outer-

minimization in (16a) is non-convex, since U+
EQ requires

enforcement of convex (non-affine) equality constraints. By
(12c) and (12d), π+

t has the form,

π+
t (x) =

[
π+
u,t(x); g(x, π+

u,t(x)); ℓ(x, π+
u,t(x))

]
, (19)

where π+
u = {π+

u,t}
T−1
t=0

is the optimal NRM policy for (10).
As discussed in Section II-C, an implementation of (16)
requires space discretization of Y+

EQ and U+
EQ, and hence

it is usually impractical for n > 3.

C. Space discretization-free solution to ROCP (12) via sets

We consider a convex relaxation of the outer-minimization
problem in (16a), where we use Y+ (a convex relaxation of
Y+
EQ) and X+

T ,

Y+ =
{[

x;u+] | [x;u] ∈ Y, ℓ(x, u) ≤ γ, g(x, u) ≤ σ
}
, (21a)

X+
T = {[x; c] | x ∈ XT , ℓf (x) ≤ c} . (21b)

To avoid the scenario where u+ computed for the convex
relaxation is infeasible for (16a), we propose sufficient con-
ditions under which the convex relaxation is lossless. Specifi-
cally, we propose sufficient conditions under which the non-
convex, outer-minimization problem in (16a) is equivalent
to the convex formulation based on Y+,X+

T . Then, we
use existing literature for computing robust controllable set
computation to solve (16a) without any space discretization,
i.e., without an explicit computation of V ◦.

We summarize our approach in Algorithm 1, which has
two stages. First, it computes the robust controllable set



of the linear dynamics (12f) with state-input constraints
Y+,X+

T . For convex Y+,X+
T , the set recursion in Step 3

yields convex Kt for each t ∈ N[0,T ] [4], [17]. Next, we
compute the controller π+

t by solving (20), a convex one-
step optimization problem, parameterized by xt.

We now propose a set of sufficient conditions in Theo-
rem 1 which guarantee that π+ computed by Algorithm 1 is
globally optimal for (12) (and thereby, (10)). We will later
discuss a collection of stronger, but easier-to-check sufficient
conditions based on Theorem 1.

Theorem 1. (SUFFICIENT CONDITIONS FOR LOSSLESS
CONVEXIFICATION) Let the following assumptions hold.
A1) for each i ∈ N[1,NG], the functions pa, pb, pc : R → R
(defined below) are non-decreasing,

A1.a) pa(θ) ≜ gj(x+Giθ, u) is defined for all [x;u] ∈ Y
for each j ∈ N[1,NG],

A1.b) pb(θ) ≜ ℓ(x+Giθ, u) is defined for all [x;u] ∈ Y ,
A1.c) pc(θ) ≜ ℓf (x+Giθ) is defined for all x ∈ XT .

A2) A and G in (12f) satisfy AG = G.
A3) for all x ∈ Rn, u, u′ ∈ Rm, w ∈ Rp, and σ ≥ g(x, u),

[Ax+Bu+ Fw +Gσ;u′] ∈ Y
=⇒ [Ax+Bu+ Fw +Gg(x, u);u′] ∈ Y. (22)

A4) for all x ∈ Rn, u ∈ Rm, w ∈ Rp, and σ ≥ g(x, u),

Ax+Bu+ Fw +Gσ ∈ XT

=⇒ Ax+Bu+ Fw +Gg(x, u) ∈ XT . (23)

Then, the following results hold true:
R1) for each t ∈ N[0,T ], V ◦t is convex with Epi(V ◦t ) = Kt,
where Kt is defined in Step 3 of Algorithm 1,
R2) for each t ∈ N[0,T ], each i ∈ N[1,NG], and for all [x; c] ∈
Kt, p(θ) ≜ V ◦t (x+Giθ) is non-decreasing in θ for every θ
such that [x+Giθ; c] ∈ Kt, and
R3) starting from an initial state x0, for each t ∈ N[0,T−1],
(20) computes π+

t that solves (12).
In other words, Algorithm 1 addresses Problem 2.

