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Offline Imitation Learning upon Arbitrary Demonstrations by
Pre-Training Dynamics Representations

Haitong Ma, Bo Dai, Zhaolin Ren, Yebin Wang, Na Li

Abstract— Limited data has become a major bottleneck
in scaling up offline imitation learning (IL). In this paper,
we propose enhancing IL performance under limited expert
data by introducing a pre-training stage that learns dynamics
representations, derived from factorizations of the transition
dynamics. We first theoretically justify that the optimal decision
variable of offline IL lies in the representation space, signifi-
cantly reducing the parameters to learn in the downstream IL.
Moreover, the dynamics representations can be learned from
arbitrary data collected with the same dynamics, allowing the
reuse of massive non-expert data and mitigating the limited data
issues. We present a tractable loss function inspired by noise
contrastive estimation to learn the dynamics representations at
the pre-training stage. Experiments on MuJoCo demonstrate
that our proposed algorithm can mimic expert policies with
as few as a single trajectory. Experiments on real quadrupeds
show that we can leverage pre-trained dynamics representations
from simulator data to learn to walk from a few real-world
demonstrations.

I. INTRODUCTION

Offline imitation learning (IL) agents aim to mimic an
expert policy using only a fixed dataset of expert demon-
strations, without interacting with the environment through
a behavior policy. Since offline IL eliminates the cost and
risks associated with trial-and-error exploration, it has been
widely applied to various robot learning tasks, including
manipulation [1], [2] and locomotion [3], [4].

One of the most commonly used offline IL algorithms
is behavior cloning [5], which uses supervised learning to
match the expert policy and behavior policy directly, ignoring
the Markovian properties. Behavior cloning suffers from the
notorious compound error, meaning that a small learning
error in a single step will drive the agent into scarce or
unseen trajectories in the expert dataset, in turn amplifying
the learning error after several steps [6]. To avoid compound
error, IL is formulated as distribution matching between
the behavior and expert state-action densities, leveraging the
Markovian structure of expert data to mitigate the compound
error [7]. This approach has been further extended to the
offline setting [8] using DIstribution Correlation Estimation
(DICE, [9]) as computation tools.
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The major challenges in solving distribution matching
offline are twofold, i.e., limited expert data and solving
min−max optimization. In the offline setting, the agent can
not interact with the environment and can only learn from
limited expert data, resulting in heavy overfitting and poor
generalization. Current solutions to limited data are mixing
expert and sub-optimal data by regularization or weighted
sum [8], [10]–[12]. However, the mixture still requires sub-
optimality of the auxiliary data. Another significant issue is
the computational complexity of min-max optimization [9],
[13], as DICE inherently performs a primal-dual optimiza-
tion. Specifically, with neural network parametrizations in
practice, the min-max optimization becomes highly unsta-
ble [14].

To handle these challenges, we propose the dynamics
representations to further leverage the dynamics information
to improve offline IL. Specifically, we define dynamics
representations from the factorization of system dynamics
and theoretically justify their abilities to represent the deci-
sion variables of offline IL optimization. Therefore, we can
conduct offline IL on the representation space, mitigating
the computational difficulties of solving min−max with
neural networks and reducing parameters to learn. Moreover,
the dynamics representations can be learned from arbitrary
demonstrations with the same dynamics, relieving the limited
data issue by learning representations from a large amount of
non-expert or even random data. We formulate a two-stage
algorithm that learn dynamic representations from all data
with shared dynamics in the pre-training stage and conducts
downstream IL on representation space with expert data only
in the main stage.

We validate the proposed algorithm through locomotion
tasks in both the MuJoCo simulator and real quadrupeds.
The MuJoCo experiments demonstrate that dynamics repre-
sentations enable learning locomotion policies with as few as
a single expert trajectory. Meanwhile, real-world quadruped
experiments show that the agent can learn to walk using 1000
seconds of demonstration data collected from real hardware,
built upon dynamics representations learned from simulators.

