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Abstract

Indoor positioning methods using wireless signal propagation data have attracted significant
interest for applications such as monitoring IoT devices and tracking human behavior. The
IEEE 802.11 FTM (Fine Timing Measurement) protocol, used for Wi-Fi location, was intro-
duced to the market in 2016. The FTM protocol can measure the distance between Wi-Fi
access point (AP) and station (STA). By measuring the distances between multiple Wi-Fi
APs and STAs, the indoor position of the STA can be estimated. In this paper, we collected
FTM and RSSI measurements in an indoor environment using FTM- enabled Wi-Fi APs and
STAs, and evaluated indoor positioning accuracy through geometric calculations based on
FTM data as well as a machine learning approach using both FTM and RSSI data as inputs.
Furthermore, for the machine learning approach, we also assessed the impact of varying the
number of Wi-Fi AP data elements supplied to the model in increments of AP count. The
results demonstrated that positioning accuracy achieved by the machine learning approach
surpassed that of geometric calculations. Moreover, even when the number of input data
elements to the machine learning model was limited, utilizing FTM data obtained from at
least one AP mitigated the degradation in positioning accuracy within the machine learning
framework.
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Abstract—Indoor positioning methods using wireless signal
propagation data have attracted significant interest for appli-
cations such as monitoring IoT devices and tracking human
behavior. The IEEE 802.11 FTM (Fine Timing Measurement)
protocol, used for Wi-Fi location, was introduced to the market in
2016. The FTM protocol can measure the distance between Wi-Fi
access point (AP) and station (STA). By measuring the distances
between multiple Wi-Fi APs and STAs, the indoor position of
the STA can be estimated. In this paper, we collected FTM
and RSSI measurements in an indoor environment using FTM-
enabled Wi-Fi APs and STAs, and evaluated indoor positioning
accuracy through geometric calculations based on FTM data
as well as a machine learning approach using both FTM and
RSSI data as inputs. Furthermore, for the machine learning
approach, we also assessed the impact of varying the number
of Wi-Fi AP data elements supplied to the model in increments
of AP count. The results demonstrated that positioning accuracy
achieved by the machine learning approach surpassed that of
geometric calculations. Moreover, even when the number of
input data elements to the machine learning model was limited,
utilizing FTM data obtained from at least one AP mitigated the
degradation in positioning accuracy within the machine learning
framework.

Index Terms—Indoor Localization Estimation, Fine Timing
Measurement, IEEE 802.11-2016, Wi-Fi, Machine Learning.

I. INTRODUCTION

High-precision indoor positioning estimation for indoor
location management and people flow data analysis is at-
tracting attention. Examples of such applications include flow
line analysis in airports, warehouses, commercial facilities,
and campuses, as well as location management in factories.
Bluetooth, UWB, and Wi-Fi have been considered as indoor
positioning methods. Bluetooth 6.0 extends to support channel
sounding feature for ranging with RTT (Round Trip Time)
and PBR (Phase-Based Ranging) in addition to AoD (Angle
of Departure) defined in Bluetooth 5.1 [1]. Next generation
UWRB, discussed in IEEE 802.15.4ab [2], also updates PHY
and MAC to enhance ranging capability. While these standards
have the advantage of more accurate ranging, the installation
of additional infrastructure equipment such as anchors is
required. In particular, Wi-Fi is widely used as an indoor
infrastructure, and products are being introduced to the market
as Wi-Fi Location [3]. Wi-Fi Location Release 1 uses the FTM
(Fine Time Measurement) protocol specified in IEEE 802.11-
2016 [4], which allows Wi-Fi APs and STAs to communicate

with each other to measure the distance by the arrival time
of the radio waves in addition to conventional RSSI-based
ranging.