Proof sketch. For t = T , we have R1) with the observation
that VT = ℓf + IXT

, and Epi(V ◦T ) = {z | ℓf (x) ≤ c, x ∈
XT } = X+

T = KT by (21b) and Step 1 of Algorithm 1. R2)
follows from A1.c) and A4).

For t ∈ N[0,T−1], R1), R2), and R3) follows from a proof
by induction.

We first focus on the base case, t = T − 1. By (13b),
cT−1 = cT + γT−1 + α⊤σT−1. By (3c) and R1) at t = T ,
the following constraint in (20) at t = T − 1,

A+

[
xT−1
cT−1

]
+B+

 uT−1
σT−1
γT−1

 ∈ KT ⊖ (F+W),

is equivalent to

max
w∈W

V ◦
T (AxT−1 +BuT−1 + FwT−1 +GσT−1) ≤ cT . (24)

Additionally, α > 0, the monotonicity assumptions in A1)
and A3), and monotonicity result of R2) at t = T together
ensure that, starting from any feasible solution of (20), we

g Epi(g) σt

Y

x, uxt, ut

g(xt, ut)

[Axt +But + Fwt +Gσt;u′]

[Axt +But + Fwt +Gg(xt, ut);u′]

Fig. 1. Illustration of the assumption A3) in Theorem 1. Specifically, Y
does not prevent component-wise minimization of σt until σt = g(xt, ut).

can continue decreasing γT−1 and σT−1 component-wise
without any loss of feasibility. Consequently, minimization
of cT−1 in (20) forces the minimization of γT−1 and σT−1
component-wise until they coincide with ℓ(xT−1, uT−1) and
g(xT−1, uT−1) at optimality. In other words, the optimal u+

for (20) is also optimal for (16a), which had convex nonlinear
equality constraints g = σ and ℓ = γ. Thus, the optimal
value of (20) coincides with that of (16a), which completes
the proof of R3) at t = T − 1.

The proof of R2) for t = T − 1 follows via monotonicity
arguments—specifically, A1.a), A1.b), A2), A3), and R2) at
t = T . Here, AG = G in A2) allows the determination of
monotonicity of VT−1 using the monotonicity of VT , which
follows from R2) for t = T .

The proof of R1) for t = T−1 follows from the definition
of KT−1 in Algorithm 1 and the optimal values of (20) and
(16a) coincide, as proven by R3) for t = T − 1.

Using arguments similar to the base case, we can also
show the induction step, i.e, R1), R2), and R3) holds for t =
k when they hold for t = k + 1 for some k ∈ N[0,T−1].

We make several observations about Algorithm 1 and The-
orem 1. First, from (24), observe that the outer-maximization
in (16a) is encoded in Pontryagin difference Kt+1⊖ (F+W)
in Algorithm 1, overcoming the bi-level optimization prob-
lem in (16a) without incurring any conservatism. Second,
the non-decreasing requirement on g, ℓ, ℓf in A1) is similar
to that of the composition rules for convex functions that
preserve convexity [23]. For example, A1.a) ensures that
g(f(x, u, w), u) remains convex in x, u, w. Third, as seen
in Figure 1, Assumptions A3) and A4) enable reducing the
auxiliary inputs σ, γ until (12c) and (12d) are active. Fourth,
we have V +

0 from K0 by (16b), i.e., for any x0 ∈ Rn,
V +
0 (x0) = minc∈Projc(K0∩{[x;c]|x=x0}) c. Finally, while it is

well-known that V ◦t is convex with Epi(V ◦t ) = Kt for ROCP
with linear dynamics [6], Theorem 1 provides sufficient
conditions under which V ◦t is convex with Epi(V ◦t ) = Kt

for some nonlinear ROCP (12). Additionally, since projec-
tion preserves convexity, Theorem 1 also provides sufficient
conditions for convexity of the robust controllable set of
nonlinear dynamics (6) under constraints Y,XT .

Corollary 1. (CONVEXITY OF ROBUST CONTROLLABLE
SET) Let all assumptions in Theorem 1 hold. Then, the
robust controllable set of the nonlinear dynamics (6) under



constraints Y,XT is the domain of V ◦0 , which coincides with
Projx(K0), the projection of the set K0 on to X .