II. RELATED WORKS

A. Imitation Learning via Distribution Matching
Distribution matching has online and offline variants de-

pending on whether the agent can interact with the envi-
ronment. Online distribution matching starts from inverse
reinforcement learning (IRL), where the agent tries to recover
the reward from expert trajectories [15]–[17]. However, we
need another RL process on the IRL output to recover
the expert policy. [7] explains how the reward function
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learning can be bypassed to directly learn expert policy by
distribution matching. The algorithm starts the adversarial IL
family that adversarially trains a behavior policy to mimic
the expert and a discriminator to discriminate behavior and
expert trajectory [18], [19]. Offline distribution matching is
more challenging since we cannot sample from the behavior
distribution, and the discriminator training is impossible.
[8] first makes the offline distribution matching possible
using DICE to estimate the density ratio between behavior
policy and offline dataset [9]. Then offline IL focuses on the
limited expert demonstration issue with different choices of
regularization terms [8], [10], [11], [20].

B. Representation Learning for IL
In reinforcement learning (RL), successor representation is

popular for learning and transfer [21], [22], but it is defined
over reward functions and not capable for IL. Some work
re-parametrized policies using latent variable models to learn
task-agnostic skills on the latent space to represent general
knowledge [23], [24], but it is designed only for learning
from experts. In control theory, the Koopman operator the-
ory [25] tries to lift the problem to a higher dimensional
space where it becomes a linear system, but learning such
mappings is very difficult.

Representations defined by factorization of transition dy-
namics [26], [27] have recently gained significant interest due
to their rich representational capacity and transferability. The
representability of dynamics factorization has been justified
by theoretical analyses [28], [29] as well as empirical studies
on sim-to-real transfer learning [30]. In this paper, we
show that these representations are also compatible with IL
after adding noise contrastive design inspired by contrastive
learning [28], [31].

III. IMITATION LEARNING VIA DISTRIBUTION
MATCHING

A. Problem Formulation
We use Markov Decision Processes (MDPs), a standard

sequential decision-making model for our IL task. The MDP
can be described as a tuple M = (S,A, P, ρ, γ), where S is
the state space, A is the action space, P (·|s, a) : S × A →
∆(S) is the transition operator with ∆(S) as the family of
distributions over S, ρ ∈ ∆(S) is the initial distribution and
γ ∈ (0, 1) is the discount factor.

The goal of offline IL is to find a policy π : S → ∆(A)
that mimics the behavior of given expert demonstrations.
In the offline IL setting, we cannot interact with the MDP
environment to collect samples with the execution policy π,
but only access a dataset of transitions sampled from the
MDP, D = {(si, ai, s′i), | (s, a) ∼ q, s′ ∼ P (· | s, a), i =
1, 2, . . . , N}, where q is the data distribution. A subset
Dexp = {(si, ai, s′i), | (s, a) ∼ dexp, s′ ∼ P (· | s, a), i =
1, 2, . . . , N} ⊆ D is the expert demonstrations, and dexp is
the distribution of state-action pairs generated by the expert.

The IL can be completed by matching the state-action
stationary distribution dπ(s) generated by execution policy π

dπ(s) := (1− γ)

∞∑
t=0

γt Pr(st = s | s0 ∼ ρ,

at ∼ π (st) , st+1 ∼ P (· | st, at) ,∀t),
(1)

with the expert demonstration distributions dexp. We abuse
the notation to denote the stationary discounted distribution
on state-action pairs, dπ (s, a) := dπ (s)π (a | s).

We formulate the distribution matching problem as mini-
mizing the f -divergence between behavior state-action dis-
tribution d with expert demonstration distribution dexp while
satisfying the density constraints,

min
π,d

Df (d∥dexp) = E(s,a)∼dexp

[
f

(
d(s, a)

dexp(s, a)

)]
s.t. d (s′, a′) = (1− γ)ρ (s′)π(a′|s′) + γPπ

∗ d (s
′, a′) ,

∀ (s′, a′) ∈ S ×A.
(2)

where d is a general probability measure, f -divergence Df :
∆(S) × ∆(S) → R+ is a class of functions that measures
the difference between two probability distributions defined
with a convex function f : (0,∞) → R, f(1) = 0 and the
Pπ
∗ transpose policy transition operator

Pπ
∗ d(s

′, a′) = π(a′ | s′)
∫∫

P (s′ | s, a)d(s, a)dsda. (3)

The optimization (2) is difficult to solve as the optimization
variable is a function d (·, ·) and there are infinite many con-
straints for each (s, a) pair. Moreover, in offline setting, the
execution policy π is not able to interact with environments,
increasing the optimization difficulty.