Several existing indoor positioning methods using data have
been investigated, but they all have their challenges. For ex-
ample geometric methods for calculating the relative position
from an Wi-Fi AP by converting RSSI attenuation to distance
values or using FTM distance measurements have been widely
studied. These method of indoor position methods are not
suitable for real-world applications. The slightest disturbance,
where by human traffic or the line of sight from access point
may be obstructed, can cause a large deviation in distance
values from the accurate distance values. For machine learning
methods applying RSSI or FTM values, these methods can
basically estimate indoor positions with high accuracy, but
requiring detailed data collection for each location and large-
scale measurements. For example, the third and fifth floors of
a building will often have similar floor structures. The most
of the walls and obstacles will be the same, and only the
placement and propagation of the Wi-Fi APs will be different.
Existing machine learning-based methods do not allow these
two models to be used interchangeably, and data must be
acquired for each floor.

The ultimate goal of this research is to develop an indoor
positioning method that can be applied to different radio prop-
agation environments from the time the dataset was created,
eliminating the need for repeated large-scale data acquisition.
As a first step towards achieving this goal, this paper presents
the collection of detailed FTM and RSSI data and an analysis
of the combination of frequency bands and methods. Data
collection was conducted using densely placed Wi-Fi APs
and a robot in an indoor environment. Using FTM distance
measurement values, we evaluated position estimation through
geometric methods and machine learning. Additionally, for
machine learning-based position estimation, we investigated
the number of Wi-Fi APs required for actual deployment.

The rest of this paper is organized as follows. Section II
presents related work. Approach description including exper-
imental set up for data collection is provided in Section III.
Experimental and analysis results are described in Section I'V.
Finally, we conclude our paper in Section V.



II. RELATED WORK

The specification for calculating the distance between a
STA (Initiator) and an AP (Responder) is incorporated into
the IEEE 802.11-2016. RTToF (Round Trip Time of Flight)
method, which calculates a distance based on RTT and the
speed of light between the Responder and the Initiator, is
applied [4]. The sequence of FTM is shown in Figure 1.
Initial FTM Request is transmitted from the Initiator. After
an acknowledgment (ACK) is sent from the Responder, FTM
frame is sent at time ¢ ;, and the frame arrives at the Initiator
at time ¢ ;. Then, ACK sent at time ¢3; from the Initiator
reaches the Responder at time ¢4 ;. The Responder transmits
time information (¢1; and t4;) in an FTM frame to the
Initiator at time ¢; ». The FTM is terminated after 7 sets of the
same sequence to calculate the average. The theoretical RTT
can be calculated as

RTT = (ta1 —t11) — (t3,1 — t2,1) (D

In practice, to improve the measurement accuracy, the RTT
is averaged over n round trips as

n n

RTT =1/n(> (tar —tik) — > _(tsr —t2)) (2

k=1 k=1

Then the distance d between the Initiator and the Responder
can be computed using d = (RT'T/2) x ¢, where c is the speed
of electromagnetic wave propagation.
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Fig. 1. FTM Sequence

Indoor positioning technologies are widely used in the
market and have also led to extensive performance studies in
research community.

A bunch of indoor positioning researches using RSSI (Re-
ceived Signal Strength Indicator) have been conducted. H.
Neyaz et al. compares the accuracy of indoor localization
schemes by machine learning using Wi-Fi fingerprinting, in
which the RSSI data of about 200 Wi-Fi Access Points
are used [5] [6]. H. Rizk et al. propose transfer learning
mechanism, named GlobLok, for Wi-Fi indoor positioning
using RSSI data. This proposal tries to generalize models
trained in one building to other buildings [7]. Y. Li et al.
pays attention to the impact of mobile Wi-Fi APs like mobile

phones operating as Wi-Fi mobile hotspots on indoor Wi-
Fi localization error bound. Simulation results using RSS
(Received Signal Strength) show that mobile Wi-Fi APs have
non-ignorable impact on indoor Wi-Fi localization error bound
[8].

For FTM-based localization, T. Kovacshdzy et al. present
baseline measurement performance of FTM using the Espres-
sif System ESP32-S2 and ESP32-S3 Wi-Fi-enabled Wireless
SoCs [9]. PE.N et al. propose a dropout autoencoder finger-
print augmentation approach for the enhanced Wi-Fi FTM
and RSS signals-based indoor localization with DNN (Deep
Neural Network). The CDF of localization error are presented
[10]. Authors of this paper also present the development of
FTM automatic measurement robot for indoor localization
estimation using Wi-Fi [11], in which the architecture of
the automatic measurement system and test data with FTM-
enabled Wi-Fi module is described.