Proposition 2. (EASY-TO-CHECK CONDITIONS FOR LOSS-
LESS CONVEXIFICATION) Consider (12) with state x =
[xL;xNL] ∈ RnL+nNL with nL + nNL = n and dynamics
(6) such that

A =

[
AL 0nL×nNL

AL,NL InNL×nNL

]
, G =

[
0nL×NG

GNL

]
, (25)

for some matrices AL, AL,NL, GNL that are appropriately
dimensioned. Let

g(x, u) = g′(xL, u), ℓ(x, u) = ℓ′(xL, u), ℓf (x) = ℓ′(xL),

for some convex, l.s.c, functions g′, ℓ′, ℓ′f . Let Y be the
Cartesian product of some compact and convex set Y ′ ⊂
RnL+m and an axis-aligned box in RnNL , i.e.,

Y = {[xL;xNL;u] | [xL;u] ∈ Y ′,∆− ≤ xNL ≤ ∆+
Y,NL},

with ∆−,∆+
Y,NL ∈ RnNL for some ∆+

Y,NL ≥ ∆−,

∆−i = min
[xL;u]∈Y′

e⊤i GNLg(xL, u), ∀i ∈ N[1,nNL], (26)

and ei are the standard axis vectors of RnNL . Let XT be the
Cartesian product of some compact and convex set X ′T ⊂
RnL and an axis-aligned box in RnNL ,

XT = {[xL;xNL] | xL ∈ X ′T ,∆− ≤ xNL ≤ ∆+
X,NL},

for some ∆+
X,NL ∈ RnNL ,∆+

X,NL ≥ ∆−. Then, all the results
in Theorem 1 and Corollary 1 hold.

Proposition 2 characterizes a broad class of nonlinear
ROCP using easy-to-check sufficient conditions for which
Algorithm 1 solves (10) to global optimality. Specifically, it
partitions the state space based on the dynamics (6) into
two components — xL that follows linear dynamics and
xNL that follows nonlinear dynamics. Here, (25) satisfies
A2). Additionally, Proposition 2 requires the nonlinear terms
in (6) to be only a function of xL and u, which satisfies
A1) without imposing any monotonicity requirements on
g′, ℓ′, ℓ′f . Finally, since ∆− in (26) is the (component-wise)
minima of GNLg over Y ′, the definition of Y and XT in
Proposition 2 satisfies A3) and A4). In Section IV, we
consider a numerical example that satisfies Proposition 2.

D. Suboptimality bounds for π+
u when used to solve (7)

We now turn our attention to Problem 3. Similarly to the
definition of π+ in (19), we define a NRM policy π† that is
feasible but possibly suboptimal for (12) using π∗,

π†t (x) = [π∗t (x); g(x, π∗t (x)); ℓ(x, π∗t (x))] , (27)

with π†t defined for all x ∈ Rn, t ∈ N[0,T−1], and π†u = π∗.
We define a real-valued function L and a NG-valued

function C,

L(π, ω;x0) ≜ ℓf (xT ) +
∑T−1

t=0
ℓ(xt, πt(xt)), (28)

C(π, ω;x0) ≜
∑T−1

t=0
g(xt, πt(xt)). (29)

where {xt}Tt=0 is the trajectory of (6) under π and ω.
Let the optimal disturbance policy for (7) and (12) be ω∗

and ω+. Then, for a given initial state x0, we have

V ∗0 (x0) = L(π∗, ω∗;x0), (30)

V +
0 (x0) = L(π+, ω+;x0) + α⊤C(π+, ω+;x0). (31)

For brevity, we drop references to x0 in L,C hereafter.

Theorem 2. (SUBOPTIMALITY GAP) The suboptimality in-
curred when using π+

u to solve (7) is bounded,

0 ≤ L(π+
u , ω∗)− L(π∗, ω∗) ≤ α⊤(C(π∗, ω+)− C(π+, ω+)

)
.

