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Abstract
The recent 3D Gaussian Splatting (3DGS) method has been expected for high-quality 3D
scene rendering. However, due to its explicit representation, which requires geometry and
attributes for mil- lions of individual 3D Gaussians, 3DGS requires a significant data size for
storage and transmission. For data reduction, some studies have proposed signal-processing-
based and generative-based 3DGS compression methods. The generative-based methods uti-
lize multi-layer perceptrons (MLPs) with fixed activation functions for individual attributes
to reduce the locally redundant Gaussians. In this paper, we propose a novel approach,
QKAN-GS, to represent the individual Gaussian attributes with a small model size. For
this purpose, we design a Quantum-inspired Kolmogorov-Arnold Network (QKAN), which is
quantum-empowered learnable activation functions on model edges, to maintain the model’s
expressive power with fewer parameters. Experiments show that the proposed QKAN-GS
achieves better 3D reconstruction quality than the generative 3DGS compression method,
regardless of whether it uses fixed or learnable activation functions, under the same data size.
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Abstract

The recent 3D Gaussian Splatting (3DGS) method has been expected
for high-quality 3D scene rendering. However, due to its explicit
representation, which requires geometry and attributes for mil-
lions of individual 3D Gaussians, 3DGS requires a significant data
size for storage and transmission. For data reduction, some stud-
ies have proposed signal-processing-based and generative-based
3DGS compression methods. The generative-based methods utilize
multi-layer perceptrons (MLPs) with fixed activation functions for
individual attributes to reduce the locally redundant Gaussians.
In this paper, we propose a novel approach, QKAN-GS, to repre-
sent the individual Gaussian attributes with a small model size. For
this purpose, we design a Quantum-inspired Kolmogorov-Arnold
Network (QKAN), which is quantum-empowered learnable activa-
tion functions on model edges, to maintain the model’s expressive
power with fewer parameters. Experiments show that the proposed
QKAN-GS achieves better 3D reconstruction quality than the gen-
erative 3DGS compression method, regardless of whether it uses
fixed or learnable activation functions, under the same data size.
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1 Introduction

The rendering of three-dimensional (3D) scenes in a photorealistic
and real-time manner has been a central goal in the fields of com-
puter vision and graphics. The recent introduction of 3D Gaussian
Splatting (3D-GS) [5, 7] has marked a significant breakthrough,
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achieving state-of-the-art rendering quality and speed by represent-
ing 3D scenes as a large number of 3D Gaussians with attributes
including position, rotation, scale, color, and opacity. This method
utilizes a tile-based rasterizer that has been optimized for mod-
ern GPUs. This allows for efficient rendering without the costly
ray-marching required by many neural radiance fields. However,
3D-GS causes a significantly large model size. Storing and trans-
mitting the attributes of millions of Gaussians requires hundreds
of megabytes or even gigabytes of storage and network capacity
for complex scenes. Thus, deploying 3D-GS models on resource-
constrained devices, such as wearable devices and mobile devices,
is challenging.

To address this challenge, existing studies on 3D-GS compression
methods have proposed methods to compress Gaussian primitives.
They can be broadly categorized into two distinct classes: generative
and traditional compression methods. The traditional compression
methods convert the learned 3D Gaussians into a bitstream suitable
for storage and transmission by applying signal-processing-based
compression techniques. A pioneering work is Graph-based Gauss-
ian Splatting Compression (GGSC) [21], which utilizes Graph Signal
Processing (GSP). They regard the Gaussian primitives as a graph
signal and define a graph Fourier transform (GFT) based on the
graph.

On the other hand, the generative methods are designed to con-
struct more compact scene representations by optimizing 3D-GS
parameters under specific constraints or by learning a compact
parameter representation. To obtain the compact representation,
many studies aim to use lightweight multi-layer perceptrons (MLPs)
for generating Gaussian attributes from inputs, including embed-
dings or structural features [2, 6, 11, 19]. Other studies consider that
many Gaussian primitives share similar attributes, and thus they
use codebooks based on K-means for quantization [3, 9, 12-14].

The generative studies achieved a compact 3D-GS representa-
tion by utilizing small MLPs to realize neural Gaussians for each
attribute of Gaussian primitives. However, the performance may be
limited since their MLPs used a fixed activation function for gener-
ating Gaussian attributes. In this paper, we introduce QKAN-GS,
inspired by Kolmogorov-Arnold Network (KAN) [10, 18] and quan-
tum neural networks (QNNs) [1, 4, 16]. Unlike typical MLP architec-
tures, KANs implement learnable activation functions at the edges
of the network, enabling them to capture complex functions. In ad-
dition, QNN is a promising technique for accelerating computation
while reducing the number of parameters. Our quantum-inspired
KAN (QKAN) architecture aims to combine these advantages to
achieve high-quality rendering and a compact representation in
3D-GS compression.
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Experiments using an open 3D-GS dataset demonstrate that generate attributes for Gaussians, whose locations are determined
our QKAN-based architecture achieves better rate-distortion per- by adding x¢ and o, where [ is utilized to regularize both locations
formance compared with the state-of-the-art generative method, and shapes of the Gaussians.