However, although there have been studies on RSSI and
FTM, there have been no comprehensive studies on the number
of access points required for real-world deployment and the
advantages of different frequencies. This paper presents a
detailed dataset of FTM and RSSI data acquired at 1-meter
intervals and analyzed results for the combination of frequency
bands and positioning estimation methods on Section III Data
acquisition was conducted using a dense arrangement of Wi-
Fi APs, and the number of Wi-Fi APs required for real-world
deployment was investigated on Section IV

III. APPROACH DESCRIPTION

This Section presents our measurement device and experi-
ment approach.

A. Implementation of Measurement Device

To measure indoor ranging accuracy, measurements need to
be taken at many points for ground truth and learning data.
In this study, we implemented measurement device using line
tracing and QR codes, which automatically collects sensing
data including FTM, RSSI, and IMU(Inertial Measurement
Unit). Our proposed measurement device consists of a JetSon
Orin Nano, an Intel AX-210 NIC, and a rover equipped with
a line tracer and QR code reader. Figure 2 shows the details
of the measurement device and system. The AX-210 used as
STA is FTM-enabled. Additionally, an FTM-enabled Aruba
535 is used for the Wi-Fi AP [12].

B. Measurement Condition

Figure 3 shows the measurement condition from the top
view. Eight Wi-Fi APs, Aruba 535, were placed in classrooms
on the school campus.To verify the impact of the AP selection
method on the accuracy of position estimation, an excessive
number of APs relative to the size of the room was used.
These Wi-Fi APs are capable of making FTM measurements
at both 2.4 GHz and 5 GHz. In this paper, measurements
were conducted twice, using each frequency individually. Wi-
Fi APs were placed at a height of 2 m, considering the actual
installation environment. The Inte]l AX-210 was mounted on
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Fig. 2. Measurement Device

our measurement device for FTM measurements. The height of
the Wi-Fi STA was set to 1 m above the ground surface. This
measurement device automatically moves within the measure-
ment environment by line tracing and stops for one minute
each time it identifies a QR code laid at the measurement
points indicated by the circles in Figure 3. While stopped,
the Wi-Fi STA performs FTM measurements sequentially with
each Wi-Fi AP.
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Fig. 3. Measurement Condition

IV. EXPERIMENTAL AND ANALYSIS RESULTS

This paper presents the positioning results using FTM and
RSSI data with the Intel AX-210. Two indoor positioning
accuracy methodologies were evaluated. Section IV-A de-
scribes the indoor positioning accuracy based on geometric
calculations using FTM distance data. Section IV-B presents
the indoor positioning accuracy using machine learning with
radio wave propagation data as input. 2.4 GHz and 5 GHz
were evaluated separately.

A. Indoor Positioning Accuracy by Geometric Calculations

In each measurement, the distance d from the STA to
multiple Wi-Fi APs can be obtained. Assuming the coordinates
of the Wi-Fi APs are known, circles with radius d centered at
the coordinates (z,y) of the Wi-Fi APs can be plotted on a
map. For example, if distance data from four Wi-Fi APs are
obtained, four equations of circles centered at the Wi-Fi APs
can be established.

(z —21)* + (y — 1)* =d}
(z — 22)* + (y — y2)* =d3 3)
(x —3) + (y — y3)? =dj
(z — x4)* + (y — ya)® =d3

By subtracting the equation of Wi-Fi AP1 from the equations
of AP2, AP3, and AP4, three linear equations can be derived.