Proof. We observe that

L(π∗, ω∗) ≤ L(π+
u , ω∗), (32a)

L(π∗, ω+) ≤ L(π∗, ω∗), (32b)

L(π+
u , ω+) + α⊤C(π+

u , ω+) ≤ L(π∗, ω+) + α⊤C(π∗, ω+), (32c)

L(π+
u , ω∗) + α⊤C(π+

u , ω∗) ≤ L(π+
u , ω+) + α⊤C(π+

u , ω+). (32d)

Here, (32a) and (32b) follows from the optimality of π∗ and
ω∗ over π+

u and ω+ for (7), and (32c) and (32b) follows
from the optimality of π+ and ω+ over π∗ and ω∗ for (12).
We have the lower bound from (32a), and obtain the upper
bound starting from (32d) and applying (32c) and (32b).

Theorem 2 addresses Problem 3, and shows that solving
(12) to global optimality is sufficient to solve (7) with
bounded suboptimality. The suboptimality decreases as the
gap between the nonlinear terms g in (6) shrinks for the NRM
policies π∗ and π+ under the optimal disturbance policy
ω+ for (12). Additionally, the suboptimality decreases as
∥α∥ → 0, which is expected from the relationship between
(7) and (10) (thereby, (12)). But we note that one may
face numerical issues when implementing Algorithm 1 for
extremely small α.

E. An almost lossless implementation of Algorithm 1

We briefly discuss why an exact implementation of Algo-
rithm 1 that is lossless is challenging and how a constrained
zonotope-based implementation yields an almost lossless
implementation. While Y+,X+

T in (21) themselves are not
compact, we can add loose upper-bounds on c, σ, γ to render
these sets compact without incurring any approximation.

For convex, piecewise-affine functions gi, i ∈
N[1,NG], ℓ, ℓf , and polytopes Y,XT in (12), the sets
Y+ and X+

T in (21) are polytopes. Consequently, Step 3
may be implemented exactly using operations on polytopes
in existing toolboxes [18]–[20], and we can solve (12)
to global optimality by Algorithm 1 under the sufficient
conditions in Theorem 1. Such an implementation is exact,
and therefore lossless. However, a tractable implementation
of Algorithm 1 using the standard H-Rep representations
(1a) is hindered by the need to compute projections, which is
a computationally expensive operation for H-Rep polytopes.
On the other hand, constrained zonotopes (1b) are equivalent
to H-Rep polytopes, and admit closed-form expressions for
all the set operations necessary for Step 3 and (20) (see
Section II-B). Since (5c) yields an inner-approximation (that



is exact in some cases [22]), we have an almost lossless
implementation of Algorithm 1 with constrained zonotopes.

When gi, i ∈ N[1,NG], ℓ, ℓf are convex but not piecewise-
affine, the sets Y+ and X+

T are no longer polytopes. How-
ever, their epigraphs are convex, and may be outer/inner-
approximated by polytopes (or constrained zonotopes) to
arbitrary accuracy via ray-shooting [25]. As a concrete
example, consider ℓf : Rn → R with ℓf (x) = ∥x∥2. Here,
Epi(ℓf ) = {[x; c] | ℓf (x) ≤ c} = {[x; c] | ∥x∥2 ≤ c} is
a second-order cone [23]. For {vi}NV

i=1 that are NV ∈ N
distinct points on the boundary of the unit sphere in Rn,

Epi(ℓf ) ⊃
{
[x; c] | x ∈ ConvexHull

(
{cvi}NV

i=1

)}
, (33a)

Epi(ℓf ) ⊂ {[x; c] | ∀i ∈ N[1,NV ], v⊤i x ≤ c}, (33b)

where the approximations becomes tighter (in volume) as
NV increases. See [25] for an optimization-based computa-
tion of vi. To ensure convexity in [x; c], we cast (33a) as,{

[x; c] | x ∈ ConvexHull
(
{cvi}NV

i=1

)}
=

{
[x; c] | ϕ ≥ 0, 1⊤NV

ϕ = c,
∑NV

i=1
ϕivi = x

}
. (34)

When inner-approximations of Y+,X+
T are used, Algo-

rithm 1 yields a feasible but suboptimal solution to (12)
with conservatism arising from (34) and (5c). While the user
controls the conservatism from (34) via NV , the effect of (5c)
on Algorithm 1 requires further investigation. When outer-
approximations of Y+,X+

T are used along with [22, Alg. 5]
(outer-approximation of V ⊖ Z), we obtain a super-optimal
solution to (12) that can help quantify the sub-optimality of
the inner-approximation approach.