Scaffold-GS [11], and KAN-based architecture.
Our main contributions can be summarized as follows: 2.2 QKAN
e We propose QKAN-GS, a new paradigm for generative 3D- In contrast to the typical MLPs with fixed activation functions, KAN
GS compression, to realize quantum-empowered learnable shifts the paradigm from “learnable weights and fixed activations”
activation functions for generating Gaussian attributes. to “learnable weights and activations”. Although traditional KAN ar-
o We are the first to propose the concept of QKAN for parameter- chitectures utilized B-splines and fully-connected layers, our QKAN
efficient 3D scene representation. architecture extends this concept by harnessing the power of QNNs.
This approach may have the potential to improve the rate-distortion
2 QKAN-GS performance in generative 3D-GS compression by creating more
Fig. 1 (a) shows the overview of the proposed QKAN-GS. Our QKAN- expressive and parameter-efficient activation functions.

Fig. 1 (b) shows the proposed QKAN architecture. It is applied
independently to generate each Gaussian attribute, namely for
Deov (f%; Ocov), opacity Popacity (f*; Oopacity), and color Peolor (f; Ocolor)-
Here, 6, represents the set of learnable parameters for each spe-
cific attribute. The QKAN architecture mainly consists of three
main components: an initial linear layer, a channel-wise quantum
activation layer, and a final linear layer.

First, the input anchor feature f¢ is projected into an embedding
vector h € RM by an initial layer:

GS leverages the fundamental architecture of Scaffold-GS, which
is an anchor-based generative 3D-GS compression. More specifi-
cally, 3D Gaussian primitives are divided into anchors, each with
corresponding 3D coordinates and attributes consisting of features,
scalings, and offsets. The anchor features are fed into the proposed
QKAN architecture of each attribute. The features are first passed
to a linear layer. The output of the linear layer, h, is then fed into an
element-wise quantum activation function, hi = Qact; (h;), where
h; is an element of h. Finally, another linear layer is used to generate
the corresponding attribute from the extracted features h. h=Wf%+b, (3)

2.1 Preliminaries where W € RM*D® and b € RM are trainable weight and bias. The
embedding vector is then processed by the element-wise quantum
activation layer Qact;(h;). More specifically, the forward pass of
Qact;(h;) can be described as:

2.1.1 3D Gaussian Splatting. 3D-GS represents a 3D scene using
numerous Gaussians and renders viewpoints through differentiable
splatting and tile-based rasterization. Each Gaussian is initialized
from Structure from Motion (SfM) and defined by a 3D covariance hi = Qact;(h;), fori=1,...,M. 4)

matrix ¥ € R3*3 and location (mean) g € R3: N .
( ) H The quantum activation layer for each element h; consists of em-

G(x) = exp —%(x _ ,u)TZ_l(x —w), 1) beddi.ng and entangling layers. For the embedding layer, we use Fhe

amplitude embedding to encode each element of the embedding
vector h into a single qubit. The entangling layer is based on a
parameterized quantum circuit in [17]. Specifically, the parameter-
ized circuit sequentially performs Z-rotation and X-rotation on the
single qubit. Here, each rotation gate is controlled based on the
parameter set Ox. A number of entangling layers L are sequentially
cascaded. These embedding and entangling layers are iterated over
) a few layers, with a shuffled extension of the data re-uploading
C= Z e ﬁ (1-ay), @ trick [15]. Finally, the expectation value or the probability value

j=1

where x € R? is a random 3D point, and ¥ is defined by a diagonal
matrix § € R3*3 representing scaling and rotation matrix R € R3%3
to guarantee its positive semi-definite characteristics, such that
% = RSSTRT. To render an image from a random viewpoint, 3D
Gaussians are first splatted to 2D, and render the pixel value C € R3
using a-composed blending.

of the qubit’s measurement is taken as the output of the quantum
activation layer hi.

where & € R! measures the opacity of each Gaussian after 2D After the activation layer, we concatenate the outputs {ﬁ,}{\f L to
projection, ¢ € R? is view-dependent color modeled by Spherical ¥
Harmonics (SH) coefficients, and I is the number of sorted Gaussians
for rendering.

iel

form an an activated vector i € RM. The vector is finally fed into
another linear layer to obtain the corresponding attribute for each

anchor.