B. Solution via Primal-dual Optimization

We start by constructing and reformulation the Lagrangian
of problem (2) with Q(s, a) as the dual variable,

max
π,d

min
Q

−Df (d∥dexp)+∫∫
Q(s, a) · ((1− γ)ρ(s)π(a|s) + γPπ

∗ d(s, a)− d(s, a)) dsda

(4)
Noticing the problem (2) is convex-concave given policy π,

we can transform the Lagrangian (4) to
max
π

min
Q

(1− γ) · E(s0,a0)∼ρ×π [Q (s0, a0)] +

E(s,a)∼dexp

[
max

ν
ν(s, a) · (γPπQ(s, a)−Q(s, a))− f (ν(s, a))

]
(5)

where we first reparametrize the primal variable d(s, a) to
the density ratio

ν(s, a) :=
d(s, a)

dexp(s, a)
and Pπ is the adjoint operator of Pπ

∗ defined as

PπQ(s, a) =

∫∫
P (s′ | s, a)π(a′ | s′)Q(s, a)ds′da′.

. The detailed derivation is deferred to Appendix B in our
online report [32] due to space limit.
Simplification of (5) via Fenchel duality. Fenchel conju-
gate, or convex conjugate, indicates that any convex functions
f can be written as

f(x) = max
ζ∈R

[x · ζ − f∗(ζ)]

for any x ∈ (0,+∞), where f∗ is the Fenchel conjugate or
convex conjugate of f . f∗ is also a convex function. Then



we can reformulate the second expectation in (5) as
max

ν
ν(s, a) · (γ · PπQ(s, a)−Q(s, a))− f (ν(s, a))

=f∗ (γ · PπQ(s, a)−Q(s, a))
(6)

Therefore, we can eliminate one optimization function and
reduce the optimization complexity, resulting in

=max
π

min
Q

(1− γ) · E(s0,a0)∼ρ×π [Q (s0, a0)] +

E(s,a)∼dexp [f∗ (γPπ [Q(s, a)]−Q(s, a))]
(7)

Optimality conditions of ν and Q. Most importantly, the
optimal solution of convex conjugate in (6) indicates the
optimal primal ν∗Q given dual variable Q have the following
relation,

f ′
(
ν∗Q(s, a)

)
= γPπQ(s, a)−Q(s, a) (8)

by computing the derivatives of LHS of (6) and asking it to
be zero.

Moreover, when both primal variable ν and dual variable
Q are solved to the saddle points ν∗, Q∗ given policy π,
the constraints in (2) given π are satisfied due to the saddle
point optimality conditions. Therefore, the primal variable
d(s, a) recover dπ(s, a) given π in (1), indicating ν∗(s, a) =
dπ(s,a)
dexp(s,a) and

f ′(ν∗(s, a)) = f ′
(
dπ(s, a)

dexp(s, a)

)
= γPπQ∗(s, a)−Q∗(s, a)

(9)
by extension of (8).

Remark 1 (Interpretation of the dual variable Q.). Equation
(8) shares a similar formulation with the policy evaluation in
RL, i.e., the dual variable Q can be interpreted as the state-
action value function with respect to the reward function
−f ′

(
ν∗Q(s, a)

)
. Moreover, when Q is solved to optimal Q∗,

it can be interpreted as the Q-function of −f ′
(

dπ(s,a)
dexp(s,a)

)
.

For example, if we select KL divergence where f(x) =

x log(x), the reward function will be − log dπ(s,a)
dexp(s,a) − 1,

i.e., the log density ratio. From now on, we will use KL
divergence instead of general f -divergence, indicating the
following relation (ignoring the constant shift),

Q∗(s, a) = − log

(
dπ(s, a)

dexp(s, a)

)
+ γPπQ∗(s, a) (10)

Remark 2 (Difficulty in solving the min−max optimization
(7)). Solving (7) in practice is difficult in both computational
and statistical aspects. Statistically, the imitation learning
heavily relies on the expert trajectories in dexp(s, a), which
is expensive to collect. Computationally, with neural net-
work introduced for parametrization of Q (s, a), ν (s, a),
and π (a|s) in (7), the min-max optimization is notoriously
difficult and very unstable, therefore, usually requires many
tuning and tricks, for example, gradient penalty from the
generative adversarial training [8], [33]. These two factors
together render inferior performance and poor generalization.