2zg — 21)7 + 2(y2 — 1)y =d? — d3 — 23—y} + a3 + y3

2(z3 — 21)7 + 2(ys — 1)y =di — d3 — 2] —yi + 23 + 3
2(zy —x1)x +2(ys — 1)y Zd% - di - x% - ZU% + %21 + yi
(4)

The intersection points of these linear equations are calculated,
and the centroid of the polygon they form is used to estimate
the position of the Wi-Fi STA [13]. Measurements were
conducted using data from eight Wi-Fi APs on both the 2.4
GHz and 5 GHz bands.

In this subsection, the following Wi-Fi APs were selected
for the geometry-based positioning evaluation:

¢ Reference value: use the FTM values from AP 1, AP 3,
AP 5, and AP 7, which are located at the four corners of
the room.

o All AP selected: use the FTM values from all eight APs
(AP 1-AP 8) placed in the room.

o RSSI-based AP selection: sclect the four APs with the
highest RSSI values among AP 1-AP 8 and use their
FTM values for positioning.

Figure 4 shows the CDF for each frequency configuration
and Wi-Fi AP selection method, and Figures 5, 6, and 7 present
heat maps of the positioning accuracy at each measurement
point when using 5 GHz. In those heat maps, , the CDF is
computed for each measurement location, and the CDF value
at a 2 m error threshold is displayed. This 2 m threshold
was chosen to match our previous study [12]. For both
frequency bands, the “All AP selected” case yielded the worst
accuracy. We believe this is because unconditionally using all
available APs allows FTM values with large errors to enter
the calculation. Moreover, the CDF curve for the RSSI-based
AP selection method crosses below that of the Reference value
method in the 3-5 m error range and remains lower thereafter.
Since the high-accuracy regions in Figure 7 are clustered near
the walls, accuracy in the room’s center is actually worse
than with the Reference value method. Although RSSI does
attenuate with distance to some extent, multipath interference
and reflections dominate, so RSSI-based AP selection failed
to perform well in most areas away from the room edges.
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Fig. 5. Reference value (5 GHz, 2 meter error)
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Fig. 7. RSSI-based AP selection (5 GHz, 2 meter error)

B. Indoor Positioning Accuracy Using Machine Learning

In each measurement, FTM and RSSI data from Wi-Fi
APs placed in the environment are obtained. We conducted
machine learning using these values as training data and
evaluated its accuracy. The machine learning method used
was random forest regression. This method was selected to
perform evaluations as quickly as possible for prototyping, and
we believe that similar results can be obtained with support

vector machines or k-nearest neighbors. The source code used
for training is publicly available and can be obtained from
GitHub [14].

In this paper’s measurements, eight Wi-Fi APs were in-
stalled in the environment, and data can be obtained from each
of them. However, in this section, to match the conditions with
the reference value in numerical calculations using machine
learning, we used data from four APs: AP1, AP3, APS, and
AP7. The X and Y coordinates where the data were obtained
were used as the correct labels, and the FTM and RSSI data
obtained from each Wi-Fi AP were used as training data. Since
the training data consists of FTM and RSSI data from four
Wi-Fi APs, up to eight elements can be used.

Among these, we evaluated the impact of including FTM
in the training data by excluding the four elements of FTM
values from the machine learning input in the following three
ways:

o All FTM-enable: Uses FTM data from all four Wi-Fi
APs. The data consists of eight elements: FTM and RSSI
from AP1, AP3, AP5, and AP7. (same with Section IV-A)

e One FTM-enable: Uses only the FTM data from API.
RSSI data is valid for all Wi-Fi APs. The data consists
of five elements: FTM from APl and RSSI from API,
AP3, APS, and AP7.

e Zero FTM-enable: Does not use any FTM data and
learns only with RSSI. The data consists of four elements:
RSSI from AP1, AP3, APS5, and AP7.