IV. NUMERICAL EXAMPLE

We consider a monitoring application using an energy-
constrained drone. The mission specification requires the
drone to approach a static target located at ptarget ∈ R3

for monitoring, and subsequently return to a pre-specified
terminal location pterminal ∈ R3, while subject to wind
disturbances. We model the limited onboard battery by a
hard constraint on the cumulative sum of thrust magnitudes.

We model the drone dynamics as a 3D double integrator
with position pt ∈ R3 and velocity vt ∈ R3 and acceleration
ut ∈ R3 at time t ∈ N, discretized in time via a zero-
order hold with sampling time ∆t. We model the acceleration
due to wind disturbances by wt ∈ R3. Additionally, we
denote the cumulative sum of thrust magnitudes bt = b0 +∑t−1

k=0 ∥uk∥2, for t ∈ N[1,T ], which may be equivalently
expressed by bt+1 = bt + ∥ut∥2. Thus, the dynamics of the
system in the form (6) are,

xt+1 = f(xt, ut, wt) = Axt +But + Fwt +G∥ut∥2, (35)

with state xt = [pt; vt; bt], input ut ∈ R3, disturbance wt ∈
W ⊂ R3, NG = 1, g(x, u) = ∥u∥2, F = B, and

A =

 I3 ∆tI3 03×1

03×3 I3 03×1

01×3 01×3 1

 , B =


∆2

t
2
I3

∆tI3

01×3

 , G =

[
06×1

1

]
.

Fig. 2. Epigraph of ℓ and g for pz = 0.5 and uz = 0 using (34). The set
in the xy plane shows the constraints on [px; py ], [ux;uy ] from Y .

We model the nonlinear ROCP using (12) with,

ℓf (x) = ℓ(x, u) = ℓ(p) = ∥p− ptarget∥2, (36a)

Y =

{
[x;u]

∣∣∣∣∣ [−1;−1; 0] ≤ p ≤ [1; 1; 2],

∥v∥∞ ≤ 1, 0 ≤ b ≤ ∆B , ∥u∥∞ ≤ 3

}
, (36b)

XT =
{
x | ∥[p− pterminal; v]∥∞ ≤ 0.1, 0 ≤ b ≤ ∆B

}
. (36c)

Here, (10a) is a weighted sum of the tracking error and
the cumulative sum of thrust magnitudes at the end of the
mission. (35) and (36) together satisfy Proposition 2, which
guarantees that Algorithm 1 solves (12) to global optimality.

We set up and solve (12) with T = 30, ∆t = 0.1,
p0 = [−1; 0; 0] with zero initial velocity, pterminal = [1; 0; 0],
ptarget = [0;−0.8; 0.5], and W = {w | ∥w∥∞ ≤ 0.25}. Here,
Umax = maxu∈ProjuY ∥u∥2 = 5.2 is the maximum thrust
magnitude that may be applied at any time step, ∆B =
0.4(UmaxT ) = 62.35 limits the cumulative sum of thrust
magnitudes employed over the mission to 40% of the max-
imum allowed limit, and ℓmax = max[x;u]∈Y ℓ(x, u) = 2.55
is the maximum tracking error. We set α = 0.001× 1NG×1.

Figure 2 shows the epigraph of ℓ and g for fixed pz and uz

respectively constructed using (34) for NV = 60. Recall that
NV in (34) is the number of vertices used to approximate
the epigraph. We implemented Algorithm 1 on a standard
desktop (Intel CPU i9-12900KF, 64 GB RAM) in Python
3.10 using pycvxset [20], GUROBI [26], and cvxpy [27].

We evaluate six scenarios obtained by considering three
initial cumulative sum of thrust magnitudes b0 ∈ {0, 2.5, 5},
with two wind conditions: (i) adversarial disturbance and (ii)
no wind. Thus, the scenarios are 1.i and 1.ii with b0 = 0, 2.i
and 2.ii with b0 = 2.5, and 3.i and 3.ii with b0 = 5.