IV. DYNAMICS REPRESENTATIONS

In this section, we define the dynamics representations
from the factorization of system dynamics. We show that
the dynamics representations can significantly help IL since

they can fully represent Q(s, a) in (6), enabling us to con-
strain optimization in the representation space. Moreover, the
dynamics representations can be learned from arbitrary data
sharing the same transition dynamics, reducing the statistical
dependency on expert data only.

A. Definitions

Definition 1 (Dynamics representations). There exists rep-
resentations ϕ : S ×A → Rk and µ : S → Rk such that

P (s′ | s, a) = ⟨ϕ(s, a), µ(s′)pn(s′)⟩ (11)
where the pn ∈ ∆(S) is a noise distribution that has full
support on S, and ⟨·, ·⟩ is vector inner product.

Remark 3 (Noise distributions pn and connection to linear
MDP [26], [27], [29].). Our factorization is similar to the
linear MDP literature in the RL theory community except
for the additional noise term pn(s

′) inspired by [28]. Adding
the extra noise term has two benefits: a) Aligning with the
density ratio learning in the offline setting when setting pn
as dexp shown in Section IV-B; b) Enabling tractable loss
function to learn representations ϕ, µ shown in Section V-A.

Remark 4 (Transferability and connections to successor
features [21].). We emphasize that our dynamics represen-
tations are only relevant with dynamics P , which can be
naturally transferred across data collected from different
policies or tasks sharing the same dynamics. Another popular
family of feature transfer leverages the successor features
[21], [22] sharing the similar decomposition of Q(s, a) =
⟨ψπ(s, a), w⟩, which is obtained from the factorization of re-
ward functions r = ⟨r(s, a), w⟩ and ψπ(s, a) = Eπ[r(s, a)].
Note that the representation ψπ is relevant with policy π,
constraining its reuse within similar tasks only. Our dynamics
representations ϕ, µ are irrelevant to policy, indicating more
general transferability. Moreover, for our IL problem, no
reward functions are explicitly defined, making leveraging
the successor representations not practical.

Some might question the existence of such factorizations.
We show an example of stochastic control with known
dynamics,

Example 1 (Fournier random feature for nonlinear control
with Gaussian noise [34].). We give an example of features
for a known nonlinear control system with Gaussian noise
taht is commonly seen in robotic control, i.e.

s′ = g(s, a) + ϵ, ϵ ∼ N (0, σ2Id)

where g : S ×A → S is a deterministic nonlinear dynamics,
and ϵ is the Gaussian noise. We can regard the transition dy-
namics as P (s′ | s, a) ∝ exp(−∥g(s, a)− s′∥2/2σ2), which
is a Gaussian kernel. Then according to Bonchner theorem
[35], we have the Fourier random features of the Gaussian
kernel, P (s′ | s, a) = ⟨ψω(g(s, a)), ψω (s′)⟩N (ω) where
ψw(x) = exp(iω⊤x) and ⟨·, ·⟩N (ω) = Eω∼N (0,σ−2Id) [⟨·, ·⟩].
It translate to infinite-dimensional representations ϕ, µ whose
ith element are

ϕi(s, a) = ψwi(g(s, a)), µi(s
′) = ψwi(s

′)/pn(s
′)

, respectively, where ωi ∼ N (0, σ−2Id). In this case, ϕ, µ
are both infinite-dimensional features, but we can use finite-



dimensional truncation as an approximation in practice with
provable approximation guarantees [34].

B. Representational Capacity of Dynamics Representations

We show that the proposed dynamics representations ϕ, µ
can fully represent the dual variable Q in (6). We first show
what is the representation space of ϕ, µ, respectively.
Density ratio dπ(s)

pn(s)
represented by µ(s). Recalling the

recursion on dπ(s) in (2), substituting the factorization (11)
in it, and dividing both sides by pn(s′), we have
dπ(s′)

pn (s′)
= (1− γ)

ρ(s′)

pn (s′)

+γ

〈
µ (s′) ,

∫
ϕ (s, a) dπ(s)π (a|s) dsda︸ ︷︷ ︸

θπ

〉
.

(12)

where θπ is a linear weight irrelevant with s′. As we know
the initial distribution ρ and the noise distribution pn, we
have the full linear representations of µ(s), or the state
density ratio dπ(s)

pn(s)
. Moreover, when setting pn = dexp, the

state-action density ratio can be further represented by

ν∗(s, a) =
d(s)

dexp(s)

π(a | s)
πexp(a | s)

:=

(
(1− γ)

ρ(s)

pn (s)
+ γ ⟨µ (s) , θπ⟩

)
ζ(s, a)

(13)

where ζ(s, a) := π(a|s)
πexp(a|s) is the policy ratio.