Similarly to Section IV-A, Figure 8 shows the CDF for
each frequency setting and AP-selection method, and Figures
9,10 and 11 present heat maps of the positioning accuracy
at each measurement point when using the 5 GHz band. In
contrast to Chapter 1, the heat maps in Figures 9,10 and
11 display the CDF value at an error threshold of 0.5 m.
Keeping the threshold at 2 m produced uniformly high values
across all points, which obscured any differences between
locations, so we adopted a stricter threshold. We chose 0.5
m because the measurement spacing between adjacent points
was 1 m, making this threshold sufficient to fully distinguish
each location. Across all AP-selection methods, the measured
positioning accuracy is overall higher than in the numerical-
simulation case. Moreover, Figure 8 shows that including
FTM measurements in the learning process further improves
localization accuracy. Although both FTM and RSSI vary
with distance, relying on FTM yields higher precision than
using RSSI alone, which is heavily affected by reflections and
multipath.
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Fig. 11. Zero FTM-enable (5 GHz, 0.5 meter error)

Since it was confirmed that high-precision positioning
could still be achieved when using data from only four Wi-
Fi APs as input, we also examined how the number of
AP data elements—and whether or not FTM measurements
are included—affects accuracy. Machine-learning inputs were
restricted according to the number of Wi-Fi APs and, in
accordance with the All, One, and Zero FTM-enable schemes,
by the presence or absence of FTM measurements. Consistent

with the methodology applied in the heat maps, the CDF
at a 0.5 m error threshold was employed as the metric for
positioning accuracy. Figure 12 illustrates the positioning
accuracy corresponding to each frequency band and data-
element restriction. The x-axis denotes the number of Wi-
Fi APs utilized as input. Overall, the 5 GHz band exhibited
superior accuracy compared to the 2.4 GHz band. Incremental
improvements in accuracy plateaued at approximately four to
five APs, converging to values of approximately 0.85 for 2.4
GHz and 0.90 for 5 GHz. In the Zero FTM-enable case, accu-
racy dropped sharply once fewer than three to four APs were
used—an effect especially pronounced at 5 GHz. We attribute
this to a reduced AP count causing RSSI values that are too
similar for the model to distinguish. The shorter propagation
range of 5 GHz further amplifies this issue. This pronounced
decline in accuracy is largely mitigated under both the All and
One FTM-enable configurations. For practical deployments of
machine-learning—based positioning systems, provisioning one
FTM-capable AP per room—thereby enabling the acquisition
of RSSI data from APs in adjacent rooms—is sufficient to
maintain acceptable positioning accuracy.
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Fig. 12. Relationship between the number of Wi-Fi APs and accuracy (0.5
meter error)

V. CONCLUSION

In this paper, we collected FTM and RSSI measurements
from eight Aruba 535 access points and an Intel AX-210 and
evaluated positioning accuracy using both geometric compu-
tations and machine learning. Data collection and subsequent
evaluations were conducted on the 2.4 GHz and 5 GHz
frequency bands. In the geometry-based approach, three AP-
selection schemes were compared:(1)Reference Value, which
uses measurements from the four APs located at the room’s
corners; (2)All AP Selected, which utilises data from all
available APs; (3)RSSI-Based AP Selection, which selects the
four APs with the highest RSSI values; For both frequency
bands, the All AP Selected scheme yielded the lowest accu-
racy, likely because unconditionally including all APs allowed
large-error FTM measurements to influence the estimate.
Furthermore, RSSI-Based AP Selection proved susceptible to



multipath interference and did not produce uniform accuracy
improvements across the monitored area. In the machine learn-
ing-based approach, we varied the number of APs contributing
data to the training set to assess its impact on positioning
performance. Training with data from more than four or five
APs produced negligible accuracy gains. Conversely, when
FTM values were entirely excluded and the training set
was restricted to fewer than four APs, positioning accuracy
deteriorated markedly. However, incorporating FTM data from
at least one AP mitigated this degradation substantially. These
experiments established a dataset framework characterised by
diverse AP counts and measurement-point densities, providing
a basis for the systematic comparison of various positioning
methods. Within the scope of this study, machine learning
leveraging FTM ranging data achieved high-precision posi-
tioning, and the inclusion of a single AP’s FTM data markedly
alleviated accuracy loss even when fewer APs were used.
Future work will investigate AP deployment configurations
in more complex environments and explore training method-
ologies toward the development of a generalized positioning
model.
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