2.1.2  Scaffold-GS. Scaffold-GS extends the framework of 3DGS L. .

and introduces a more storage-friendly anchor-based approach. 2.3 Training and Loss Function

More specifically, it utilizes anchors to cluster Gaussians and deduce We train the network by optimizing all learnable parameters, in-
their attributes from the attributes of attached anchors through cluding those in the linear layers and the quantum activation layer.
MLPs, rather than directly storing them. Specifically, each anchor Our training objective follows the methodology of Scaffold-GS [11],
consists of a location x* € R? and anchor attributes A = {f* € utilizing a composite loss function that balances photometric ac-
RDP“ 1 € R®, 0 € R*X}, where each component represents anchor curacy and geometric compactness. The total loss L is a weighted
feature, scaling, and offsets, respectively. Here, K is the number sum of three components: a photometric loss, the structural similar-

of offsets per anchor. During rendering, f¢ is fed into MLPs to ity (SSIM) loss Lssim, and a volume regularization loss L,,). The
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(a) End-to-End QKAN-GS
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(b) QKAN Architecture
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Figure 1: Overview architecture of QKAN-GS. (a) end-to-end architecture. (b) our QKAN architecture.

function is given by:

®)

L = L1+ AsstmLssv + Ayol Lol

where Agspm = 0.2 and Ay = 0.001 are weighting coefficients.

3 Evaluation
3.1 Setting

Dataset and Metric: We select two scenes from an open dataset:
“train” and “truck” from Tanks & Temples [8] as real-world dataset.
We used the Peak Signal-to-Noise Ratio (PSNR), Structural Simi-
larity Index (SSIM) [20], Learned Perceptual Image Patch Similarity
(LPIPS) [22], and compressed data size of the anchors and corre-
sponding MLPs for each attribute in megabytes (MB) as perfor-
mance metrics.
Baseline: We consider Scaffold-GS and KAN-based Scaffold-GS (KAN-
GS) as the baselines. For the implementation of both schemes,
we use the implementations provided by the official Scaffold-GS’s
GitHub repository. Here, Scaffold-GS used MLPs with a fixed acti-
vation function for each attribute. KAN-GS used a channel-wise FC
layer as a learnable activation function. For our proposed QKAN-
GS, we adopted the optimal QKAN architecture. This was found by
selecting, for each attribute, whether to use the proposed quantum
activation function or a fixed activation function, and then choosing
the combination that yielded the best rate distortion performance.
Here, we fixed the number of entangling layers, L, to 1 and tested
up to five re-uploading iterations to choose the best combination.

3.2 Baseline Performance

Figs. 2 (a)-(f) show the PSNR, SSIM, and LPIPS as a function of data
sizes in “train” and “truck” scenes, respectively. For both scenes,
QKAN-GS achieves a better trade-off between compressed data size
and reconstruction quality across all three metrics. Especially, in a

large data size, QKAN-GS provides a higher PSNR and SSIM, and a
lower (better) LPIPS value than both the Scaffold-GS and KAN-GS
baselines.

Figs. 3 (a)-(d) and Figs. 4 (a)-(d) show the qualitative evaluation
of the baselines for different scenes. As illustrated in Fig. 3 for
the “train” scene, the reconstructed image by QKAN-GS restores
sharper details and more accurate color representation compared
to Scaffold-GS and KAN-GS, which is reflected in its higher PSNR
and SSIM scores. Similarly, the “truck” scene shown in Fig. 4 shows
that although the PSNR for QKAN-GS is the same as for KAN-GS,
our QKAN-GS achieves better SSIM and LPIPS scores. Although
the visual difference between QKAN-GS and the other baselines
in the “truck” scene is slight, it indicates higher perceptual quality
with better preservation of structural details and textures.

4 Conclusion

In this paper, we introduced QKAN-GS, a novel generative com-
pression method for 3D-GS. By replacing the standard MLPs and
their fixed activation functions with a QKAN architecture featuring
quantum-empowered learnable activation functions, we aimed to
create a more parameter-efficient and expressive model for repre-
senting Gaussian attributes. Our approach builds upon the anchor-
based framework of Scaffold-GS, enhancing its compression capa-
bilities without sacrificing reconstruction quality. Our experimental
results on the Tanks & Temples dataset demonstrate the effective-
ness of QKAN-GS. It outperformed the Scaffold-GS, which is a fixed
activation function, and a KAN-based variant across different data
sizes, demonstrating superior rate-distortion performance in terms
of PSNR, SSIM, and LPIPS metrics. Although QKAN-GS shows
promising results, we acknowledge that its evaluation is currently
limited to two scenes.

For future work, we plan to explore the application of QKAN to
other aspects of 3D scene representation and investigate further
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Figure 2: Reconstruction quality of each scheme as a function of data sizes in different scenes. (a)-(c): “Train”, (d)-(f): “Truck”.
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Figure 3: Snapshots of the reconstructed “train” scene. (a) Figure 4: Snapshots of the reconstructed “truck” scene. (a)

Ground Truth, (b) Scaffold-GS, (c) KAN-GS, (d) QKAN-GS. Ground Truth, (b) Scaffold-GS, (c) KAN-GS, (d) QKAN-GS.
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