Dual variable Q represented by ϕ, µ jointly. From the
optimal solution (9) and Remark 1 we observe that the
optimal dual variable Q∗ can be interpreted as the value
function of reward − log (ν∗(s, a)). Substitute the dynamics
representations (11) into (8),

Q∗(s, a) = − log ν∗(s, a) + γPπQ∗(s, a)

=− log ν∗(s, a)+〈
ϕ(s, a), γ

∫
µ(s′)pn(s

′)π(a′|s′)Q(s′, a′)ds′da′︸ ︷︷ ︸
ωπ

〉
(14)

Substitute the density factorization (13), we have the full
representation of optimal dual variable Q∗,

Q∗
wπ,θπ (s, a) =

− log ζ(s, a)︸ ︷︷ ︸
Offline

computable

+ϕ⊤(s, a)ωπ−log
(
µ(s)⊤θπ︸ ︷︷ ︸

Sit in the representation space

+(1− γ)
ρ(s)

dexp(s)︸ ︷︷ ︸
Offline computable

)
(15)

where ωπ ∈ Rk is the linear weights on representations ϕ
independent from s, a. Note that the policy ratio ζ and initial
state density ratio ρ(s)

dexp(s) are all offline computable from
the expert dataset and current behavior policy. Therefore,
we have the full parametrization structure of Q∗, where the
parameters to optimize are only ωπ, θπ , i.e., the coefficients
on representations ϕ, µ, respectively. In practice, we can
directly put parameters ω, θ and optimize with gradient
descent.

C. Imitation Learning with Dynamics Representations

As we know that the representational structure of optimal
Q∗, we can constrain the optimization of dual variable Q

within the representation space according to (15), we can
substitute the representation of Q∗ to the our objective
function (7) and transferring optimizing Q to optimizing the
parameters ω, θ, i.e.,
max
π

min
ω,θ

E
(s,a)∼dexp

[
exp

(
γPπQ∗

ω,θ(s, a)−Q∗
ω,θ(s, a)

)]
+(1− γ) E

(s0,a0)∼ρ×π

[
Q∗

ω,θ(s0, a0)
]
.

(16)
where f∗(x) = exp(x) − 1 when we select KL divergence
(constants in the objective functions are ignored). With the
learned representation, we can constrain the min side of the
optimization to the representation space, making it easier to
solve min-max problems.

V. TWO-STAGE ALGORITHM FOR REPRESENTATION AND
IMITATION LEARNING

In this section, we propose a two-stage algorithm and dis-
cuss practical considerations. We will first explain a tractable
representation learning algorithm as the pre-training stage
that admits arbitrary datasets sharing the same dynamics P ,
then discuss the main training stage conducting downstream
IL on representation space.

A. Pre-training Stage: Dynamics Representation Learning
We show how to learn the representations ϕ, µ from data.

We consider the case where we have a (small) expert dataset
Dexp and a (large) general dataset D containing all data
generated from the same dynamics P . Then we define the
following representation learning objective function,

min
ϕ,µ

Jrepr(ϕ, µ) := −2E(s,a,s′)∼D
[
ϕ(s, a)⊤µ(s′)

]
+ E(s,a)∼D,sn∼Dexp

[
(ϕ(s, a)⊤µ(sn))

2
]

(17)
We show that by minimizing (17) we can get representation
satisfying factorizations in (1) since

Jrepr(ϕ, µ) = E(s,a)∼D

[∫
lϕ,µ(s, a, s

′)ds′
]
− C

where lϕ,µ(s, a, s′) :=

(
P (s′ | s, a)√

pn(s′)
−ϕ(s, a)⊤µ(s′)

√
pn(s′)

)2

(18)
C is a constant irrelevant with ϕ and µ. The detailed
derivation can be found in Appendix B in our online report
[32]. It is easy to see from (18) that the ϕ and µ minimizing
Jrepr satisfy the factorization in (11). To improve numerical
stability, we add a log probability regularization term similar
to [28],
min
ϕ,µ

Jrepr(ϕ, µ)+λreprE(s,a)∼D

[(
log
(
Es′
[
ϕ⊤(s, a)µ(s′)

]))2]
(19)

where Jrepr(ϕ, µ) is defined in (17), and λrepr is the regu-
larization weights.