Since each scenario corresponds to different x0, we reuse
the set recursion in Algorithm 1 (Step 3) across scenarios for
a fixed NV , and evaluate π+ for each scenario via separate
forward roll-outs (Step 6). We compute the adversarial wt

by computing the vertex of W that maximizes V ◦t+1 at each
iteration of (20). This approximates the optimal adversarial
disturbance ω+ via a one-step optimal disturbance policy.
Exact computation of ω+ requires space discretization [1].

Table II reports various metrics for each scenario and
NV ∈ {60, 360}. As expected, the approximation error sig-
nificantly reduces for larger NV at the expense of increased
computations. Moreover, Scenario 3 does not have a solution
for NV = 60. On the other hand, the cumulative tracking
error and cumulative thrust exhibit minimal variation with
NV , suggesting that the convex-hull approximation in (34)
with lower NV may be sufficient to solve (12) in some cases.



Fig. 3. Trajectories for various scenarios for NV = 360.

TABLE II
EVALUATION OF ALGORITHM 1 FOR EACH SCENARIO, NV ∈ {60, 360}

ON THE CUMULATIVE TRACKING ERROR AND THRUST MAGNITUDES,
RELATIVE APPROXIMATION ERROR PERCENTAGE

((0.1/0.5/0.9)-QUANTILES) OF σ, γ , AND OVERALL COMPUTE TIME FOR

THE TWO PARTS OF ALGORITHM 1.

NV Scenario Cumulative metric Relative approximation error % Compute time (s)
Tracking Thrust (σ − ∥u∥2)/Umax (γ − ℓ(x))/ℓmax Kt π+

60

1.i 25.26 48.23 0.0 / 0.3 / 2.0 0.2 / 0.7 / 1.4

4.79

6.35
1.ii 23.09 47.34 0.0 / 0.1 / 1.8 0.2 / 0.7 / 1.4 8.69
2.i 26.79 50.81 0.0 / 0.3 / 2.2 0.4 / 0.8 / 1.4 5.67
2.ii 24.48 48.13 0.0 / 0.3 / 2.2 0.2 / 0.7 / 1.4 8.70
3.i INFEASIBLE N/A
3.ii INFEASIBLE N/A

360

1.i 24.42 49.33 0.0 / 0.1 / 0.5 0.1 / 0.2 / 0.4

41.20

36.58
1.ii 22.30 50.39 0.0 / 0.0 / 0.4 0.0 / 0.2 / 0.4 38.52
2.i 25.76 50.45 0.0 / 0.1 / 0.5 0.1 / 0.2 / 0.4 37.83
2.ii 23.57 50.32 0.0 / 0.0 / 0.5 0.1 / 0.2 / 0.4 35.88
3.i 27.37 52.20 0.0 / 0.1 / 0.5 0.1 / 0.2 / 0.4 38.18
3.ii 24.95 50.48 0.0 / 0.0 / 0.5 0.1 / 0.2 / 0.4 44.15

Algorithm 1 solves the feasible four scenarios of (12) in
under 14 seconds for NV = 60, and every scenario in under
86 seconds for NV = 360. As expected, the tracking error
is lowest in Scenario 1.ii (no disturbance case) with b0 = 0,
and worst in Scenario 3.i — (adversarial disturbance case)
with b0 = 5 which reduces the (effective) budget for bT .

Figure 3 shows the trajectory of the drone for each
scenario. All trajectories reach the terminal set XT (orange)
while satisfying Y . As expected, scenarios with disturbance
and lower budget show higher deviation from the target point.

Figure 4 shows that the lossless convexification guarantee
from Proposition 2 holds, as expected. Specifically, despite
solving a convex relaxation of (12), Algorithm 1 computes
an optimal policy that has the form of (19) which satisfies
(12c) and (12d) at all time steps.

V. CONCLUSION

We introduced a set-based control design framework to
compute globally optimal controllers for a class of nonlinear

Fig. 4. Plot showing that σ, g(x, u) (top) and γ, ℓ(x, u) (bottom) coincide
for NV = 360 and Scenario 1.i for every t ∈ N[0,T ]. This is due to the
lossless convexification guarantee in Theorem 1.

ROCP. We demonstrated that the discretization-free approach
has low computational burden using constrained zonotopes.
Our future work will investigate completely lossless tractable
implementation of Algorithm 1.
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