B. Main Stage: IL on Representation Space
Equation (16) already showed the IL on representation

space, we address some practical considerations here. In
practice, the initial states can be sampled from dexp without
affecting the optimality (See discussion in Section 5.3 in [8]).
Therefore, the ρ(s)

dexp(s) equals constant 1. Moreover, to avoid



Fig. 1: Demonstration of the proposed algorithm. We first learn dynamics representations in the pre-training stage, and learn downstream
IL in the main training stage within the representation space.

learning log policy ratio log ζ(s, a) offline, we directly use
a neural network fξ(s, a) to fit it and arrives at practical Q
parametrization,
Qω,θ,ξ(s, a) = fξ(s, a)+ϕ(s, a)

⊤ω− log
(
µ(s)⊤θ + 1− γ

)
(20)

TWe solve the inner dual variable estimation and outer policy
optimization alternatively.

The overall two-stage IL algorithm is presented in Algo-
rithm 1 as well as in Figure 1.

Algorithm 1 Representation ValueDICE (Abstract version)

Require: Expert trajectory dataset Dexp, Dynamics dataset
D ⊇ Dexp, initial policy π0

1: # representation learning stage
2: Solve for representation ϕ, µ via solving (19) with dy-

namics dataset D and expert dataset Dexp.
3: # Imitation learning stage,
alternatively do dual variable
evaluation and policy update.

4: while Training, alternatively do
5: Parameterize Q with learned representation ϕ, µ and

parameters ω, θ, ξ following (20).
6: Optimize ω, θ, ξ parameters of dual variable Q via

optimization (16).
7: Update policy π via optimization (16).
8: end while

VI. EXPERIMENTS

The experimental tests aim to justify our claims on the
representation-based DICE imitation learning, i.e.,

• Does the representation improve IL performance and
generalizations when expert data is limited?

• Can we reuse the representation from data sharing the
same dynamics to help imitation learning?

We will show results on locomotion tasks in MuJoCo sim-
ulators (with expert data only and a combination of expert
and random data) and real quadrupeds.

A. Imitation Learning with Limited Expert Data

Fig. 2: Locomotion tasks in the MuJoCo simulator, from left to
right: Half Cheetah, Hopper, Ant, and Walker2d.

Tasks and expert data. We conduct imitation learning on
four locomotion tasks using MuJoCo physics simulator [36]
shown in Figure 2, which are commonly used in previous IL
papers [7], [8]. To answer question 1, we sample a limited
number of expert trajectories from the expert dataset pro-
vided in [8], i.e., 1 trajectory for HalfCheetah, Hopper, and
Walker2d, 3 trajectories for Ant. The original ValueDICE
paper [8] provides 40 trajectories. Each trajectory has a total
of 1000 transitions.
Algorithms and Baselines. Other than the proposed al-
gorithm ReprValueDICE, We include baselines (1) Val-
ueDICE directly uses a NN to parameterize dual variable Q
[8] and (2) behavior cloning (BC) that leverages maximum
likelihood estimation to match expert and behaviour policies.
Evaluation and Performance. We evaluate the IL pol-
icy over 20 randomly initialized trajectories to assess the
performance and demonstrate the generalization capabil-
ities of policies learned from only 1 or 3 trajectories
only, shown in Figure 3. The results show that ReprVal-
ueDICE achieves significantly better average returns than
ValueDICE on HalfCheetah, Hopper, and Walker2d. For the
Ant, ReprValueDICE shows stable performance consistently
over the whole training process towards the expert, while
BC and ValueDICE show good performance initially but
then deteriorate quickly. All the results have shown that the
dynamics representation can help mitigate overfitting and
improve performance even with a little expert data, verifying
that exploiting dynamics representation can improve the IL
performance and generalization to unseen trajectories.
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Fig. 3: Training performance of learning from limited expert
data. Solid lines and shaded regions show the mean and standard
deviation of episodic returns per 1000 training iterations with 10
random seeds.
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Fig. 4: Training performance of learning from expert data and
auxiliary data. Solid lines and shaded regions show the mean and
standard deviation of episodic returns per 1000 training iterations
with 10 random seeds. Dashlines indicate learning the performance
learning from expert data only using ValueDICE [8].

For sensitivities to other hyperparameters like the number
of extra random data, the number of expert demonstrations,
please refer to Appendix D in our online reports [32].

B. Imitation Learning with Auxiliary Data

Experimental Setup. We continue to conduct IL on MuJoCo
locomotion tasks and leverage auxiliary data from D4RL [37]
medium-level datasets to further help imitation learning.
We consider appending 40 times more trajectories (120
trajectories for Ant and 40 trajectories for the other 3) of
the previously mentioned mujoco tasks.
Algorithm and baselines. Our ReprValueDICE leverages
the auxiliary data ane expert data together to learn represen-
tations in the pre-training stage and then imitates the expert
data in the main stage. We compare our ReprValueDICE
against a) DemoDICE [10] that uses the suboptimal data

as regularization and 2) discriminator-weighted behavior
cloning (DWBC) [18].
Evaluation and performance. We use the same evaluation
process as Section VI-A. Experimental results have shown
that ReprValueDICE shows significant improvements over
ValueDICE with expert data only and outperforms DWBC
and DemoDICE. Results on DWBC and DemoDICE show
that when the medium-level data dominates the dataset,
where in our case expert data:medium data=1 : 40,
handling auxiliary data via regularization or weighted BC
cannot achieve good performance.

C. Imitating Real Quadrupeds Controllers

We further show the superior expert data efficiency of
proposed representation-based imitation learning on the real
Unitree Go2 Quadrupeds trying to imitate the built-in con-
troller on a task of walking, i.e., tracking given base speed
commands. Specifically, we consider three tasks, trotting
(zero speed), walking (0.5m/s linear velocity) and turning
(0.5 rad/s angular velocity).

Fig. 5: We use the Unitree Go2 Quadrupeds and control it via the
Jetson Orin NX extension deck (left). Auxiliary data are collected
from the Issac Gym simulator (right).

Real-world and Simulator Data Collection. We collect
1000 seconds of real-world expert data using the built-
in controller. Meanwhile, to show that we can learn and
reuse representations from arbitrary data, we also use the
Isaac Gym simulator to collect a large amount of auxiliary
data. The data is collected during the process of training
a reinforcement learning (RL) agent and is used as the
dynamics dataset D to learn representations in equation
(V-A).
Baselines and metrics. We compare the proposed ReprVal-
ueDICE with ValueDICE and BC that learns from expert data
collected from real world only, showing that by leveraging
dynamics representation, we can learn an effective walking
controller with only a small amount of data. To get quan-
titative metrics on the gait behaviors, we compute the base
walking height, foot air percentage, and average contact force
partitions of front foot.
Results. We record the gait behavior metrics in Table I,
which shows that the proposed ReprValueDICE well mim-
ics the stock controller and demonstrates appropriate base
height, less air time, and balance contact (average 25% on
the front foot), all show a stable walking behavior. The RL
always leans forward with a higher base, which easily leads
to instability under external perturbation. As for ValueDICE
and BC, they all fail to stably walk after learning from
the same amount of data. Moreover, the velocities tracking
performance of the real quadrupeds are shown in Appendix



D in our online report [32], showing the successful imitation
of stock controllers. The video of learned policy are can also
be found on our Project webpage.

TABLE I: Gait behaviour comparison averaging over all three speed
tracking tasks. The closer to the target stock controller in blue,
the better the algorithm is. Behavior cloning (BC) and ValueDICE
from expert data only failed to walk stably.

Base walking
height (cm)

Foot air time
percentage∗(%)

Average front foot
contact force partition

Stock (Target Policy) 32.4±2.2 24.0±3.3 24.8±12.2

ReprValueDICE 31.6±4.9 25.0±8.5 27.6±14.5
RL 37.8±5.3 30.0±11.3 42.4±14.5
BC N/A N/A N/A

ValueDICE
(from expert demo) N/A N/A N/A

VII. CONCLUDING REMARKS
In this paper, we propose the dynamics representations

to address the challenge of optimization and sample effi-
ciency in offline IL. We define representations through a
factorization of transition dynamics and show that it can
fully represent the decision variable Q in offline IL. Ex-
perimental results on MuJoCo and real quadrupeds verified
that the proposed algorithm has less overfitting and better
generalization and can reuse auxiliary non-expert data to
learn representations and improve algorithm performance.
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